• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 1
  • Tagged with
  • 13
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

GENETIC POLYMORPHISMS OF THE ADENOSINE TRIPHOSPHATE-BINDING CASSETTE TRANSPORTERS (ABCG2, ABCB1) AND GEFITINIB TOXICITY

HASEGAWA, YOSHINORI, HORIO, YOSHITSUGU, YAMAMOTO, MASASHI, SAITO, HIROSHI, ANDO, MAKI, HORIO, MIHOKO, KONDO, MASASHI, TAMURA, MARIKO 02 1900 (has links)
No description available.
2

Inclusion complexation of Gefitinib with cyclodextrins

Lee, Yann-Huei Phillip. Ramapuram, Jayachandra B., January 2008 (has links) (PDF)
Thesis (M.S.)--Auburn University, 2008. / Abstract. Includes bibliographical references (p. 54-59).
3

DRUG DEVELOPMENT OF TARGETED ANTICANCER DRUGS BASED ON PK/PD INVESTIGATIONS

Wang, Shining January 2008 (has links)
EGFR inhibitors, such as gefitinib, are examples of targeted anticancer drugs whose drug sensitivity is related to gene mutations that adds a pharmacogenetic [PG] dimension to any pharmacokinetic [PK] and pharmacodynamic [PD] analysis. The goal of this project was to characterize the PK/PD properties of gefitinib in tumors and then apply these results to design rational drug design regimens, and provide a foundation for future studies with EGFR inhibitors. Progressions of in vitro and in vivo studies were completed to understand the PK and PD behavior of gefitinib. In vitro cytotoxicity assays were first conducted to confirm the gefitinib sensitivity differences in a pair of human glioblastoma cell lines, LN229-wild-type EGFR and LN229-EGFRvIII mutant, an EGFR inhibitor-sensitizing mutation. Subsequent in vitro PD studies identified phosphorylated-ERK1/2 (pERK) as a common PD marker for both cell lines. To describe the most salient features of drug disposition and dynamics in the tumor, groups of mice bearing either subcutaneous LN229-wild-type EGFR or LN229-EGFRvIII mutant tumors were administered gefitinib at doses of 10 mg/kg intravenously (IV), 50 mg/kg intraarterially (IA) and 150 mg/kg orally (PO). In each group, gefitinib plasma and tumor concentrations were quantitated, as were tumoral pERK. Hybrid physiologically-based PK/PD models were developed for each tumor type, which consisted of a forcing function describing the plasma drug concentration-profile, a tumor compartment depicting drug disposition in the tumor, and a mechanistic target-response PD model characterizing pERK in the tumor. Gefitinib showed analogous PK properties in each tumor type, yet different PD characteristics consistent with the EGFR status of the tumors. Using the PK/PD model for each tumor type, simulations were done to define multiple-dose regimens for gefitinib that yielded equivalent PD profiles of pERK in each tumor type. Based on the designed PK/PD equivalent dosing regimens for each tumor type, gefitinib 150 mg/kg PO qd × 15 days and 65 mg/kg PO qd × 15 days multiple-dose studies were conducted in wild-type EGFR and EGFRvIII mutant tumor groups, respectively. In each tumor group, gefitinib plasma and tumor concentrations were measured on both day 1 and day 15, as were tumoral amounts of pERK. Different from single-dose model simulations, gefitinib showed nonlinear PK property in the wild-type tumor due to the down-regulation of membrane transporter ABCG2. Moreover, acquired resistance of tumoral pERK inhibition was observed in both tumor types. Nevertheless, gefitinib had an analogous growth suppression action in both tumor groups, supporting the equivalent PD dosing strategy. Overall, single-dose gefitinib PK/PD investigations in a pair of genetically distinct glioblastomas facilitated the development of hybrid physiologically-based PK/PD models for each tumor type, and further introduced a novel concept of PK/PD equivalent dosing regimens which could be applied in novel drug development paradigms. Preliminary multiple-dose gefitinib studies revealed more complex PK/PD characteristics that needed to be further explored. / Pharmaceutics
4

Ran GTPase promotes cancer progression via Met receptor-mediated downstream signaling

Yuen, H-F., Chan, K.K., Platt-Higgins, A., Dakir, El-Habib, Matchett, K.B., Haggag, Y.A., Jithesh, P.V., Habib, T., Faheem, A., Dean, F.A., Morgan, Richard, Rudland, P.S., El-Tanani, Mohamed 03 October 2016 (has links)
Yes / It has been shown previously that cancer cells with an activated oncogenic pathway, including Met activation, require Ran for growth and survival. Here, we show that knockdown of Ran leads to a reduction of Met receptor expression in several breast and lung cancer cell lines. This, in turn suppressed HGF expression and the Met-mediated activation of the Akt pathway, as well as cell adhesion, migration, and invasion. In a cell line model where Met amplification has previously been shown to contribute to gefitinib resistance, Ran knockdown sensitized cells to gefitinib-mediated inhibition of Akt and ERK1/2 phosphorylation and consequently reduced cell proliferation. We further demonstrate that Met reductionmediated by knockdown of Ran, occurs at the post-transcriptional level, probably via a matrix metalloproteinase. Moreover, the level of immunoreactive Ran and Met are positively associated in human breast cancer specimens, suggesting that a high level of Ran may be a prerequisite for Met overexpression. Interestingly, a high level of immunoreactive Ran dictates the prognostic significance of Met, indicating that the co-overexpression of Met and Ran may be associated with cancer progression and could be used in combination as a prognostic indicator. / The authors would like to thank Cancer Research UK for the post-doctoral fellowship to H.F.Y.
5

A Phase II Study of the Central European Society of Anticancer-Drug Research (CESAR) Group: Results of an Open-Label Study of Gemcitabine plus Cisplatin with or without Concomitant or Sequential Gefitinib in Patients with Advanced or Metastatic Transitional Cell Carcinoma of the Urothelium

Miller, Kurt, Morant, Rudolf, Stenzl, Arnulf, Wirth, Manfred P., Zuna, Ivan 20 May 2020 (has links)
Introduction: This phase II trial evaluated the efficacy and safety of the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, gefitinib, in combination with first-line chemotherapy in advanced urothelial cancer. Methods: Chemotherapy-naïve patients with advanced or metastatic urothelial carcinoma were randomized 1:1:1 to receive six cycles of chemotherapy (gemcitabine 1,250 mg/m 2 on days 1 and 8, and cisplatin 70 mg/m 2 on day 1 of every cycle) concomitantly with gefitinib 250 mg/day (arm A); or with sequential gefitinib (arm B); or alone (arm C). The primary endpoint was the time to progression (TTP). Results: A total of 105 patients received study treatment. Median TTP for arms A, B, and C were 6.1, 6.3, and 7.8 months, respectively. There were no significant differences between treatment arms for any outcomes measured. The most common adverse events were nausea and vomiting. Conclusion: Gefitinib in combination with chemotherapy did not improve efficacy in advanced urothelial cancer.
6

IDENTIFICATION ET CARACTÉRISATION D'UN NOUVEAU MÉCANISME DE RÉSISTANCE AU GEFITINIB DANS LE CANCER DU POUMON NON-À PETITES CELLULES : ROLE DE L'AMPHIRÉGULINE

Busser, Benoit 25 November 2009 (has links) (PDF)
Le cancer bronchique non-à petites cellules (CBNPC) représente 80% des cancers du poumon et possède un pronostic extrêmement médiocre, avec une survie à 5 ans inférieure à 15%. Le gefitinib, une molécule appartenant à la famille des inhibiteurs de la tyrosine kinase de l'EGFR (EGFR-TKI) a montré de puissants effets anti-prolifératifs dans les CBNPC, mais la grande variabilité des réponses a incité la recherche de marqueurs capables de prédire une résistance ou une sensibilité à ce traitement. Les patients porteurs de CBNPC résistants au gefitinib ont des taux d'amphiréguline (AREG) sérique élevés, suggérant l'implication de l'AREG dans la résistance au gefitinib. Nous avons d'abord cherché à démontrer le rôle de l'AREG dans la résistance au gefitinib des cellules de CBNPC avant d'en décrire le mécanisme moléculaire. Notre travail montre que l'AREG permet de résister à l'apoptose induite par le gefitinib in vitro et in vivo en inactivant la protéine proapoptotique Bax. L'AREG induit une diminution du niveau d'expression de Bax et augmente son interaction avec la protéine Ku70, par un mécanisme dépendant de l'acétylation de Ku70. Nous décrivons ainsi un mécanisme original de résistance au gefitinib, dépendant de l'acétylation et contrôlé par un facteur de croissance, l'AREG. Dans un contexte où le cancer pulmonaire est un problème majeur de santé publique et où la résistance aux traitements reste une des principales préoccupations des professionnels de santé, nos travaux suggèrent des applications potentielles pour la prise en charge clinique des patients porteurs de CBNPC. Ces applications concernent à la fois les domaines diagnostique et thérapeutique. En effet, nous démontrons le rôle central de l'AREG dans la résistance au gefitinib et proposons son utilisation comme biomarqueur prédictif d'une résistance à ce traitement. De plus, nous proposons d'associer les EGFR-TKI à une thérapie anti-AREG ou aux inhibiteurs d'histone-déacétylases, notamment chez les patients porteurs de CBNPC résistants au gefitinib.
7

Tumour Targeting Using Radiolabelled EGF Conjugates : Preclinical Studies

Sundberg, Åsa Liljegren January 2004 (has links)
<p>Tumour targeted radiotherapy is an appealing approach for treatment of disseminated tumour cells. A targeting agent that specifically binds to a structure on tumour cells is then used to transport therapeutically relevant radionuclides. The epidermal growth factor receptor, EGFR, is overexpressed on tumour cells in several malignancies, e.g. highly malignant gliomas. In this thesis, three types of radiolabelled EGF-conjugates, aimed for targeting to EGFR-expressing tumour cells, were developed and studied: EGF-dextran labelled with <sup>125</sup>I, EGF labelled with <sup>211</sup>At, and two EGF-chelates, DTPA-EGF and Bz-DTPA-EGF, labelled with the radioactive metals <sup>111</sup>In and <sup>177</sup>Lu. </p><p>The targeting properties of radioiodinated EGF-dextran were first studied in cultured glioma cells. Radioiodine coupled to the dextran part of EGF-dextran was retained in cells appreciably longer than radioiodine coupled to EGF. This can give about 100 times increased radiation dose to tumour cells.</p><p>Targeting with <sup>211</sup>At-EGF was investigated in combination with the tyrosine kinase inhibitor gefitinib (Iressa™, ZD1839). The uptake of <sup>211</sup>At-EGF in EGFR-expressing tumour cells increased with increasing gefitinib concentrations. This was the case for both gefitinib-resistant and gefitinib-sensitive cell lines. The effect of the combined treatment on cell survival, however, differed between the cell lines in an unexpected way. In gefitinib resistant cells, combined treatment decreased cell survival approximately 3.5 times relative to <sup>211</sup>At-EGF treatment alone. In gefitinib sensitive cells, however, combined treatment increased the cell survival (i.e. a protective effect).</p><p>The EGF-chelates studied ([<sup>111</sup>In]DTPA-EGF, [<sup>111</sup>In]Bz-DTPA-EGF and [<sup>177</sup>Lu]Bz-DTPA-EGF) all bound specifically with high affinity (K<sub>d</sub>≈2 nM) to EGFR on cultured glioma cells. They were internalised after binding, and the cellular retention of radionuclides was high (60% remained after 45 h). A biodistribution study in mice showed that liver and kidneys accumulated a majority of the radioactivity. The EGF-chelates bound EGFR specifically also <i>in vivo</i>. A tumour-to-blood ratio of 25 was achieved in a preliminary study.</p>
8

Tumour Targeting Using Radiolabelled EGF Conjugates : Preclinical Studies

Sundberg, Åsa Liljegren January 2004 (has links)
Tumour targeted radiotherapy is an appealing approach for treatment of disseminated tumour cells. A targeting agent that specifically binds to a structure on tumour cells is then used to transport therapeutically relevant radionuclides. The epidermal growth factor receptor, EGFR, is overexpressed on tumour cells in several malignancies, e.g. highly malignant gliomas. In this thesis, three types of radiolabelled EGF-conjugates, aimed for targeting to EGFR-expressing tumour cells, were developed and studied: EGF-dextran labelled with 125I, EGF labelled with 211At, and two EGF-chelates, DTPA-EGF and Bz-DTPA-EGF, labelled with the radioactive metals 111In and 177Lu. The targeting properties of radioiodinated EGF-dextran were first studied in cultured glioma cells. Radioiodine coupled to the dextran part of EGF-dextran was retained in cells appreciably longer than radioiodine coupled to EGF. This can give about 100 times increased radiation dose to tumour cells. Targeting with 211At-EGF was investigated in combination with the tyrosine kinase inhibitor gefitinib (Iressa™, ZD1839). The uptake of 211At-EGF in EGFR-expressing tumour cells increased with increasing gefitinib concentrations. This was the case for both gefitinib-resistant and gefitinib-sensitive cell lines. The effect of the combined treatment on cell survival, however, differed between the cell lines in an unexpected way. In gefitinib resistant cells, combined treatment decreased cell survival approximately 3.5 times relative to 211At-EGF treatment alone. In gefitinib sensitive cells, however, combined treatment increased the cell survival (i.e. a protective effect). The EGF-chelates studied ([111In]DTPA-EGF, [111In]Bz-DTPA-EGF and [177Lu]Bz-DTPA-EGF) all bound specifically with high affinity (Kd≈2 nM) to EGFR on cultured glioma cells. They were internalised after binding, and the cellular retention of radionuclides was high (60% remained after 45 h). A biodistribution study in mice showed that liver and kidneys accumulated a majority of the radioactivity. The EGF-chelates bound EGFR specifically also in vivo. A tumour-to-blood ratio of 25 was achieved in a preliminary study.
9

Inhibition of Hypoxia and EGFR Sensitizes TNBC to Cisplatin and Suppresses Bulk and Cancer Stem Cells

McGarry, Sarah 26 November 2020 (has links)
Despite progress being made in our understanding of triple negative breast cancer (TNBC), the overall survival and disease-free survival for TNBC patients continues to be considerably poorer than their ER/PR/HER2+ counterparts. Metastasis and chemoresistance are the pivotal issues holding back the long-term success of TNBC treatments. In addition to the bulk tumor cells, cancer stem cells (CSCs) have emerged as important targets for alleviating TNBC progression and relapse. Cisplatin, a platinum based chemotherapeutic agent, has shown promising potential for the treatment of TNBC in clinical trials; however, cisplatin treatment is associated with tumor hypoxia that in turn promotes CSC enrichment and drug resistance. My work is to develop a combinational treatment to improve the long-term therapeutic potential of cisplatin that not only targeted the bulk TNBC population but also ALDHhigh and CD44+/CD24- CSC populations. Through clinical dataset analysis, I found that patient TNBC tumors expressed high levels of epidermal growth factor receptor (EGFR) and hypoxia genes. A similar expression pattern was demonstrated in cisplatin-resistant ovarian cancer. I therefore developed a combinational therapeutic to co-inhibit EGFR and hypoxia using metformin (an AMPK activator) and gefitinib (an EGFR inhibitor), which sensitized bulk TNBC cells to cisplatin and also led to the effective inhibition of both CD44+/CD24- and ALDHhigh CSCs. I obtained similar results by using clinically relevant TNBC patient samples ex vivo. Since these drugs are already frequently used in the clinic, this study illustrates a novel, clinically translatable therapeutic approach to improve the long-term therapeutic outcome of cisplatin for TNBC treatment.
10

Signaling Pathways Associated with Gefitinib Resistance in Glioblastoma Multiforme (GBM)

Aljohani, Hashim M., B.S. 10 October 2014 (has links)
No description available.

Page generated in 0.0421 seconds