• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 11
  • 3
  • 1
  • Tagged with
  • 52
  • 52
  • 12
  • 11
  • 10
  • 10
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

High Precision Comb-Assisted Molecular Spectroscopy in the Mid-Infrared

Alsaif, Bidoor 06 1900 (has links)
In several fields, such as biology, chemistry, combustion and environmental science, laser absorption spectroscopy represents an invaluable tool for the detection and identification of a variety of molecular species in the gas phase. For this detection to be quantitative, it is of paramount importance to rely on accurate spectroscopic parameters for the involved absorption lines in terms of line strength, line center frequency, pressure broadening, and pressure shift coefficients. The mid-infrared region offers the most favorable conditions for sensitive and chemically selective detection. The sensitivity derives from the presence of intense fundamental ro-vibrational transitions of molecules, whereas chemical selectivity relates to the unique absorption spectrum that molecules possess in the mid-IR region, thereby known as the fingerprint region. In this thesis, we combine the accelerating technology of optical frequency combs (OFC), which are powerful tools for accurate optical frequency measurements, with the wide tunability and single line emission in the mid-IR of extended cavity quantum cascade lasers (EC-QCL), to perform highly resolved, accurate and sensitive measurements in the fingerprint region, from 7.25 to 8 μm. Specifically, we have been able to lock for the first time the optical frequency of an EC-QCL to an OFC by utilizing nonlinear optics in the form of sum frequency generation (SFG) (Lamperti, AlSaif et al., 2018) and have exploited this comb-locked EC-QCL for an accurate survey of the entire ν1 ro-vibrational band of one of the most important greenhouse gases, nitrous oxide (N2O). The developed spectrometer is able to operate over a wide region of ~ 100 cm-1, in a fully automated fashion, while affording a 63 kHz uncertainty on the retrieved line center frequencies. The measurement allowed us to determine very accurately rotational constants of both ground and excited states of the ν1 band of N2O through the measurements of tens of lines of the P and R branches (AlSaif et al., JQSRT 2018). The spectrometer was then upgraded with a more recent and narrower linewidth EC-QCL to perform sub-Doppler saturated spectroscopy on the same N2O sample at a spectral resolution below 1 MHz, the sharpest ever observed with this type of laser. Finally, we worked at adding high sensitivity to the apparatus by introducing the gas in a high-finesse passive resonator and by developing a system to measure the intra-cavity absorption with cavity ring-down spectroscopy (CRDS) together with comb calibration.
32

Semi Conducting Metal Oxide Gas Sensors: Development And Related Instrumentation

Abhijith, N 06 1900 (has links)
A sensor is a technological device or biological organ that detects, or senses, a signal or physical condition and chemical compounds. Technological developments in the recent decades have brought along with it several environmental problems and human safety issues to the fore. In today's world, therefore, sensors, which detect toxic and inflammable chemicals quickly, are necessary. Gas sensors which form a subclass of chemical sensors have found extensive applications in process control industries and environmental monitoring. The present thesis reports the attempt made in development of Zinc oxide thin film based gas sensors. ZnO is sensitive to many gases of interest like hydrocarbons, hydrogen, volatile organic compounds etc. They exhibit high sensitivity, satisfactory stability and rapid response. In the present work the developed sensors have been tested for their sensitivity for a typical volatile organic compound, acetone. An objective analysis of the various substrates namely borosilicate glass, sintered alumina and hard anodized alumina, has been performed as a part of this work. The substrates were evaluated for their electrical insulation and thermal diffusivity. The microstructure of the gas sensitive film on the above mentioned substrates was studied by SEM technique. The gas sensitive Zinc oxide film is deposited by D.C reactive magnetron sputtering technique with substrate bias arrangement. The characterization of the as-deposited film was performed by XRD, SEM and EDAX techniques to determine the variation of microstructure, crystallite size, orientation and chemical composition with substrate bias voltage. The thesis also describes the development of the gas sensor test setup, which has been used to measure the sensing characteristics of the sensor. It was observed that the ZnO sensors developed with higher bias voltages exhibited improved sensitivity to test gas of interest. Gas sensors essentially measure the concentration of gas in its vicinity. In order to determine the distribution of gas concentration in a region, it is necessary to network sensors at remote locations to a host. The host acts as a gateway to the end user to determine the distribution of gas concentration in a region. However, wireless gas sensor networks have not found widespread use because of two inherent limitations: Metal oxide gas sensors suffer from output drift over time; frequent recalibration of a number of sensors is a laborious task. The gas sensors have to be maintained at a high temperature to perform the task of gas sensing. This is power intensive operation and is not well suited for wireless sensor network. This thesis reports an exploratory study carried out on the applicability of gas sensors in wireless gas sensor network. A simple prototype sensing node has been developed using discrete electronic components. A methodology to overcome the problem of frequent calibration of the sensing nodes, to tackle the sensor drift with ageing, is presented. Finally, a preliminary attempt to develop a strategy for using gas sensor network to localize the point of gas leak is given.
33

Entwicklung eines breitbandigen Cavity-Ring-Down-Spektrometers unter Verwendung nahinfraroter, inkohärenter Strahlung / Development of a broadband cavity ring-down spectrometer using incoherent near-infrared radiation

Salffner, Katharina January 2013 (has links)
In der vorliegenden Arbeit werden verschiedene Spektrometer für die Analyse von Gasen bzw. Gasgemischen vorgestellt und deren Design, Aufbau, Charakterisierung und Optimierung beschrieben. Das Resultat der Optimierung und Weiterentwicklungen ist ein spektral breitbandiges Cavity-Ring-Down-Spektrometer (CRD-Spektrometer). Ausgangspunkt der hier vorgestellten Arbeit ist ein Spektrometer auf Basis klassischer Absorptionsspektroskopie in einer Multireflexionszelle. Für dieses Spektrometer wurde als Strahlquelle ein Superkontinuumlaser verwendet. Der Vorteil dieses Spektrometers liegt in seiner Kompaktheit. Mit diesem Spektrometer wurden Absorptionsspektren von mehreren Reingasen und einem Gasgemisch über einen Wellenlängenbereich von 1500 nm – 1700 nm aufgenommen. Der qualitative Vergleich mit zu erwartenden Spektren, welche auf der HITRAN-Datenbank basieren, zeigte eine gute Übereinstimmung. Die quantitative Interpretierbarkeit der Daten war jedoch stark eingeschränkt aufgrund des hohen zufälligen und systematischen Fehlers der Messungen. Als Konsequenz aus der als nicht zufriedenstellend bewerteten quantitativen Interpretierbarkeit der Daten wurde eine alternative Messmethode gesucht, welche eine höhere Sensitivität und Genauigkeit ermöglicht. Die Wahl fiel auf die Cavity-Ring-Down-Spektroskopie, eine resonatorgestützte Variante der Absorptionsspektroskopie. Wesentliche Vorteile dieser Technik sind a) die Unabhängigkeit von Leistungsschwankungen der Strahlquelle, b) ein effektiver Absorptionsweg von bis zu mehreren Kilometern, welcher sich unmittelbar auf die Sensitivität der Messungen auswirkt, c) die Ermittlung absoluter Absorberkonzentrationen, ohne die Notwendigkeit einer Kalibrierung oder den Vergleich mit einer Referenzzelle und d) die Vernachlässigbarkeit von Absorptionen außerhalb des Resonators. Als notwendiger Zwischenschritt auf dem Weg zu einem breitbandigen CRD-Spektrometer wurde zunächst ein monochromatisches CRD-Spektrometer designt, aufgebaut und charakterisiert. Für die effektive Einkopplung von Strahlungsenergie in einen Resonator ist die Anpassung der Strahlparameter an die Mode des Resonators notwendig. Voraussetzung dieser Anpassung ist die Kenntnis der Strahlparameter, welche experimentell ermittelt wurden. Im Laufe des Aufbaus des Spektrometers ergab sich, dass trotz der Modenanpassung die Einkopplung der Strahlungsenergie in den Resonator gestört wurde. Daraufhin wurden systematisch mögliche Ursachen dieser Störung untersucht und das Spektrometer optimiert. Mit diesem optimierten Spektrometer wurden Spektren gemessen, welche sowohl qualitativ als auch quantitativ gut mit den zu erwartenden Spektren übereinstimmen. Als Nachweisgrenze dieses Spektrometers wurde ein Wert für den Absorptionskoeffizienten alpha von 10^-8 cm-1 bestimmt. Mit dem monochromatischen CRD-Spektrometer war es zudem möglich, isotopenspezifische Messungen durchzuführen. Für das breitbandige Spektrometer wurde als Strahlquelle eine ASE-Diode (amplified spontaneous emission) verwendet. Dabei handelt es sich um eine inkohärente Strahlquelle. Mittels Messungen nach dem Prinzip der Cavity-Enhanced-Absorptionsspektroskopie wurde die generelle Funktionalität des resonatorgestützten Spektrometers überprüft. Anschließend wurden die wellenlängenabhängigen Abklingsignale des leeren und des mit einem CO2-Luft-Gemisch gefüllten Resonators gemessen und ebenfalls mit den zu erwartenden Spektren verglichen. Qualitativ stimmen die experimentellen Spektren gut mit den zu erwartenden Spektren überein. Für die quantitative Interpretation der Daten wurde ein spezieller Algorithmus entwickelt, der die spektrale Auflösung des Systems berücksichtigt. Mit dem vorgestellten Spektrometer ist so die qualitative und quantitative Interpretation der Spektren möglich. Die Nachweisgrenze des breitbandigen Cavity-Ring-Down-Spektrometers wurde zu einem Wert von alpha = 8x10^-7 cm-1 bestimmt. Der systematischen und der zufällige Fehler der Messungen lagen bei Werten von ca. 1%. Bei diesem Spektrometer handelt es sich um einen Prototyp. Mittels Optimierung des Systems lassen sich sowohl der Wert der Nachweisgrenze als auch die Fehler der Messungen verbessern. / This thesis presents the design, set-up, characterisation and optimization of various spectrometers to be used for the analysis of gases and gas mixtures. The result of this optimization and its further development is a spectrally broadband cavity ring-down spectrometer (CRD spectrometer), which uses an incoherent light source that emits in the near-infrared. The starting point of the development was a spectrometer which is based on classic absorption spectroscopy inside a multipass cell. This spectrometer uses a supercontinuum laser as light source. The advantage of this spectrometer is its compactness. With this spectrometer, the spectra of various gases and a gas mixture were detected in the spectral range of 1500 nm to 1700 nm. The experimentally derived spectra are in good qualitative accordance to expected spectra based on the HITRAN database. Nevertheless, the qualitative interpretation of the data reveals significant systematic and random errors. As a consequence, a different spectroscopic approach was chosen. The method of choice was cavity ring-down spectroscopy. The advantages of this technique are a) the independence from power fluctuations of the light source, b) an effective absorption path length of up to several kilometres, c) absolute measurement of absorber concentration and d) independence of absorption outside of the cavity. As an important intermediate step on the way to the broadband CRD spectrometer, a monochromatic CRD spectrometer was designed, set up and characterised. To effectively couple light into the cavity, the beam parameters have to be matched to the cavity’s mode. Prerequisite of this mode matching is the knowledge of the beam parameters, which were determined experimentally. Despite this mode matching, the coupling of the light into the cavity turned out to be instable. The cause of that disturbance was systematically investigated, which let to an optimization of the system. The spectra measured with this optimized system were in very good qualitative and quantitative agreement with the expected spectra. The limit of detection of this spectrometer was determined to an absorption coefficient alpha of 10^-8 cm-1. Furthermore, isotope-selective measurements were performed. The light source of the broadband CRD spectrometer is an amplified spontaneous emission diode, which is an incoherent light source. The general functionality of the spectrometer was first tested by means of CEAS measurements (cavity enhanced absorption spectroscopy). Afterwards, the wavelength dependent ring-down signals of the empty cavity and the cavity filled with a CO2 air mixture were detected. The qualitative comparison with the expected data shows very good agreement. For the quantitative interpretation of the experimental data, a special algorithm was developed. Thereby the data measured with the presented spectrometer can be interpreted both qualitatively and quantitatively. The limit of detection of the broadband CRD spectrometer was determined to a value of alpha = 8x10^-7 cm-1. The systematic and the random error are in the range of 1 %. The presented spectrometer is a prototype. Therefore the systematic and random error will be improved by further optimization of the spectrometer.
34

Electrode-based wireless passive pH sensors with applications to bioprocess and food spoilage monitoring

Bhadra, Sharmistha 03 1900 (has links)
This thesis purposes and develops inductively coupled LC (inductive-capacitive) pH sensors based on pH-sensitive electrode pair. The LC resonator circuit is based on a varactor and measures the low frequency potential difference. For wireless pH monitoring, the resonator circuit is integrated with a pH-sensitive electrode pair. This sensor demonstrates a linear response over 2 to 12 pH dynamic range, 0.1 pH accuracy and long-term stability. Accurate measurement of pH using electrode-based sensors is affected by temperature variation. A technique of simultaneously measuring two parameters, pH and temperature, with a single RLC resonator based sensor is presented. An algorithm is developed, which applies both pH and temperature measurement to incorporate temperature compensation in pH measurement. For in-fluid applications, an encapsulation method is applied to the LC resonator based sensor to reduce the influence of medium permittivity and conductivity on the sensor measurement. Non-invasive way to obtain reliable pH information from bacterial culture bioprocesses is demonstrated with the fluid embeddable sensor. The pH sensor is remodeled to an acidic and basic volatile sensor by embedding the electrodes in a hydrogel host electrolyte. Tests demonstrate that the volatile sensor has a detection limit of 1.5 ppm and 2 ppm for ammonia and acetic acid vapor, respectively. Application of the volatile sensor to fish spoilage monitoring shows that the sensor is capable of detecting the product rejection level with good sensitivity in real-time. It is important to develop low cost wireless passive pH sensor technologies for embedded applications such as bioprocess and food spoilage monitoring. The electrode-based passive LC sensor approach employed in this thesis overcomes drawbacks of some of the early developed passive pH sensors and can lead to an inexpensive implementation using printed electronics technology.
35

Sources paramétriques optiques à base de cristaux apériodiques à agilité spectrale ultra-rapide / Rapidly tunable optical parametrical sources based on aperiodically quasi-phase matched nonlinear crystals

Descloux, Delphine 04 November 2016 (has links)
Les applications de spectroscopie, en particulier l’analyse de gaz à effet de serre, de composés organiques volatils ou autres polluants atmosphériques motivent le développement d’instrumentations spécifiques. L’étude présentée ici vise à proposer de nouvelles sources aptes à caractériser la composition d’un milieu gazeux, liquide ou solide. Les raies d’absorption optique de la plupart des gaz à détecter sont particulièrement fortes dans l’infrarouge moyen (en particulier entre 3 et 5 µm). Pour adresser cette plage spectrale, l’optique non linéaire propose de nombreuses solutions. Les sources rapportées ici sont des oscillateurs paramétriques optiques (OPO) dont la spécificité repose sur l’utilisation de cristaux non linéaires à quasi-accord de phase apériodique. Ces cristaux présentent de larges bandes de gain intrinsèques. Les travaux présentés permettent une étude du comportement de telles sources, absentes de la littérature en régime d’impulsions picosecondes. Des caractéristiques propres à l’utilisation des cristaux apériodiques sont rapportées. Un outil permettant une observation spectrale dynamique en régime picoseconde est proposé puis utilisé pour l’étude du démarrage de nos OPO. Ces sources large bande sont ensuite associées à des filtres spectraux rapides placés dans la cavité. Deux types de filtres sont utilisés. D’abord l’association d’un réseau de diffraction en configuration Littrow avec un déflecteur rapide. Ensuite l’insertion dans la cavité d’un réseau de Bragg en volume chirpé, placé sur une platine de translation, pour tirer profit de la condition de pompage synchrone. Ces deux solutions nous permettent d'obtenir des dispositifs largement et rapidement accordables en longueur d'onde. L’utilisation de telles sources pour des applications de détection de gaz est démontrée. / Spectroscopy applications related to greenhouse gases or other atmospheric pollutants, involve the development of a large range of specific tools. The aim of the work presented here is to develop new devices to characterize the composition of gas, liquid, or solid media. Most of the species to be detected show particularly strong optical absorption lines in the mid-infrared region (in particular around 3 to 5 µm). To address this specific spectral range, nonlinear optics provide a wide range of solutions. The sources reported here are optical parametric oscillators (OPO) based on aperiodically poled nonlinear crystals. Such crystals offer broad gain bandwidths. The work presented here contains a study of those sources, not reported so far in the literature for picosecond regime. Behaviors that are specific to the use of aperiodic crystals are reported. A useful tool allowing dynamical spectral studies is proposed, and implemented to investigate buildup regime of the picosecond OPO. Those sources are then associated with rapid spectral filters inserted in the cavity. Two different approaches are developed. The first is based on the association of a diffraction grating in Littrow configuration with a deflecting device. The second takes advantage of the synchronous pumping scheme, with an intracavity chirped volume Bragg grating mounted on a translation stage. Fast and wide wavelength tuning is demonstrated with those devices. Gas detection applications are also demonstrated.
36

Development of Graphene Based Gas Sensors

Gautam, Madhav 05 September 2013 (has links)
No description available.
37

CONTROLLED FUNCTIONALIZATION AND ASSEMBLY OF GRAPHENE NANOSTRUCTURES FOR SENSING AND ENERGY STORAGE

Nagelli, Enoch A. 02 September 2014 (has links)
No description available.
38

Modeling and Analysis of a Cantilever Beam Tip Mass System

Meesala, Vamsi Chandra 22 May 2018 (has links)
We model the nonlinear dynamics of a cantilever beam with tip mass system subjected to different excitation and exploit the nonlinear behavior to perform sensitivity analysis and propose a parameter identification scheme for nonlinear piezoelectric coefficients. First, the distributed parameter governing equations taking into consideration the nonlinear boundary conditions of a cantilever beam with a tip mass subjected to principal parametric excitation are developed using generalized Hamilton's principle. Using a Galerkin's discretization scheme, the discretized equation for the first mode is developed for simpler representation assuming linear and nonlinear boundary conditions. We solve the distributed parameter and discretized equations separately using the method of multiple scales. We determine that the cantilever beam tip mass system subjected to parametric excitation is highly sensitive to the detuning. Finally, we show that assuming linearized boundary conditions yields the wrong type of bifurcation. Noting the highly sensitive nature of a cantilever beam with tip mass system subjected to parametric excitation to detuning, we perform sensitivity of the response to small variations in elasticity (stiffness), and the tip mass. The governing equation of the first mode is derived, and the method of multiple scales is used to determine the approximate solution based on the order of the expected variations. We demonstrate that the system can be designed so that small variations in either stiffness or tip mass can alter the type of bifurcation. Notably, we show that the response of a system designed for a supercritical bifurcation can change to yield a subcritical bifurcation with small variations in the parameters. Although such a trend is usually undesired, we argue that it can be used to detect small variations induced by fatigue or small mass depositions in sensing applications. Finally, we consider a cantilever beam with tip mass and piezoelectric layer and propose a parameter identification scheme that exploits the vibration response to estimate the nonlinear piezoelectric coefficients. We develop the governing equations of a cantilever beam with tip mass and piezoelectric layer by considering an enthalpy that accounts for quadratic and cubic material nonlinearities. We then use the method of multiple scales to determine the approximate solution of the response to direct excitation. We show that approximate solution and amplitude and phase modulation equations obtained from the method of multiple scales analysis can be matched with numerical simulation of the response to estimate the nonlinear piezoelectric coefficients. / Master of Science
39

Étude des propriétés chimique et morphologique de composites hybrides de type (co)polymère plasma / métal / Study of the chemical and morphological properties of plasma (co)polymer/metal hybrid composites

Mansour, Agapy 18 January 2019 (has links)
Les nanocomposites constitués de nanoparticules métalliques finement dispersées dans une matrice isolante suscitent un grand intérêt en raison de leurs propriétés optiques, électriques ou antibactériennes permettant une variété d'applications technologiques. Dans ce travail, nous nous intéressons aux composites hybrides à base d’ une matrice polymère élaborée par polymérisation par plasma froid (PECVD), imprégnée par la suite avec une solution de sel métallique qui est finalement réduit. Ces nanocomposites sont essentiellement étudiés pour leurs applications et peu d’ études portent sur leur structure chimique et morphologique.Dans ce travail de thèse, notre objectif est ainsi d’ étudier la dépendance des propriétés chimiques et morphologiques de tels matériaux composites vis-à-vis de la structure chimique du polymère plasma, de la nature des nanoparticules métalliques et des fonctions chimiques du polymère impliquées dans les interactions polymère / métal. La matrice sera aussi bien un polymère plasma qu’ un mélange de deux polymères plasma. L'objectif est alors de mieux comprendre la formation de ces nanocomposites, et de montrer leur intérêt dans différentes applications et notamment la détection d'ammoniac. / Nanocomposites consisting of finely dispersed metal nanoparticles into insulating matrix are the focus of much attention because of their optical, electrical or antibacterial properties, allowing a variety of technological applications. In this work, we are interested in hybrid composites based on a polymer matrix synthesized by cold plasma polymerization (PECVD), subsequently impregnated with a solution of metal salt which is finally reduced. These nanocomposites are mainly studied for their applications and less focused on their chemical and morphological structure. In this work, our goal is to study the dependence of chemical and morphological properties of such composite materials on the chemical structure of the plasma polymer, the nature of the metal nanoparticles and the chemical functions of the polymer involved with the polymer / metal interactions. The matrix will be both a plasma polymer and a mixture of two plasma polymers. The objective is then to better understand the nanocomposites formation, and to show their interest in different applications particularly in the detection of ammonia gas.
40

ECR Plasma Deposition Of Carbon - Studies On DLC Coatings And Carbon Nanotubes

Patra, Santanu Kumar 10 1900 (has links)
Recent developments in the field of nano-structured materials for technological as well as scientific prospective are quite interesting. In this context carbon plays a dominant role. Few examples such as carbon nanotubes (CNTs), fullerene, nanostructured diamond, as well as, amorphous carbon film, particularly, diamond-like carbon (DLC) coating are the areas of today’s research. This thesis deals with ECR plasma deposition of carbon in two different forms, i.e., Diamond-like carbon (DLC) and carbon nanotubes (CNTs) In the case of DLC coatings the chemical vapor deposition (CVD) and sputtering CVD configuration has been used. The carbon nanotubes have been grown using CVD configuration. DLC films were deposited by ECR-rf CVD mode, as well as, ECR sputtering mode. In case of CVD films, about 0 — 100 Watts rf bias was employed in steps of 20 Watts, corresponding to effective negative self bias voltage of 15 — 440 V. CH4 and C2H2 have been used as source gas for CVD films. Microwave power was optimized at 300 Watts. In case of sputtering, a cylindrical graphite target (diameter 9 cm and length 6 cm) kept at the exit of the Ar plasma was biased with -200 V. Films were deposited on floating substrate (temperature ~100 oC). Films were deposited on Si, quartz, and steel substrates and characterized by FT-IR, Raman, UV-Visible, Photoluminescence spectroscopy (PL), spectroscopic ellipsometry. Nanoindentation was used to evaluate the film’s elastic property. Pin-on-disk measurement was used to study the tribological property of the films. Electrical properties of the films deposited on Si [p-(100), 10 Ω cm] were studied using picoammeter / source measuring instrument by two probe method. FT-IR analysis showed sp3C-H absorption peak at 2930 cm-1 for the CVD films, while sputtered films did not show any C-H absorption. Raman spectroscopy was used to evaluate bonding aspects as well as hydrogen content of the films. Comparison of sp3C : sp2C among the films was done based on I(D) / I(G) of the Raman peaks, while hydrogen content was estimated based on background slope of the Raman spectra. It was observed that increase in rf bias induces more sp2C while hydrogen content decreases. An optimum substrate bias of 40 Watts was predicted from the Raman spectra. For sputtered films Raman spectra indicated the formation of nanocrystal diamond in a-C matrix. UV-Visible-NIR optical transmission spectroscopy was used to determine the band gap (Tauc), E0, of the films. It showed that increase in rf bias increases the absorption coefficient α. The films deposited from CH4 with a substrate bias of 0 and 20 Watts (i.e., high hydrogen content in the film) followed (hνα)1/2 = const. (hν –E0), while other films hνα = const. (hν –E0) ( h is Plank constant ν is frequency of light). E0 varied from 1.1 — 2.5 eV. It was assumed that for π--π* transition follows root relation while π--σ * transition follows linear relation. Spectroscopic ellipsometry was used to determine optical constants, film thickness, and interface thickness. Deposition rate found out to be ~100 nm / mints for C2H2, ~10 nm / mints for CH4, and ~2.5 nm /mints for sputtered films. Formation of interface layer of thickness about 5 —30 nm due to high energy ion bombardment takes place for the films deposited at 40 Watts rf bias or higher. Band gap and related phenomena was revisited from the data that was obtained from this instrument which reasonably matches with the earlier results. PL experiments were carried out at room temperature using lamp excitation source as well as laser excitation source (457.9 nm wavelength). In case of lamp excitation source any wavelength from 200 —900 nm region can be selected. PL spectra showed that there are two sources of PL signal, one from nanocrystal diamond and other from sp2C phase. To obtain PL signal from diamond UV excitation wavelength was required. This diamond phase is highly efficient emitter as compared to sp2C phase. Based on the closeness of diamond’s optical centre labeling of the peaks was done. For CVD films N3 ( 457 nm), H4 (495 nm), H3 (520 nm), [N-V]0 (~590 nm) optical centers of diamond was observed. For sputtered films [N-V]0 (2.08 eV), H3 (2.38 eV), H4 (2.50 eV), N3 (2.81eV), N3 (2.96 eV), 3.3 eV ( undocumented peak), 5RL ( 4.14 eV) optical centers of diamond as well as band-edge emission (5.01 eV ) was observed. Nanoindentation technique was used to estimate the elastic property and related phenomena of the films. It shows that the films are having hardness of 5—17 GPa and reduced modulus of 20 —120 GPa depending on the deposition parameters. All the films show highly elastic response at lower load, i.e., at low indentation depth where elastic recovery is 85—95 %. At higher load substrate effect comes into the picture. Further morphology in and around the region was evaluated using scanning probe microscopy (SPM). It was shown that substrate effect comes into picture that is based on film’s thickness as well as its elastic property. Films were further characterized by pin-on-disk experiments. C2H2 based films were used because of high deposition rate. Since 40 Watts, 60 Watts, and 100 Watts films adhere well with steel only on these films tribological test was possible. A hardened bearing-steel was used as substrate and a 2 mm diameter cylindrical pin made of tool steel was use as pin. Studies were carried out with three different loads of 20, 40, and 60 N. Friction coefficient varied from 0.02 — 0.04 and wear rate was found to be 10-6 — 10-9 mm3 / N m. A sputtered film of 0.1 μ m on the top of the CVD film, in many respects, enhances the tribological properties. It was shown that certain amount of wear is required for low friction of DLC. Electrical characterization of the films deposited from CH4 showed that they are highly insulating with resistivity of 1013 —1011 Ω-cm, and current conduction mechanism has been found to be predominantly space charge limited conduction (SCLC). Similar to the observations of Tauc’s relation, the film deposited with 0 and 20 Watts bias behave differently and followed the relation , where as, all other films exhibited the relation ( α, n are constants). It signifies that for 0 and 20 Watts rf biased films traps are uniformly distributed across the band gap while for others it decreases from the conduction band. For 0 and 20 Watts rf biased films no Ohmic current was observed at a detection level of 10-11 A. 40 Watts and higher rf biased films showed that three distinct regions in the I-V curves; initially Ohmic region, next to it SPLC region, and finally breakdown region. Increase in rf bias causes increase in Ohmic current. Film deposited from C2H2 showed diode-like behavior with higher conduction current limited by resistive control, and the resistivity of the films was ~ 109 — 105 Ω-cm. Difference in resistivity between the films deposited from CH4 and C2H2 was explained by considering the impurities in the source gas resulting in nitrogen doping concentration. Increase in Ohmic current for the CH4 films was explained by assuming the widening of the σ--σ * gap. Similar diode-like behavior was observed with the sputtered film. The last part of the work deals with the growth mechanism of aligned CNTs and their field emission (FE) properties. Nanotubes were grown at 700 0C on Ni coated (thickness 40 nm, 70 nm, and 150 nm) Si substrate using a mixture of CH4 and H2 gas. Microwave power of 500 Watts was optimized for nanotube growth. Nickel nanoparticle formation mechanism from a continuous Ni film was explained by considering the stress that is generated due to the difference in thermal expansion coefficients of Si and Ni at 700 oC. Though the thicker film such as 150 nm does not form nanoparticle due to stress, hydrogen induced fragmentation of the film due the brittleness of the film even causes formation of finer nanoparticles. A substrate bias in the range 0— 250 V was used to align the nanotubes. Perfectly aligned CNTs were obtained at -250 V substrate bias. The density of the tubes varied from 108 —109 / cm2 while its length was 0.5 — 2 μ m. Due to hydrogen induced fragmentation of the films, 150 nm Ni thick film showed smallest diameter 2 — 5 nm CNTs. 40 nm films showed nanotube diameter of 10 — 30 nm and 150 — 300 nm while 70 nm showed 10 — 30 nm diameter nanotubes. Diameter of the nanotubes was estimated using transmission electron microscopy (TEM). Field emission analysis of these CNTs was done using Fowler-Nordheim (F-N) plot and the investigation revealed that the field emission properties strongly depend on density and aspect ratios. The non-linearity in the F-N plot or current saturation phenomena was explained in terms of change in work function due to heating effect during FE which was pronounced in case of longer nanotube. Suitable efficient cold-cathode emitters for a particular usage (assuming that the variables are applied field and emission current) could be designed from the obtained results. An ammonia gas sensor using thick nonaligned CNTs was realized. For this purpose a thick film of CNTs (~ 0.5 μm) was deposited. This sensor can detect 100 ppm level of ammonia. About 1.5 — 4.5 % change of resistance depending on ammonia concentration (100 —1000 ppm) was observed.

Page generated in 0.112 seconds