Spelling suggestions: "subject:"gauge theories"" "subject:"jauge theories""
81 |
QFT and Spontaneous Symmetry BreakingChauwinoir, Sheila January 2020 (has links)
The aim of this project is to understand the structure of the Standard Model of the particle physics. Therefore quantum field theories (QFT) are studied in the both cases of abelian and non-abelian gauge theories i.e. quantum electrodynamics (QED), quantum chromodynamics (QCD) and electroweak interaction are reviewed. The solution to the mass problem arising in these theories i.e. spontaneous symmetry breaking is also studied. / Syftet med detta projekt är att förstå strukturen för partikelfysikens standardmodell. Därför studeras kvantfältsteorier (QFT) i båda fallen av abelska och icke-abelska gaugeteorier, dvs kvantelektrodynamik (QED), kvantkromodynamik (QCD) och elektrosvag växelverkan granskas. Lösningen på massproblemet som uppstår i dessa teorier, dvs. spontant symmetribrott studeras också.
|
82 |
Phenomenological studies of dimensional deconstructionHällgren, Tomas January 2005 (has links)
In this thesis, two applications of dimensional deconstruction are studied. The first application is a model for neutrino oscillations in the presence of a large decon- structed extra dimension. In the second application, Kaluza{Klein dark matter from a latticized universal extra dimension is studied. The goal of these projects have been twofold. First, to see whether it is possible to reproduce the relevant features of the higher-dimensional continuum theory, and second, to examine the effect of the latticization in experiments. In addition, an introduction to the the- ory of dimensional deconstruction as well as to the theory of continuous extra dimensions is given. Furthermore, the various higher-dimensional models, such as Arkani-Hamed{Dvali{Dimopolous (ADD) models and models with universal extra dimensions, that have been intensively studied in recent years, are discussed. / QC 20101202
|
83 |
Hard-core bosons in phase diagrams of 2D Lattice Gauge Theories and Bosonization of Dirac FermionsMantilla Serrano, Sebastian Felipe 27 February 2023 (has links)
Hard-core bosons are versatile and useful in describing several physical systems due to their one-to-one mapping with spin-1/2 operators. We propose two frameworks where hard-core boson mapping not only reduces the complexity of the original problem, but also captures important features of the physics of the original system that would have implied high-computational procedures with not much profound insight in the mechanisms behind its behavior.
The first case study comprising part i is an approach to the description of the phases 2D Lattice Gauge Theories, the Quantum 6-Vertex Model and the Quantum Dimer Model using one fluctuating electric string as an 1D precursor of the whole 2D systems[HAMS19]. Both models and consequently the string are described by the Rokhsar-Kivelson Hamiltonian with parameter v measuring the competition of potential versus kinetic terms. The string can be mapped one-to-one onto a 1D system of hard-core bosons that can be solved exactly for the Quantum 6-Vertex Model, and offers footprints of the phase diagram of the Quantum Dimer Model in the region close to the Rokhsar-Kivelson point v = 1, especially when |v| ≤ 1.
The second case study we have discussed in part ii is an extension of higher-dimensional bosonization techniques in Landau Fermi liquids to the case of nodal semimetals where the Fermi surface shrinks to a point, so the description of particle-hole interactions as fluctuations of the Fermi surface is not available [MS20]. Additionaly, we focus our analysis on the Q = 0 sector where the electron and the hole have opposite momenta ±k, so they are mapped into a hard-core boson located at a site k in the reciprocal lattice. To test our extension we calculate nonperturbative corrections to the optical conductivity of 2D Dirac fermions with electron-electron interactins described as a Coulomb potential, obtaining results consistent to the literature and the experimental reports where corrections are small even in strong coupling regimes.
Part iii discusses further ideas derived from parts i and ii, including a brief discussion on addressing the weak coupling instability in bilayer graphene using the bosonization extension that offers a picture of hard-core bosons describing Q = 0 excitons that undergo a Bose-Einstein condensation resulting in a ground state adiabatically disconnected from the noninteracting case.:1 Introduction 1
1.1 Quantum link models and fluctuating electric strings 2
1.2 Bosonization of Particle-hole excitations in 2D Dirac fermions 7
1.3 Structure of the document 11
i. Quantum link models and fluctuating electric strings
2. A Brief Introduction to Lattice Gauge Theories 15
2.1 Continuous formulation of U(1) gauge theories 15
2.1.1 Gauge field equations 16
2.1.2 Gauss’ law as generator of the gauge transformations 18
2.2 U(1) gauge theories on a lattice 19
2.2.1 Gauge field Hamiltonian 20
2.2.2 Cylindrical algebra from LGT 20
2.2.3 Generator of gauge transformations 21
2.3 Abelian Quantum Link Model 22
2.3.1 Quantum Link Models (QLMs) with S = 1 / 2 23
2.3.2 ’t Hooft operators and winding number sectors 24
2.3.3 Construction of the QLM Hamiltonian 26
2.4 Conclusions 28
3. Electric string in Q6VM as a XXZ chain 29
3.1 Realization of the Q6VM in the S = 1 / 2 QLM 31
3.2 Mapping the electric string to the XXZ chain 32
3.3 Phases of the electric string from the XXZ chain 33
3.3.1 v > 1: FM insulator 34
3.3.2 v = 1: RK point 36
3.3.3 −1 < v < 1: Gapless phase 36
3.3.4 v ≤ −1: KT transition and AFM insulator 37
3.4 Numerical approach: Drude Weight and system size effects 38
3.5 Summary and Discussion 40
4. Electric line in the QDM as a hard-core boson two-leg ladder 41
4.1 Realization of the QDM in the S = 1/ 2 QLM 42
4.2 Construction of an electric string in the QDM 43
4.3 Mapping the electric string in QDM to a two-leg ladder 45
4.3.1 QLM in a triangular lattice 45
4.3.2 From the triangular lattice to the two-leg ladder 45
4.3.3 Construction of the 1D bosonic Hamiltonian 46
4.4 Phases of the electric string from the bosonic two-leg ladder 48
4.4.1 Left Hand Side (LHS) of the Rokhsar-Kivelson (RK) point: Charge Density Wave (CDW) states 48
4.4.2 Right Hand Side (RHS) of the RK point: phase-separated states 50
4.5 Numerical approach: Drude Weight and system size effects 51
4.6 Summary and Discussion 52
ii Bosonization of particle-hole excitations in 2D Dirac fermions
5 Graphene in a nutshell 57
5.1 Origin of the hexagonal structure 57
5.1.1 Hybrid orbitals in C 58
5.1.2 Honeycomb lattice 60
5.2 Tight-binding approach 61
5.2.1 Hopping and overlapping matrices in Nearest Neighbor (NN) approximation 62
5.2.2 Dispersion relation for π electrons 62
5.3 Effective 2D Dirac Fermion Hamiltonian 64
5.4 Electron-electron interactions 65
6 Bosonization of the Q = 0 continuum of Dirac Fermions 67
6.1 Effective Hamiltonian and Hilbert space 69
6.2 Effective Heisenberg Hamiltonian 70
6.3 Quadratic Bosonic Hamiltonian 71
6.4 Connection to diagramatic perturbation theory 73
6.5 Parametrization of the reciprocal space 74
6.5.1 Coordinate transformation 74
6.5.2 Polar parametrization 75
6.5.3 Angular momentum channels 75
6.6 Discussion and Summary 76
7 Non-perturbative corrections to the Optical Conductivity of 2D Dirac Fermions 77
7.1 Optical Conductivity 79
7.1.1 Bosonized current operator and susceptibility 79
7.1.2 Susceptibility in terms of the eigenstates 80
7.1.3 Regularization of the Lehman representation 81
7.2 Numerical approach: IR regularization and system size effects 82
7.2.1 Discretization size dependence 82
7.2.2 Dependence on the IR cutoff 83
7.2.3 Comparison of numerical results with corrections from first order perturbation theory 84
7.2.4 Optical conductivity for several coupling constants 85
7.3 Discussion and Summary 86
iii Weak coupling instability, New Perspectives & Conclusions
8 Weak coupling instability in bilayer graphene from a bosonization picture 91
8.1 Band structure of Bernal-stacked bilayer graphene 92
8.2 Generalization of the effective Hamiltonian of graphene 93
8.2.1 Density of states in monolayer and bilayer graphene 94
8.2.2 Projection onto Q = 0 sector and effective Heisenberg pseudospin Hamiltonian 95
8.2.3 Zeeman vortex coordinates and HCB operators 95
8.2.4 Bogoliubov-Valatin basis 97
8.3 Interaction potentials 97
8.4 BCS instability in pseudospin picture 99
8.5 Numerical procedure 101
8.5.1 Numerical BCS instability 101
8.5.2 Functional form of the instability 101
8.5.3 Comparison to the instability from BCS theory 105
8.6 Conclusions 105
9 Conclusions 107
iv Appendices
A. Yang & Yang’s expressions of ground state energy of XXZ Chain using Bethe Ansatz 115
A.1 Bethe Ansatz 115
A.2 Explicit formulas for f ( ∆, 0 ) 116
B. Kadanoff-Baym (KB) self-consistent Hartree-Fock (SCHF) approximation 119
B.1 Details of connection to perturbation theory 119
B.1.1 Bare and dressed fermion propagators 119
B.1.2 Bethe-Salpeter ladder 120
B.1.3 Particle-hole propagator and comparison to HP boson propagator 121
C, Optical Conductivity from Pseudospin precession 123
C.1 Minimal coupling and band (electron-hole) basis 123
C.2 Equations of motion of charge and pseudospin densities 124
C.3 Optical Conductivity from Fermi-Dirac distributions at finite temperature 124
D. Momentum space reparametrization 127
D.1 General coordinate transformations on the continuum limit 127
D.2 Polar re-discretization 129
D.3 Angular momentum channels 130
D.4 Selection of the radial parametrization 130
Bibliography 133
|
84 |
String Representation of Gauge TheoriesAntonov, Dmitri 30 March 1999 (has links)
Die vorliegende Dissertationarbeit ist dem Problem der analytischen Beschreibung des Confinement-Mechanismus in der QCD und in anderen Eichtheorien gewidment. Als Leitprinzip der Arbeit wurde das sogenannte Wilsonsche-Confinement-Kriterium gewählt, gemäss welchem diese Erscheinung durch eine effektive Stringtheorie beschrieben werden kann. Die entstehenden Strings des Eichfeldes verbinden farbige-Objekte (Quarks, Gluonen) miteinander und hindern ihr Auseinandergehen auf makroskopische Abstände. Es werden verschiedene Verfahren der Ableitung dieser Stringstheorien aus unterschiedlichen Eichtheorien, einschliesslich der QCD, vorgestellt. Kapitel 2 enthält die Untersuchung der nichtlokalen effektiven Stringwirkung, die im Rahmen des sogenannten stochastischen Vakuum-Modells der QCD entsteht, wobei die Wechselwirkung zwischen den Elementen der String-Weltfläche durch den phänomenologischen Background-Gluon-Propagator vermittelt wird. Durch Entwicklung dieser Wirkung nach Ableitungen wurden die ersten Terme niedrigster Ordnung bestimmt. Die ersten beiden Terme dieser Entwicklung sind die Nambu-Goto- und Rigidity-Terme mit Kopplungskonstanten, die sich durch das Gluon-Kondensat und die Korrelationlänge des QCD-Vakuums ausdrücken lassen. Die Vorzeichen dieser Konstanten zeigen, dass die durch dieses Verfahren erhaltenen Strings stabil sind. Danach wurde eine mögliche Lösung des ``Crumpling'' Problems auf der Basis eines zusätzlichen topologischen Stringtermes im Instantongas-Modell des QCD-Vakuums vorgestellt. Mittels Störungstheorie im nicht-störungstheoretischen QCD-Background berechneten wir zusätzliche-Korrekturen zur ursprünglichen nicht-störungstheoretischen Stringwirkung. Diese Korrekturen führen zu neuen Formen der nichtlokalen effektiven Stringwirkung, die den störungstheoretischen Gluon-Propagator im Backgroundfeld zwischen den Elementen der Weltfläche enthalten. Durch Ableitungsentwicklung dieser Wirkung bekommen wir eine Korrektur zur Kopplungskonstante des Rigidity-Terms; die Stringsspannung des Nambu-Goto-Terms jedoch bleibt unverändert. Am Ende dieses Kapitels wurde der Hamilton-Operator des QCD-Strings mit spinlosen Quarks hergeleitet, der der effektiven Stringwirkung mit Rigidity-Term entspricht. Dieser Hamilton-Operator liefert einen Korrekturterm zur Wechselwirkung im relativistischen Quarkmodell-Operator. Im Kapitel 3 untersuchten wir das Problem der Stringdarstellung von Abelsch-projezierten Eichtheorien. Als erstes wurde die Herleitung der Stringdarstellung der erzeugenden Funktion für das einfachste Modell dieser Art, d.h. die Abelsch-projezierte SU(2)-QCD gegeben, die einem dualen Abelschen Higgs-Modell mit äusseren elektrisch geladendenen Teilchen äquivalent ist. Der Vorteil dieses Stringszuganges im Vergleich zum Zugang des stochastischen Vakuum-Modells der QCD besteht in der Berücksichtigung der Integration über String-Weltflächen, die auf Grund der Integration über den Singulärteil der Higgsfeld-Phase entsteht. Zusätzlich zur Stringdarstellung der erzeugenden Funktion wurde im London-Limes die Stringdarstellung für die erzeugenden Funktionale der Feldstärke- und Monopolstromkorrelatoren hergeleitet. Dies gab uns die Möglichkeit, die entsprechenden bilokalen Kumulanten zu finden und zu zeigen, dass die bilokalen Kumulanten der Feldstärke für grosse Abstände das gleiche Verhalten wie die entsprechenden eichinvarianten Kumulanten der QCD zeigen. Das Letztere wurde durch das stochastische Vakuum-Modell vorhergesagt und durch Gitterexperimente berechnet. Dieses Ergebnis unterstützt einerseits die Methode der Abelschen Projektion und gibt anderseits dem stochastischen Vakuum-Modell der QCD einen neuen feldtheoretischen Status. Danach erweiterten wir unsere Analyse über den Rahmen des London-Limes hinaus untersuchten den Zusammenhang von quartischen Kumulanten und bilokalen Kumulanten. Anschliessend wurde die Stringdarstellung der SU(3)-Gluodynamik hergeleitet. Dabei wurde die Stringdarstellung für ein entsprechendes duales Modell formuliert, das drei Arten des magnetischen Higgs-Feldes enthält. Infolgedessen liefert das Modell drei Strings, von denen nur zwei wirklich unabhängig sind. Alle diese Strings wechselwirken untereinander durch Austausch zweier massiver dualer Eichbosonen. Ausserdem erhielten wir die bilokalen Kumulanten des effektiven dualen Modells der SU(3)-Gluodynamik. Die entsprechenden bilokalen Kumulanten zeigen für grosse Abstände ein Verhalten wie es durch das stochastische Vakuum-Modell vorhergesagt wurde. Zum Schluss dieses Kapitels geben wir eine nützliche Darstellung für erzeugende Funktionen von Abelsch-projezierten Theorien in Form von Integralen über Monopolströme an. Im Kapitel 4 wurde ein weiteres Modell untersucht, das eine analytische Beschreibung des Confinement-Mechanismus zulässt, nämlich die 3D kompakte QED. Für den Wilson-Loop der entsprechenden Theorie mit Monopoldichten wurde die Äquivalenz zur sogenannten Confining-Stringtheorie demonstriert. Ausserdem wurde das Verhalten der bilokalen Kumulante der Feldstärke im Limes schwacher Felder untersucht. Dieses Verhalten befindet sich ebenfalls in Übereinstimmung mit den Voraussagen des stochastischen Vakuum-Modells. Erwartungsgemäss sind die Stringdarstellungen der erzeugenden Funktionen der 3D kompakten QED im Limes schwacher Felder und der dualen Abelschen Higgs-Modelle sehr ähnlich. Wir zeigten ausserdem, dass diese Entsprechung nicht zufällig ist. Die 3D kompakte QED ergibt sich nämlich im Limes verschwindender Eichbosonmasse aus dem 3D Abelschen Higgs-Modell mit äusseren Monopolen. Zum Schluss wurde ein allgemeines Verfahren der Beschreibung der Anregungen der Stringweltfläche in Abelsch-projezierten Theorien (kompakte QED und QCD) ausgearbeitet. Es ist auf der Methode der nicht-linearen Sigma-Modelle gegründet und gibt eine Möglichkeit, die in diesen Fluktuationen quadratische Effektive Wirkung zu erhalten. In der Dissertation wurden analytische nicht-störungstheoretische Verfahren ausgearbeitet, die neue Informationen über den Confinement-Mechanismus in der QCD und anderen Eichtheorien liefern und zum besseren Verständnis der Vakuumstruktur dieser Theorien beitragen können. Sie sind insbesondere relevant für die Herleitung effektiver Stringtheorien aus Eichtheorien. / The main problem addressed in the present Dissertation was an attempt of an analytical description of confinement in QCD and other gauge theories. As a guiding principle for our investigations served the so-called Wilson's picture of confinement, according to which this phenomenon can be described in terms of some effective theory of strings, joining coloured objects to each other and preventing them from moving apart to macroscopic distances. In this Dissertation, we have proceeded with a derivation of such string theories corresponding to various gauge ones, including QCD, i.e. with the solution of the problem of string representation of gauge theories. We have started our analysis with the nonlocal string effective action, arising within the so-called Stochastic Vacuum Model of QCD, where the interaction between the string world-sheet elements is mediated by the phenomenological background gluon propagator. By performing the derivative expansion of this action, we have derived the first few terms of a string Lagrangian. The first two nontrivial of them turned out to be the Nambu-Goto and rigidity terms with the coupling constants expressed completely via the gluonic condensate and correlation length of the QCD vacuum. The signs of these constants ensure the stability of strings in the so-obtained effective string theory. After that, we have investigated the problem of crumpling for the string world-sheets by derivation of the topological string term in the instanton gas model of the gluodynamics vacuum. Next, by making use of perturbation theory in the nonperturbative QCD vacuum, we have calculated perturbative corrections to the obtained string effective action. Those lead to a new form of the nonlocal string effective action with the propagator between the elements of the world-sheet being the one of a perturbative gluon in the confining background. By the derivative expansion of this action, we got a correction to the rigidity term coupling constant, whereas the string tension of the Nambu-Goto term occurs to get no corrections due to perturbative gluonic exchanges. Finally, we have derived the Hamiltonian of QCD string with spinless quarks at the ends, associated with the obtained string effective action including the rigidity term. In the particular case of vanishing orbital momentum of the system, this Hamiltonian reduces to that of the so-called relativistic quark model, albeit with some modifications due to the rigidity term, which might have some influence on the dynamics of the QCD string with quarks. All these topics have been elaborated on in Section 2, and form the essence of the string representation of QCD within the Stochastic Vacuum Model. In Section 3, we have addressed the problem of string representation of Abelian-projected theories. In this way, we have started with the string representation for the partition function of the simplest model of this kind, namely the Abelian-projected SU(2)-QCD, which is argued to be the dual Abelian Higgs Model with external electrically charged particles. The advantage of this approach to the string representation of QCD w.r.t. the one based on the Stochastic Vacuum Model is a possibility to get an integration over the string world-sheets, resulting from the integration over the singular part of the phase of the Higgs field. After the string representation of the partition function in the London limit, we have proceeded with the string representation for the generating functionals of the field strength and monopole current correlators. Those enabled us to find the corresponding bilocal cumulants and demonstrate that the large-distance asymptotic behaviour of the bilocal field strength cumulant matches the one of the corresponding gauge-invariant cumulant in QCD, predicted by the Stochastic Vacuum Model and measured in the lattice experiments. This result supports the method of Abelian projection on the one hand and gives a new field-theoretical status to the Stochastic Vacuum Model on the other hand. After that, we have extended our analysis beyond the London limit, and studied the relation of the quartic cumulant, which appears there, with the bilocal one in the London limit. Next, by making use of the Abelian projection method, we have addressed the problem of string representation of the SU(3)-gluodynamics. Namely, we have casted the related dual model, containing three types of magnetic Higgs fields, into the string form. Consequently, the latter one turned out to contain three types of strings, among which only two ones were actually independent. As a result, we have found, that both the ensemble of strings as a whole and individual strings display confining properties in a sense that all types of strings (self)interact via the exchanges of the massive dual gauge bosons. We have also derived bilocal cumulants in the effective dual model of confinement, corresponding to the SU(3)-gluodynamics, and they turned out to be also in line with the ones predicted by the Stochastic Vacuum Model. In conclusion of this topic, we have obtained another useful representation for the partition functions of the Abelian-projected theories in the form of an integral over the monopole currents. In Section 4, we have studied another model, allowing for an analytical description of confinement, which is 3D compact QED. In this way, by virtue of the integral over the monopole densities, we have derived string representation for the Wilson loop in this theory and demonstrated the correspondence of this representation to another recently found one, the so-called confining string theory. After that, we have calculated the bilocal cumulant of the field strength tensors in the weak-field limit of the model under study. It also turned out to be in line with the general concepts of the Stochastic Vacuum Model and therefore matches the corresponding results known from the lattice measurements in QCD and found analytically for the effective Abelian-projected theories in the previous Section. Besides that, string representations of the partition functions of the weak-field limit of 3D compact QED and of the dual Abelian Higgs Model turned out to be also quite similar. We have illustrated later on that this correspondence is not accidental. Namely, we have shown that 3D compact QED is nothing else, but the limiting case of 3D Abelian Higgs Model with external monopoles, corresponding to the vanishing gauge boson mass. Finally, we have elaborated on a unified method of description of the string world-sheet excitations in the Abelian-projected theories, compact QED, and QCD, based on the techniques of nonlinear sigma-models, and obtained the effective action, quadratic in the world-sheet fluctuations. In conclusion, the proposed nonperturbative techniques provide us with some new information on the mechanisms of confinement in QCD and other gauge theories and shed some light on the vacuum structure of these theories. They also show the relevance of string theory to the description of this phenomenon and yield several prescriptions for the construction of the adequate string theories from the corresponding gauge ones.
|
85 |
Nonperturbative studies of quantum field theories on noncommutative spacesVolkholz, Jan 17 December 2007 (has links)
Diese Arbeit befasst sich mit Quantenfeldtheorien auf nicht-kommutativen Räumen. Solche Modelle treten im Zusammenhang mit der Stringtheorie und mit der Quantengravitation auf. Ihre nicht-störungstheoretische Behandlung ist üblicherweise schwierig. Hier untersuchen wir jedoch drei nicht-kommutative Quantenfeldtheorien nicht-perturbativ, indem wir die Wirkungsfunktionale in eine äquivalente Matrixformulierung übersetzen. In der Matrixdarstellung kann die jeweilige Theorie dann numerisch behandelt werden. Als erstes betrachten wir ein regularisiertes skalares Modell auf der nicht-kommutativen Ebene und untersuchen den Kontinuumslimes bei festgehaltener Nicht-Kommutativität. Dies wird auch als Doppelskalierungslimes bezeichnet. Insbesondere untersuchen wir das Verhalten der gestreiften Phase. Wir finden keinerlei Hinweise auf die Existenz dieser Phase im Doppelskalierungslimes. Im Anschluss daran betrachten wir eine vier-dimensionale U(1) Eichtheorie. Hierbei sind zwei der räumlichen Richtungen nicht-kommutativ. Wir untersuchen sowohl die Phasenstruktur als auch den Doppelskalierungslimes. Es stellt sich heraus, dass neben den Phasen starker und schwacher Kopplung eine weitere Phase existiert, die gebrochene Phase. Dann bestätigen wir die Existenz eines endlichen Doppelskalierungslimes, und damit die Renormierbarkeit der Theorie. Weiterhin untersuchen wir die Dispersionsrelation des Photons. In der Phase mit schwacher Kopplung stimmen unsere Ergebnisse mit störungstheoretischen Berechnungen überein, die eine Infrarot-Instabilität vorhersagen. Andererseits finden wir in der gebrochenen Phase die Dispersionsrelation, die einem masselosen Teilchen entspricht. Als dritte Theorie betrachten wir ein einfaches, in seiner Kontinuumsform supersymmetrisches Modell, welches auf der "Fuzzy Sphere" formuliert wird. Hier wechselwirken neutrale skalare Bosonen mit Majorana-Fermionen. Wir untersuchen die Phasenstruktur dieses Modells, wobei wir drei unterschiedliche Phasen finden. / This work deals with three quantum field theories on spaces with noncommuting position operators. Noncommutative models occur in the study of string theories and quantum gravity. They usually elude treatment beyond the perturbative level. Due to the technique of dimensional reduction, however, we are able to investigate these theories nonperturbatively. This entails translating the action functionals into a matrix language, which is suitable for numerical simulations. First we explore a scalar model on a noncommutative plane. We investigate the continuum limit at fixed noncommutativity, which is known as the double scaling limit. Here we focus especially on the fate of the striped phase, a phase peculiar to the noncommutative version of the regularized scalar model. We find no evidence for its existence in the double scaling limit. Next we examine the U(1) gauge theory on a four-dimensional spacetime, where two spatial directions are noncommutative. We examine the phase structure and find a new phase with a spontaneously broken translation symmetry. In addition we demonstrate the existence of a finite double scaling limit which confirms the renormalizability of the theory. Furthermore we investigate the dispersion relation of the photon. In the weak coupling phase our results are consistent with an infrared instability predicted by perturbation theory. If the translational symmetry is broken, however, we find a dispersion relation corresponding to a massless particle. Finally, we investigate a supersymmetric theory on the fuzzy sphere, which features scalar neutral bosons and Majorana fermions. The supersymmetry is exact in the limit of infinitely large matrices. We investigate the phase structure of the model and find three distinct phases. Summarizing, we study noncommutative field theories beyond perturbation theory. Moreover, we simulate a supersymmetric theory on the fuzzy sphere, which might provide an alternative to attempted lattice formulations.
|
86 |
Superconformal indices, dualities and integrabilityGahramanov, Ilmar 29 July 2016 (has links)
In dieser Arbeit behandeln wir exakte, nicht-perturbative Ergebnisse, die mithilfe der superkonformen Index-Technik, in supersymmetrischen Eichtheorien mit vier Superladungen (d. h. N=1 Supersymmetrie in vier Dimensionen und N=2 in drei Dimensionen) gewonnen wurden. Wir benutzen die superkonforme Index-Technik um mehrere Dualitäts Vermutungen in supersymmetrischen Eichtheorien zu testen. Wir führen Tests der dreidimensionalen Spiegelsymmetrie und Seiberg ähnlicher Dualitäten durch. Das Ziel dieser Promotionsarbeit ist es moderne Fortschritte in nicht-perturbativen supersymmetrischen Eichtheorien und ihre Beziehung zu mathematischer Physik darzustellen. Im Speziellen diskutieren wir einige interessante Identitäten der Integrale, denen einfache und hypergeometrische Funktionen genügen und ihren Bezug zu supersymmetrischen Dualitäten in drei und vier Dimensionen. Methoden der exakten Berechnungen in supersymmertischen Eichtheorien sind auch auf integrierbare statistische Modelle anwendbar. Dies wird im letzten Kapitel der vorliegenden Arbeit behandelt. / In this thesis we discuss exact, non-perturbative results achieved using superconformal index technique in supersymmetric gauge theories with four supercharges (which is N = 1 supersymmetry in four dimensions and N = 2 supersymmetry in three). We use the superconformal index technique to test several duality conjectures for supersymmetric gauge theories. We perform tests of three-dimensional mirror symmetry and Seiberg-like dualities. The purpose of this thesis is to present recent progress in non-perturbative supersymmetric gauge theories in relation to mathematical physics. In particular, we discuss some interesting integral identities satisfied by basic and elliptic hypergeometric functions and their relation to supersymmetric dualities in three and four dimensions. Methods of exact computations in supersymmetric theories are also applicable to integrable statistical models, which we discuss in the last chapter of the thesis.
|
87 |
Excitations in holographic quantum liquidsDavison, Richard A. January 2012 (has links)
In this thesis we review the gauge/gravity duality and how it can be used to compute the thermodynamic properties and low-energy excitations of holographic quantum liquids - strongly-interacting field theories with a non-zero density of matter. We then study in detail the charge density excitations of two such liquids, the D3/D7 theory and the RN-AdS₄ theory, by computing the poles of their charge density Green's functions, and their charge density spectral functions. Although it is not a Landau Fermi liquid, the charge density excitations of the D3/D7 theory display many of the same properties as one, including a collisionless/hydrodynamic crossover as the temperature is increased. In contrast to this, the charge density (and energy density) excitations of the RN-AdS₄ theory do not share these properties but behave in a way that cannot be explained by Landau's theory of interacting fermionic quasiparticles. This is consistent with other results which indicate that this is not a Landau Fermi liquid.
|
88 |
Réduction des symétries de jauges : une nouvelle approche géométrique / Reduction of gauge symmetries : a new geometrical approachFrancois, Jordan 30 September 2014 (has links)
Le principe de symétrie locale, ou symétrie de jauge, est à la base de notre compréhension des interactions fondamentales. Le language naturelle des théories de jauge est la théorie des connections sur les espaces fibrés, une branche de la géométrie différentielle. En dépit de son importance, la symétrie de jauge pose deux difficultés qui méritent d'être mises en exergue: 1) L'invariance de jauge interdit les termes de masses pour les champs d'interactions, ce qui est en conflit avec la phénoménologie de l'interaction faible. 2) La quantification des théories de jauge est délicate puisque l'intégrale fonctionnelle est a priori mal définie. La symétrie de jauge doit donc être réduite. Essentiellement trois stratégies se présentent, répondant à l'un ou l'autre des deux problèmes. Le fixage de jauge répond à 2 (méthode de Faddeev-Popov). La brisure spontanée de symétrie répond à 1 (méchanisme de Higgs). Enfin, le théorème de réduction des fibrés répond à 1.On propose ici une nouvelle stratégie de réduction des symétries de jauge: la méthode du `dressing field'. C'est un résultat de géométrie différentielle qui se trouve être à la base de la notion de `variables de Dirac'. On montre que cette méthode éclaire certains travaux récents en physique hadronique. Le secteur électrofaible du Modèle Standard est traité ce qui induit une nouvelle interprétation. L'extension de la méthode aux G-structure d'ordre supérieur, ainsi qu'une application à la géométrie conforme, est donnée. Enfin on montre comment la méthode modifie l'algèbre BRS d'une théorie de jauge, et une analyse préliminaire de son impact sur la question des anomalies en Théorie Quantique des Champs est proposée. / The principle of local symmetry, or gauge symmetry, is at the basis of our understanding of fundamental interactions. The natural framework of gauge theories is the theory of connections on fiber bundles, a branch of differential geometry. Despite its importance, gauge symmetry has some drawbacks, two especially prominent: 1) Gauge invariance forbids mass terms for interaction fields, which is at odds with the phenomenology of the Weak interaction. 2) The quantization of gauge theories is delicate since the path integral is a priori ill defined. Gauge symmetry must then be reduced. Essentially three strategies are available, each addressing one problem or the other. Gauge fixing addresses 2 (Faddeev-Popov trick). Spontaneous symmetry breaking addresses 1 (Higgs mechanism). Finally, the bundle reduction theorem addresses 1.We propose here a new strategy of gauge symmetries reduction: the dressing field method. It is a differential geometric result which happens to be the basis of the notion of `Dirac variable'. We show that this method sheds some light on recent works in hadronic Physics. The electrweak sector of the Standard Model is treated, which suggests a new interpretation. Extention of the method to higher-order G-structure, as well as an application to conformal geometry, is given. Finally we show how the method alters the BRS algebra of a gauge theory, and a preliminary analysis of its impact on the question of anomalies in Quantume Field Theory is proposed.
|
89 |
Estudo de sistemas de spins a duas dimensões e de calibre a quatro dimensões com simetria Z(N) / Spin systems in two dimensions and Gauge theories in four dimensions with Z(N) symmetryAlcaraz, Francisco Castilho 28 August 1980 (has links)
Usando uma transformação de dualidade generalizada, considerações de simetria e supondo que as superfície críticas sejam contínuas, obtivemos o dia grama de fase para sistemas de spins Z (N) bidimensionais e sistemas com invariança de calibre Z (N) a quatro dimensões. Caracterizamos as diversas fases dos sistemas de spins pelo valor esperado das potências dos operadores de ordem e desordem. No sistema com invariança de calibre, por outro lado, estas fases caracterizadas pelo comportamento do valor esperado das potências das alças de Wilson e de \'t Hooft. Obtivemos para ambos os sistemas fases moles em que no caso de spins 2D (calibre 4D) todas as potências dos parâmetros de ordem e desordem ( todas as potências das alças de Wilson e \'t Hooft) são nulas (exibem decaimento com o perímetro da alça). Enquanto no sistema com invariança de calibre todas as combinações de decaimento (área ou perímetro) das alças de Wilson e \'t Hooft são permitidas, as relações de comutação no sistema de spins proíbe a existência de fases em que tanto o parâmetro de ordem como o de desordem são não nulos (exceto quando estes operadores comutam). Apresentamos por completeza as relações de dualidade para sistemas de calibre Z (N) com campos de Higgs a três dimensões. / Using a generalized duality transformation, symetry considerations and assuming that criticality is continuous in the system?s parameters, we obtain the phase diagram for two-dimensional Z (N) spins system?s and four-dimensional gauge Z (N) system\'s. For spins system we characterize the various phases by the expectation value of powers of the order and disorder operators. For gauge systems, on the other hand, the characterization is via decay law of powers of Wilson and \'t Hooft loops. We obtain soft phases for both systems, with the folowing, behaviour: for spins system all powers of order and disorder parameters vanish, whereas for gauge systems all powers of Wilson and \'t Hooft loops decay like the perimeter. Whereas all combinations of area and perimeter decay are allowed for Wilson\'s and \'t Hooft\'s loops, the Z (N) commutation relations for spin systems forbid the simultaneous non-vanishing of order and disorder parameters (except when these operators commute). For completeness we include the duality relations for three-dimensional gauge plus Higgs Z(N) systems.
|
90 |
Laços de Wilson supersimétricos na correspondência AdS/CFT / Supersymmetric Wilson loops in the AdS/CFT correspondenceKuraoka, Dhyan Victor Hiromitsu 29 May 2013 (has links)
O objetivo desta dissertação é revisar os operadores laços de Wilson no contexto da correspondência AdS/CFT. Estes operadores, presentes em qualquer teoria de calibre, são importantes por nos fornecer um parâmetro de ordem para a transição de fase confinante/desconfinante. Além disso, eles são particularmente importantes no estudo da correspondência AdS/ CFT pois: i) Eles nos dão, em alguns casos, resultados exatos graças ao fato de poderem ser localizados em um modelo de matrizes, desta forma nos permitindo fazer testes altamente não triviais da correspondência; ii) Eles são os objetos da teoria de calibre que são duais as cordas propagando no interior do espaço, nos dando um rico dicionário entre quantidades no interior (AdS) e na borda do espaço (CFT). Depois de revisarmos os laços de Wilson em teorias de calibre e a correspondência Ads/CFT, introduziremos a definição dos laços de Wilson supersimétricos 1/2 BPS. Calcularemos eles para o caso de um acoplamento fraco e para qualquer outro valor da constante de acoplamento usando técnicas de modelos de matrizes. Finalmente, compararemos nossos resultados com computações de superfícies minimais no interior do espaço, encontrando uma concordância perfeita. / The aim of this thesis is to review Wilson loop operators in the contexto f the AdS/CFT correspondence. These operators, wich are present in any gauge theory, are important because they furnish an order parameter for confinement/deconfinement phase transitions. Besides this, they are particularly relevant in the study of the AdS/CFT correspondence because: i) they allow, in some cases, for exact results thanks to localization to matrix models and make it possible to perform highly non-trivial tests of the correspondence; ii) they are the gauge theory objects dual to strings propagating in the bulk of the space and give a rich dictionary between bulk (AdS) and boundary (CFT) quantities. After reviews of Wilson loops in gauge theories and of the Ads/CFT correspondence, we will introduce the definition of 1/2 BPS supersymmetric Wilson loops, we will compute them at weak coupling and then at any order in the coupling constant via matrix model techniques, and finally we will compare our results with minimal surface computations in the bulk, finding perfect agreement.
|
Page generated in 0.0505 seconds