Spelling suggestions: "subject:"gauge theories"" "subject:"jauge theories""
41 |
Simetrias globais e locais em teorias de calibre / Local and global symmetries in gauge theoriesSoares, Bruno Learth 08 March 2007 (has links)
Este trabalho aborda a formulação geométrica das teorias clássicas de calibre, ou Yang-Mills, considerando-as como uma importante classe de modelos que deve ser incluída em qualquer tentativa de estabelecer um formalismo matemático geral para a teoria clássica dos campos. Tal formulação deve vir em (pelo menos) duas variantes: a versão hamiltoniana, que passou por uma fase de desenvolvimento rápido durante os últimos 10-15 anos, levando ao que hoje é conhecido como o ``formalismo multissimplético\'\', e a mais tradicional versão lagrangiana utilizada nesta tese. O motivo principal justificando tal investigação é que teorias de calibre constituem os mais importantes exemplos de sistemas dinâmicos que são altamente relevantes na Física e onde a equivalência entre a versão lagrangiana e a versão hamiltoniana, que no caso de sistemas não-singulares é estabelecida pela transformação de Legendre, deixa de ser óbvia, pois teorias de calibre são sistemas degenerados do ponto de vista lagrangiano e são sistemas vinculados do ponto de vista hamiltoniano. Esta propriedade característica das teorias de calibre é uma consequência direta do seu alto grau de simetria, isto é, da sua invariância de calibre. No entanto, numa formulação plenamente geométrica da teoria clássica dos campos, capaz de incorporar situações topologicamente não-triviais, a invariância sob transformações de calibre locais (transformações de calibre de segunda espécie) e, surpreendentemente, até mesmo a invariância sob as transformações de simetria globais correspondentes (transformações de calibre de primeira espécie) não podem ser adequadamente descritas em termos de grupos de Lie e suas ações em variedades, mas requerem a introdução e o uso sistemático de um novo conceito, a saber, fibrados de grupos de Lie e suas ações em fibrados (sobre a mesma variedade base). A meta principal da presente tese é tomar os primeiros passos no desenvolvimento de ferramentas matemáticas adequadas para lidar com este novo conceito de simetria e, como uma primeira aplicação, dar uma definição clara e simples do procedimento de ``acoplamento mínimo\'\' e uma demonstração simples do teorema de Utiyama, segundo o qual lagrangianas para potenciais de calibre (conexões) de primeira ordem (i.e., que dependem apenas dos próprios potenciais de calibre e de suas derivadas parciais até primeira ordem) que são invariantes sob transformações de calibre são necessariamente funções dos campos de calibre (i.e., do tensor de curvatura) invariantes sob as transformações de simetria globais correspondentes. / This thesis deals with the geometric formulation of classical gauge theories, or Yang-Mills theories, regarded as an important class of models that must be included in any attempt to establish a general mathematical framework for classical field theory. Such a formulation must come in (at least) two variants: the hamiltonian version which has gone through a phase of rapid development during the last 10-15 years, leading to what is now known as the ``multisymplectic formalism\'\', and the more traditional lagrangian version studied in this thesis. The main motivation justifying this kind of investigation is that gauge theories constitute the most important examples of dynamical systems that are highly relevant in physics and where the equivalence between the lagrangian and the hamiltonian version, which for non-singular systems is established through the Legendre trans% formation, is far from obvious, since gauge theories are degenerate systems from the lagrangian point of view and are constrained systems from the hamiltonian point of view. This characteristic property of gauge theories is a direct consequence of their high degree of symmetry, that is, of gauge invariance. However, in a fully geometric formulation of classical field theory, capable of incorporating topologically non-trivial situations, invariance under local gauge transformations (gauge transformations of the second kind) and, surprisingly, even invariance under the corresponding global symmetry transformations (gauge transformations of the first kind) cannot be described adequately in terms of Lie groups and their actions on manifolds but requires the introduction and systematic use of a new concept, namely Lie group bundles and their actions on fiber bundles (over the same base manifold). The main goal of the present thesis is to take the first steps in developing adequate mathematical tools for handling this new concept of symmetry and, as a first application, give a simple clear-cut definition for the prescription of ``minimal coupling\'\' and a simple proof of Utiyama´s theorem, according to which lagrangians for gauge potentials (connections) that are gauge invariant and of first order, i.e., dependent only on the gauge potentials themselves and on their partial derivatives up to first order, are necessarily functions of the gauge field strengths (i.e., the curvature tensor) invariant under the corresponding global symmetry transformations.
|
42 |
Identidades de Jacobi generalizadas em teorias de gauge / Generalized Jacobi Identities Gauge TheoriesChaves, Fernando Miguel Pacheco 17 December 1990 (has links)
Estudando o processo q q BARRA W Brown, Mikaelian, Sahdev, Samuel descobriram um zero na distribuição angular do W quando seu momento magnético tem o valor característico de uma partícula de gauge. Goebel, Halzen e Leveille mostraram que este zero é uma consequência da fatorização da amplitude em um termo que contém a dependência da carga ou outros índices de simetria interna, e outro que contém a dependência dos spins ou índices de polarização. Esta fatorização existe em geral para amplitudes de processos envolvendo quatro partículas na aproximação árvore, quando uma ou mais destas partículas é um campo de gauge. Portanto a existência de um zero na seção de choque é uma prova direta da estrutura de gauge da teoria. A fatorização baseia-se em uma identidade, identidade de Jacobi espacial generalizada, cuja demonstração ou significado físico ainda não fora elucidado. O objetivo do presente trabalho é estudar esta identidade de Jacobi espacial generalizada. Para tanto calculamos, no capítulo I, a amplitude de um processo de espalhamento gluon-gluon envolvendo cinco partículas e reorganizando esta amplitude por analogia com um processo de interação fóton-pion, mostramos que não existe, no caso de cinco partículas, a identidade de Jacobi espacial generalizada, mas sim uma série de identidades espaciais parciais, que se compõe, no processo de quatro partículas, em uma única identidade. No capítulo II estudamos um processo envolvendo quatro partículas, das quais três campos escalares, porém agora aproximação de um loop, e mostramos que também não existe identidade de Jacobi espacial generalizada. / Brown, Mikaelian, Sahdev, and Samuel discovered that the angular distribution of the process q q BARRA W in lowest order has a zero, if the magnetic moment f the W has the characteristic value of a gauge field. Goebel, Halzen and Leveille showed that this zero is a consequence of a factorizability of the amplitude into one factor which contains the dependence on the charge or other internal, symmetry indices, and another which contains the dependence on the spin or polarization indices. This factorization is found to hold for any four particle tree-approximation amplitude, when one or more of the four particles is a gauge-field. Therefore, the study of the angular distribution of the process q q BARRA W, directly probes the gauge structure of the theory. The factorization hinges on a spatial generalized Jacobi identity obeyed by the polarization-dependent factors of the vertices, whose physical significance or general demonstration was not known. The purpose of the present work is to study this identity. With this in mind we work out, in chapter I, the amplitude of a scattering gluon-gloun with five particles. Reorganizing this amplitude by analogy with an interaction process photon-pion, we show that does not exist, in this case, the spatial generalized Jacobi identity, but instead many spatial partial identities that compose themselves, in the case of a four particle process, in one single identity. In chapter II, we study a process with four particles, three of them scalar fields, but in the one loop approximation, and show that, in this case too, does not exist the spatial generalized Jacobi identity.
|
43 |
O problema da violação CP forte e extensões ´SU(3) IND.C´ ´Ä´ ´SU(3) IND.L´´Ä´´U(1) IND.X´ do modelo padrão. / The strong CP problem and the perturbative limit in SU(3)xSU(3)xU(1) standard model extensions.Dias, Alex Gomes 16 June 2005 (has links)
Nesta tese apresentamos um estudo de como as simetrias grandes podem tornar as soluções de problemas como o da violação CP forte, mais naturais. Em particular, trataremos de estensões SU(3) IND.C\"\"SU(3) IND.L\"U (1) IND.X do modelo Padrão. Veremos como uma simetria discreta grande torna automática, em nível clássico, a simetria de Peccei-Quinn. O áxion do tipo invisível tem a sua massa protegida contra os efeitos semi-clássicos de gravitação quântica através da simetria Z IND.N. O limite perturbativo desses modelos também é investigado. A classe de modelos em que a simetria discreta é quase automática tem a sua validade perturbativa apenas em uma escala de energia relativamente baixa, na ordem dos TeV. É, então, proposta a extensão com um conteúdo mínimo de representação adicional onde o limite perturbativo pode ser ampliado para escalas de mais de uma dezena de TeV; deixando, portanto, esses modelos mais atrativos do ponto de vista fenomenológiconas energias que estarão sendo alcançadas em um futuro próximo nos aceleradores de partículas. / In this thesis we perform a study about how large discrete symmetries can make problems solutions like the strong CP violation, more natural. In particular, we shall treat of a SU(3)cSU(3)LU(1)x Standard Model extension. We shall see how a large discrete symmetry makes, at the classical level, the Peccei-Quin symmetry automatic. The invisible axion has it mass protected against quantum gravity semi-classical effects by means of a Zn symmetry. The perturbative limit of some of those models is investigated. The class of models in which the discrete symmetry is almost automatic can be treated with perturbation theory only at energy scales below few TeV. It is, then, proposed a model extension with a minimal representation content which extends the perturbative limit to scales of tens of TeV; making, therefore, the models more atractives from the phenomenological point of view at the energies scalas to be reached in the near future.
|
44 |
Teorias de gauge e modelos topológicos (anyons e ordem topológica) / Gauge theories and topological models (anyons and topological order)Ferreira, Miguel Jorge Bernabé 12 August 2016 (has links)
Uma das propriedades mais marcantes de partículas que obedecem a dinâmica quântica é o fato de partículas do mesmo tipo (como dois elétrons, por exemplo) serem indistinguíveis. Em três dimensões, essas partículas podem ser separadas em dois grupo distintos - férmions ou bósons - não havendo uma terceira opção. A razão para isso é topológica, ou seja, depende exclusivamente da topologia do espaço. Em duas dimensões, entretanto, existem partículas que obedecem a regras estatísticas fracionárias, ou estatísticas ainda mais bizarras ditas não-abelianas, em que uma simples troca de dois anyons idênticos representa uma transformação unitária na função de onda do sistema ao invés de uma simples fase. Partículas que obedecem essas regras estatística não-usuais recebem o nome de anyons. Da mesma forma como a topologia do espaço em três dimensões dita as possíveis regras estatísticas que as partículas podem obedecer, a estatística aniônica está fortemente relacionando à topologia do espaço e, portanto, sistemas aniônicas são muitas vezes usados para descrever fases topológicas presentes em alguns sistemas bidimensionais. Neste trabalho apresentaremos alguns aspectos gerais de sistemas aniônicos - livres de modelo - e analisaremos alguns modelos de muitos corpos na rede que permitem descrever anyons como excitação de quasi-partícula. A principal classe de modelo que iremos analisar é a classe do modelo duplo quântico (MDQ) - que é um modelo quântico em (2+1)D cujos graus de liberdade são elementos de um grupo G (finito) vivendo nas arestas de uma rede e cuja dinâmica é descrita por uma hamiltoniana de muitos corpos. O MDQ é um modelo já bem estudado e conhecido na literatura; neste trabalho, porém, será apresentada uma formulação alternativa para o mesmo, a qual desempenha dois papeis importantes nesta tese. O primeiro deles é de mostrar que o MDQ pode ser obtido a partir da deformação de um invariante topológico; o que, por sua vez, ajuda a reconhecer a ordem topológica presente no modelo. O segundo papel importante é mostrar que essa formulação leva também a uma hamiltoniana de muitos corpos que representa uma generalização da hamiltoniana do MDQ. Alguns desses novos modelos permitem descrever sistemas aniônicos que não podem ser descritos pelo modelo duplo quântico usual. Em outras palavras, o modelo generalizado que será apresentado neste trabalho permite descrever diferentes fases topológicas partindo da deformação de um mesmo invariante topológico. / One of the most interesting properties of quantum particles is the indistinguishability of particles of the same kind (as for example two electrons). On three dimensions these particles are known to be either fermions or bosons depending on their statistical behaviour. The reason for that is topology, in other words these two possible statistics are due to the space topology. However, on two dimensions there are particles called anyons which are neither fermion nor boson; they may obey a fractional statistic or a even more weird non-abelian statistic - where a single exchange of two identical anyons a unitary transformation on the wave function instead of just acquiring a phase factor. As well as the usual fermionic and bosonic statistic, the anyonic statistic depends strongly on the space topology and thus anyonic systems are often used to describe topological phases of matter of two dimensional systems. In this work we are going to show some general (model free) aspects of anyonic systems and also analyse some many body systems that describe anyons as quasi-particle excitations. We will mostly study a class of model called quantum double models (QDMs). Quantum double models are (2+1)D models where the degrees of freedom are elements of a group G living on the edges of lattice and the dynamic is given by a many body hamiltonian. The QDM is a well known and studied model on the literature, however in this work we are going to show an alternative construction for QDMs which will play two very important roles in this thesis. First, it will allows us to obtain the QDMs from deforming a topological invariant, and that helps to easily identify the topological order on this model. Besides, one can also obtain a many body hamiltonian that represents a generalization of the the QDM hamiltonian. Some of these new models describe anyonic systems other than the ones that can be described by usual QDM. In other words, this new construction leads to a many body hamiltonian that can describe both quantum double models and generalizations of it as particular cases.
|
45 |
Ordem topológica com simetrias Zn e campos de matéria / Topological order with Zn symmetries and matter fieldsResende, Maria Fernanda Araujo de 03 April 2017 (has links)
Neste trabalho, construímos duas generalizações de uma classe de modelos discretos bidimensionais, assim chamados \"Quantum Double Models\", definidos em variedades orientáveis, compactas e sem fronteiras. Na primeira generalização, introduzimos campos de matéria aos vértices e, na segunda, às faces. Além das propriedades básicas dos modelos, estudamos como se comporta a sua ordem topológica sob a hipótese de que os estados de base são indexados por grupos Abelianos. Na primeira generalização, surge um novo fenômeno de confinamento. Como consequência, a degenerescência do estado fundamental se torna independente do grupo fundamental sobre o qual o modelo está definido, dependendo da ação do grupo de calibre e do segundo grupo de homologia. A segunda generalização pode ser vista como o dual algébrico da primeira. Nela, as mesmas propriedades de confinamento de quasipartículas está presente, mas a degenerescência do estado fundamental continua dependendo do grupo fundamental. Além disso, degenerescências adicionais aparecem, relacionadas ao homomorfismo de coação entre os grupos de matéria e de calibre. / In this work, we constructed two generalizations of a class of discrete bidimensional models, the so called Quantum Double Models, defined in orientable, compact and boundaryless manifolds. In the first generalization we introduced matter fields to the vertices and, in the second one, to the faces. Beside the basic model properties, we studied its topological order behaviour under the hypothesis that the basic states be indexed by Abelian groups. In the first generalization, appears a new phenomenon of quasiparticle confinement. As a consequence, the ground state degeneracy becomes independent of the fundamental group of the manifold on which the model is defined, depending on the action of the gauge group and on the second group of homology. The second generalization can be seen as the algebraic dual of the first one. In it, the same quasiparticle confinement properties are present, but the ground state degeneracy stay dependent on the fundamental group. Besides, additional degeneracies appear, related to a coaction homomorphism between matter and gauge groups.
|
46 |
Géons topológicos em uma teoria de Gauge discreta / Topological Geons in a Discrete Gauge TheorySilva, Ivan Pontual Costa e 21 June 2001 (has links)
Géons topológicos podem ser vistos como um tipo de excitação localizada na topologia espacial. Nesta dissertação, estudamos um modelo físico simples, dado por uma teoria de Yang-Mills-Higgs com simetria de gauge descrita por um grupo de Lie compacto G, e com quebra espontânea de simetria para um subgrupo finito H G. Esta teoria é definida em um espaço-tempo de (2 + 1)d com topologia da forma x IR, onde descreve o plano com um único géon. Estudamos mais especificamente o setor de baixas energias dessa teoria, deduzindo o espaço de configuração clássico e quantizando-o. A quantização é feita identificando certa álgebra que descreve matematicamente o sistema, analisando com detalhes sua estrutura e buscando suas representações irredutíveis. Cada representação é então interpretada como um determinado setor de um géon da teoria. Em outras palavras, cada uma destas representações irredutíveis descreve um tipo de géon diferente. Em seguida, mostramos como estender essa descrição para um número N qualquer de géons. A teoria aqui desenvolvida pode ser vista como um \"toy model\" para o estudo das consequências de se ter uma topologia espacial não-trivial, e em particular, o estudo das propriedades físicas de géons. / Topological geons can be viewed as a sort of localized excitations in spatial topology. In this dissertation, we study a simple physical model, given by a Yang-Mills-Higgs theory with a gauge symmetry described by a compact Lie group G, spontaneously broken down to a finite subgroup H C G. We shall consider this theory to be defined on a (2 + 1)d spacetime with topology of the form E x IR, where describes a plane with a single geon. More specifically, we investigate the low energy sector of this theory, obtain its classical configuration space and quantize it. Quantization is accomplished by identifying a certain algebra, which mathematically describes the system, analyzing its structure in detail and obtaining its irreducible representations. Each such representation is then interpreted as an specific geonic sector of the theory. In other words, each one of the irreducible representations describes a distinct geon type. Moreover, we show how the above description can be extended to any number N of geons. The theory developed here may be viewed as a toy model for studying the consequences of non-trivial spatial topology, and in particular the study of the physical properties of geons.
|
47 |
Instantons em espaços curvos / Instantons in curved spacesTavares, Gustavo Marques 24 September 2018 (has links)
Orientador: Ricardo Antonio Mosna / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin / Made available in DSpace on 2018-09-24T14:09:39Z (GMT). No. of bitstreams: 1
Tavares_GustavoMarques_M.pdf: 695474 bytes, checksum: c437bafa3afb0c0768437e1a139eea12 (MD5)
Previous issue date: 2010 / Resumo: Neste trabalho estudamos os instantons da teoria de Yang-Mills nos espaços de Schwarzs-child e de Reissner-Nordstrom com grupo de gauge SU(2).Instantons são soluções clássicas da teoria de Yang-Mills definida em um espaço com métrica riemanniana (positiva-definida) e com ação finita.
Primeiramente revisamos a formulação geométrica da teoria de Yang-Mills em uma variedade 4-dimensional,identificando os campos de gauge com conexões em um fibrado principal. Em seguida apresentamos os principais resultados clássicos relacionados aos instantons no espaço plano. Na segunda parte da dissertação realizamos um estudo sistemático das soluções da teoria de Yang-Mills nos espaços de Schwarzschild e de Reissner-Nordstrom euclidianos. Esta abordagem nos permitiu descobrir novas famílias de instantons neste contexto.Ainda,os resultados obtidos mostram que o número de famílias de instantons no espaço de Reissner- Nordstrom depende diretamente da carga elétrica que caracteriza esta geometria / Abstract: In this work we study instanton solutions of the Yang-Mills theory in Schwarzschild and Reissner-Nordstrom spaces with gauge group SU(2).Instantons are solutions to the classical field equations of Yang-Mills theory defined in a space with Riemannian (positive de finite)metric with finite action. We begin with a review of the geometric setting of Yang-Mills theory on a four dimensional manifold,which relates the gauge fields to connections on a fiber bundle.We proceed by presenting the main results related to instantons in flat space. In the second part of this thesis we perform a systematic study of the solutions of Yang-Mills theory in Euclidian Schwarzschild and Reissner-Nordstrom spaces.This approach led us to discover a new family of instantons de fined in those backgrounds. Moreover, our results show that the number of instanton families in the Reissner-Nordstrom space depends directly on the eletric charge which caracterizes this geometry / Mestrado / Física das Particulas Elementares e Campos / Mestre em Física
|
48 |
Identidades de Jacobi generalizadas em teorias de gauge / Generalized Jacobi Identities Gauge TheoriesFernando Miguel Pacheco Chaves 17 December 1990 (has links)
Estudando o processo q q BARRA W Brown, Mikaelian, Sahdev, Samuel descobriram um zero na distribuição angular do W quando seu momento magnético tem o valor característico de uma partícula de gauge. Goebel, Halzen e Leveille mostraram que este zero é uma consequência da fatorização da amplitude em um termo que contém a dependência da carga ou outros índices de simetria interna, e outro que contém a dependência dos spins ou índices de polarização. Esta fatorização existe em geral para amplitudes de processos envolvendo quatro partículas na aproximação árvore, quando uma ou mais destas partículas é um campo de gauge. Portanto a existência de um zero na seção de choque é uma prova direta da estrutura de gauge da teoria. A fatorização baseia-se em uma identidade, identidade de Jacobi espacial generalizada, cuja demonstração ou significado físico ainda não fora elucidado. O objetivo do presente trabalho é estudar esta identidade de Jacobi espacial generalizada. Para tanto calculamos, no capítulo I, a amplitude de um processo de espalhamento gluon-gluon envolvendo cinco partículas e reorganizando esta amplitude por analogia com um processo de interação fóton-pion, mostramos que não existe, no caso de cinco partículas, a identidade de Jacobi espacial generalizada, mas sim uma série de identidades espaciais parciais, que se compõe, no processo de quatro partículas, em uma única identidade. No capítulo II estudamos um processo envolvendo quatro partículas, das quais três campos escalares, porém agora aproximação de um loop, e mostramos que também não existe identidade de Jacobi espacial generalizada. / Brown, Mikaelian, Sahdev, and Samuel discovered that the angular distribution of the process q q BARRA W in lowest order has a zero, if the magnetic moment f the W has the characteristic value of a gauge field. Goebel, Halzen and Leveille showed that this zero is a consequence of a factorizability of the amplitude into one factor which contains the dependence on the charge or other internal, symmetry indices, and another which contains the dependence on the spin or polarization indices. This factorization is found to hold for any four particle tree-approximation amplitude, when one or more of the four particles is a gauge-field. Therefore, the study of the angular distribution of the process q q BARRA W, directly probes the gauge structure of the theory. The factorization hinges on a spatial generalized Jacobi identity obeyed by the polarization-dependent factors of the vertices, whose physical significance or general demonstration was not known. The purpose of the present work is to study this identity. With this in mind we work out, in chapter I, the amplitude of a scattering gluon-gloun with five particles. Reorganizing this amplitude by analogy with an interaction process photon-pion, we show that does not exist, in this case, the spatial generalized Jacobi identity, but instead many spatial partial identities that compose themselves, in the case of a four particle process, in one single identity. In chapter II, we study a process with four particles, three of them scalar fields, but in the one loop approximation, and show that, in this case too, does not exist the spatial generalized Jacobi identity.
|
49 |
Aspectos de teorias quânticas de gauge a temperatura finita / Thermal Effects in Quantum Gauge Theory at Finite TemperatureRafael Rodrigues Francisco 26 August 2014 (has links)
Nós trabalhamos em três problemas relacionados com as teorias de gauge a temperatura finita. O primeiro discute a invariância de gauge da massa física do elétron num espaço de dimensão arbitrária a temperatura zero. Obtivemos a massa física a partir do polo do propagador fermiônico e demonstramos que a maneira usual de definir este propagador funciona para gauges covariantes mas não para gauges não covariantes. Em seguida propusemos um novo propagador e verificamos de duas formas diferentes que a massa física obtida a partir deste funciona para um gauge definido com parâmetros de controle tais que ele possa ser generalizado para as duas classes estudadas. O segundo problema é sobre a interação de n fótons num espaço de (1+1) dimensões no limite de altas temperaturas. Usando o formalismo de tempo imaginário e o modelo de Schwinger, mostramos que todos os termos das amplitudes causais retardadas com um ou mais loops têm contribuição nula. Interpretamos fisicamente este resultado e fizemos um paralelo de como ele se relaciona com a invariância CPT da teoria. A última parte é relacionada à gravitação quântica em (3+1) dimensões. Discutimos a possibilidade de obtermos as funções de n grávitons 1PI nos limites estático e de comprimento de onda longo em função de polinômios que podem ser escritos e relacionados de uma maneira simples. Para tanto, usamos as identidades de Ward e a invariância de Weyl de forma a relacionar as funções de n e (n+1) grávitons. Em seguida, utilizamos o formalismo da equação de transporte de Boltzmann para compreender melhor os resultados. / We have worked in three problems related to finite temperature gauge theory. The first one discusses the gauge invariance of the electron physical mass in an arbitrary dimension space at zero temperature. We have obtained the physical mass from the pole of the fermion propagator and we have demonstrated that the usual form to define this propagator works well for covariant gauges, but not for non covariant gauges. Then, we have proposed anew fermion propagator and we verified in two different ways that the physical mass obtained from this new one works for a gauge defined with control parameters so that it could be generalized for both classes studied. The second problem is on the n photon interaction in a space with (1+1) dimensions at hard thermal loops. Using the imaginary time formalism and the Schwinger\'s model, we have shown that all terms of the retarded causal amplitudes with one or more loops have null contribution. We have got a physical interpretation of this result and we have done a parallel of how it relates with the CPT invariance of this theory. The last one is related with quantum gravitation in (3+1) dimensions. We have discussed the possibility to obtain the 1PI n graviton functions in static and long-wavelength limits from polynomials which could be written and related in a simple manner. To this end, we used the Ward identities and the Weyl invariance to relate the n and (n+1) graviton functions. Then, we used the Boltzmann transport equation formalism to get a better understanding of the results.
|
50 |
Formulações alternativas da relatividade geral: da geometrodinâmica à estrutura de Gauge de Ashtekar-Barbero / Alternative Formulations of General Relativity: from geometrodynamics to Ashtekar-Barbero´s gauge structureRafael Guolo Dias 25 May 2011 (has links)
Desenvolvemos aqui um estudo das formulações alternativas-equivalentes da Relatividade Geral, baseada no formalismo de conexões de Ashtekar. Iniciamos discutindo a estrutura matemática necessária de fibrados e conexões, e a teoria de sistemas Hamiltonianos vinculados. Em seguida, damos uma breve introdução ao formalismo métrico de Einstein e então passamos ao formalismo geometrodinâmico canônico (formalismo ADM). Introduzimos as transformações no espaço de fase que geram as formulações alternativas, de forma generalizada tal que possamos obter ambas as variáveis complexas de Ashtekar ou as variáveis reais de Barbero, ou mesmo qualquer forma intermediária por meio do parâmetro de Immirzzi. / We develop here a study of the alternative-equivalent formulations of General Relativity, based on Ashtekars connexion formalism. We begin discussing the mathematical structure needed of fibre bundles and connexions, and the theory of constrained Hamiltonian systems. Next, we give a brief introduction for Einsteins metric formalism and then we pass to the canonical geometrodynamic formalism (ADM formalism). We introduce the transformations of the phase space which generate the alternative formulations, in a generalized form such that we can obtain both Ashtekars complex variables or Barberos real variables, or even any intermediary form by using the Immirzzi parameter.
|
Page generated in 0.1143 seconds