Spelling suggestions: "subject:"gelatin."" "subject:"relatin.""
121 |
Evaluation of chitosan gelatin complex scaffolds for articular cartilage tissue engineeringMahajan, Harshal Prabhakar, January 2005 (has links)
Thesis (M.S.) -- Mississippi State University. Department of Agricultural and Biological Engineering. / Title from title screen. Includes bibliographical references.
|
122 |
Etude du pouvoir moussant de la gélatine en relation avec ses propriétés physico-chimiquesNicolay, Laurence 06 October 1993 (has links)
L'étude du pouvoir moussant de la gélatine trouve son origine dans un problème industriel important, non résolu jusqu'à présent : le choix des lots de gélatine en fonction des applications (par exemple : les gelées sucrées ou salées ainsi que les gommes nécessitent pour leur fabrication des gélatines peu moussantes ; les produits foisonnés et les "lards" requièrent des gélatines à pouvoir moussant élevé). Pour ce faire, quatre objectifs ont été définis :
la caractérisation du pouvoir moussant de la gélatine - la mise en évidence des paramètres influençant les propriétés moussantes - la maîtrise de la formation non contrôlée de mousse spontanée dans les solutions de gélatine - la définition du process à appliquer à la matière première pour l'obtention de gélatine de pouvoir moussant souhaité.
Dans le cadre de ce travail, seuls les deux premiers objectifs ont été entièrement réalisés.
|
123 |
Design of biopolymer-based networks with defined molecular architecturePiluso, Susanna January 2012 (has links)
In this work, the synthesis of biopolymer-based hydrogel networks with defined architecture is presented. In order to obtain materials with defined properties, the chemoselective copper-catalyzed azide-alkyne cycloaddition (or Click Chemistry) was used for the synthesis of gelatin-based hydrogels. Alkyne-functionalized gelatin was reacted with four different diazide crosslinkers above its sol-gel transition to suppress the formation of triple helices. By variation of the crosslinking density and the crosslinker flexibility, the swelling (Q: 150-470 vol.-%;) and the Young’s and shear moduli (E: 50 kPa - 635 kPa, G’: 0.1 kPa - 16 kPa) could be tuned in the kPa range. In order to understand the network structure, a method based on the labelling of free functional groups within the hydrogel was developed. Gelatin-based hydrogels were incubated with alkyne-functionalized fluorescein to detect the free azide groups, resulting from the formation of dangling chains. Gelatin hydrogels were also incubated with azido-functionalized fluorescein to check the presence of alkyne groups available for the attachment of bioactive molecules. By using confocal laser scanning microscopy and fluorescence spectroscopy, the amount of crosslinking, grafting and free alkyne groups could be determined. Dangling chains were observed in samples prepared by using an excess of crosslinker and also when using equimolar amounts of alkyne:azide. In the latter case the amount of dangling chains was affected by the crosslinker structure. Specifically, 0.1% of dangling chains were found using 4,4’-diazido-2,2’-stilbene-disulfonic acid as cosslinker, 0.06% with 1,8-diazidooctane, 0.05% with 1,12-diazidododecane and 0.022 % with PEG-diazide. This observation could be explained considering the structure of the crosslinkers. During network formation, the movements of the gelatin chains are restricted due to the formation of covalent netpoints. A further crosslinking will be possible only in the case of crosslinker that are flexible and long enough to reach another chain. The method used to obtain defined gelatin-based hydrogels enabled also the synthesis of hyaluronic acid-based hydrogels with tailorable properties. Alkyne-functionalized hyaluronic acid was crosslinked with three different linkers having two terminal azide functionalities. By variation of the crosslinking density and crosslinker type, hydrogels with elastic moduli in the range of 0.5-3 kPa have been prepared.
The variation of the crosslinking density and crosslinker type had furthermore an influence also on the hydrolytic and enzymatic degradation of gelatin-based hydrogels. Hydrogels with a low crosslinker amount experienced a faster decrease in mass loss and elastic modulus compared to hydrogels with higher crosslinker content. Moreover, the structure of the crosslinker had a strong influence on the enzymatic degradation. Hydrogels containing a crosslinker with a rigid structure were much more resistant to enzymatic degradation than hydrogels containing a flexible crosslinker. During hydrolytic degradation, the hydrogel became softer while maintaining the same outer dimensions. These observations are in agreement with a bulk degradation mechanism, while the decrease in size of the hydrogels during enzymatic degradation suggested a surface erosion mechanism.
Because of the use of small amount of crosslinker (0.002 mol.% 0.02 mol.%) the networks synthesized can still be defined as biopolymer-based hydrogels. However, they contain a small percentage of synthetic residues. Alternatively, a possible method to obtain biopolymer-based telechelics, which could be used as crosslinkers, was investigated. Gelatin-based fragments with defined molecular weight were obtained by controlled degradation of gelatin with hydroxylamine, due to its specific action on asparaginyl-glycine bonds. The reaction of gelatin with hydroxylamine resulted in fragments with molecular weights of 15, 25, 37, and 50 kDa (determined by SDS-PAGE) independently of the reaction time and conditions. Each of these fragments could be potentially used for the synthesis of hydrogels in which all components are biopolymer-based materials. / In dieser Arbeit wird die Synthese Biopolymer-basierter Hydrogelnetzwerke mit definierter Architektur beschrieben. Um Materialien mit definierten und einstellbaren Eigenschaften zu erhalten, wurde die chemoselektive Kupferkatalysierte Azid-Alkin-Cycloadditionsreaktion (auch als Click-Chemie bezeichnet) für die Synthese Gelatine-basierter Netzwerke eingesetzt. Alkin-funktionalisierte Gelatine wurde mit vier verschiedenen Diazid-Quervernetzern oberhalb der Gel-Sol-Übergangstemperatur umgesetzt, um die Formierung tripelhelikaler Bereiche durch Gelatineketten zu unterdrücken. Durch Variation der Menge an Quervernetzer (und damit der Netzdichte) sowie der Länge und Flexibilität der Quervernetzer konnten u.a. die Quellung (Q: 150-470 vol.-%) sowie der Young’s - und Schermodul im kPa Bereich eingestellt werden (E: 50 kPa - 635 kPa, G’: 0.1 kPa - 16 kPa).
Um die Netzwerkarchitektur zu verstehen, wurde eine Methode basierend auf dem Labeln unreagierter Azid- und Alkingruppen im Hydrogel entwickelt. Die Gelatine-basierten Hydrogele wurden mit Alkin-funktionalisiertem Fluorescein umgesetzt, um freie Azidgruppen zu detektieren, die bei einem Grafting entstehen. Darüber hinaus wurden die Hydrogele mit Azid-funktionalisiertem Fluorescein reagiert, um die Menge an freien Alkingruppen zu bestimmen, die zudem potentiell für die Anbindung bioaktiver Moleküle geeignet sind. Quervernetzung, Grafting, und die Anzahl freier Alkingruppen konnten dann mit Hilfe der konfokalen Laser Scanning Mikroskopie und der Fluoreszenzmikroskopie qualitativ und quantitativ nachgewiesen werden. Gegraftete Ketten wurden in Systemen nachgewiesen, die mit einem Überschuss an Quervernetzer hergestellt wurden, entstanden aber auch beim Einsatz äquimolarer Mengen Alkin- und Azidgruppen. Im letzteren Fall wurde in Abhängigkeit von der Struktur des Diazids unterschiedliche Anteile gegrafteter Ketten festgestellt. 0.1 mol-% von gegrafteten Ketten wurden für 4,4’-Diazido-2,2’-stilbendisulfonsäure gefunden, 0.06 mol-% für 1,8-Diazidooktan, 0.05 mol% für 1,12-diazidododecan und 0.022 mol-% für PEG-Diazid. Diese Beobachtung kann durch die unterschiedliche Flexibilität der Vernetzer erklärt werden. Während der Netzwerkbildung werden die Bewegungen der Gelatineketten eingeschränkt, so dass kovalente Netzpunkte nur erhalten werden können, wenn der Vernetzer lang und flexibel genug ist, um eine andere Alkingruppe zu erreichen.
Die Strategie zur Synthese von Biopolymer-basierten Hydrogelen mit einstellbaren Eigenschaften wurde von Gelatine- auf Hyaluronsäure-basierte Gele übertragen. Alkin-funktionalisierte Hyaluronäure wurde mit drei verschiedenen Diaziden quervernetzt, wobei Menge, Länge, und Flexibilität des Quervernetzers variiert wurden. In dieser Weise wurden sehr weiche Hydrogele mit E-Moduli im Bereich von 0.5-3 kPa hergestellt.
Die Variation der Vernetzungsdichte und des Vernetzertyps beeinflusste weiterhin den hydrolytischen und enzymatischen Abbau der Hydrogele. Hydrogele mit einem geringerem Anteil an Quervernetzer wurden schneller abgebaut als solche mit einem höheren Quervernetzeranteil. Darüber hinaus konnte gezeigt werden, dass Hydrogele mit Quervernetzern mit einer rigiden Struktur deutlich langsamer degradierten als Hydrogele mit flexibleren Quervernetzern. Während des hydrolytischen Abbau wurden die Materialien weicher, behielten aber ihre Form bei, was mit einem Bulk-Abbau-Modell übereinstimmt. Während des enzymatischen Abbaus hingegen änderten sich die Materialeigenschaften kaum, jedoch wurden die Proben kleiner. Diese Beobachtung stimmt mit einem Oberflächenabbaumechanismus überein.
Da in allen vorgestellten Systemen nur eine kleine Menge synthetischer Vernetzer eingesetzt wurde (0.002 – 0.02 mol%), können die Materialien noch als Biopolymer-basierte Materialien klassifiziert werden. Jedoch enthalten die Materialien synthetische Abschnitte. In Zukunft könnte es interessant sein, einen Zugang zu Materialien zu haben, die ausschließlich aus Biopolymeren aufgebaut sind. Daher wurde der Zugang zu Biopolymer basierten Telechelen untersucht, die potentiell als Vernetzer dienen können. Dazu wurden durch die kontrollierte Spaltung von Gelatine mit Hydroxylamin Gelatinefragmente mit definiertem Molekulargewicht hergestellt. Hydroxalamin reagiert unter Spaltung mit der Amidbindung zwischen Asparagin und Glycin, wobei Aspartylhydroxamate und Aminoendgruppen entstehen. Die Reaktion von Gelatine mit Hydroxylamin ergab Fragmente mit Molekulargewichten von 15, 25, 37, und 50 kDa (bestimmt mit SDS-PAGE), und die Formierung dieser Fragmente war unabhängig von den weiteren Reaktionsbedingungen und der Reaktionszeit. Jedes dieser Fragmente kann potentiell für die Synthese von Hydrogelen eingesetzt werden, die ausschließlich aus Biopolymeren bestehen.
|
124 |
Attachment of macromolecular heparin conjugate to gelatin scaffolds improves endothelial cell infiltrationLeijon, Jonas, Carlsson, Fredrik, Brännström, Johan, Sanchez, Javier, Larsson, Rolf, Nilsson, Bo, Magnusson, Peetra, Rosenquist, Magnus January 2013 (has links)
Long-term survival of implanted cells requires oxygen and nutrients, the need for which is met by vasculari- zation of the implant. The use of scaffolds with surface-attached heparin as anchoring points for angiogenic growth factors has been reported to improve this process. We examined the potential role of surface modification of gelatin scaffolds in promoting endothelial cell infiltration by using a unique macromolecular conjugate of heparin as a coating. Compared to other heparin coatings, this surface modification provides flexible heparin chains, representing a new concept in heparin conjugation. In vitro cell infiltration of scaffolds was assessed using a three-dimensional model in which the novel heparin surface, without growth factors, showed a 2.5-fold increase in the number of infiltrating endothelial cells when compared to control scaffolds. No additional improvement was achieved by adding growth factors (vascular endothelial growth factor and/or fibroblast growth factor-2) to the scaffold. In vivo experiments confirmed these results and also showed that the addition of angiogenic growth factors did not significantly increase the endothelial cell infiltration but increased the number of inflammatory cells in the implanted scaffolds. The endothelial cell-stimulating ability of the heparin surface alone, combined with its growth factor-binding capacity, renders it an interesting candidate surface treatment to create a prevascularized site prepared for implantation of cells and tissues, in particular those sensitive to inflammation but in need of supportive revascularization, such as pancreatic islets of Langerhans. / <p>De två sista författarna delar sistaförfattarskapet.</p>
|
125 |
Preparation And Characterization Of Chitosan-gelatin/hydroxyapatite Scaffolds For Hard Tissue Engineering ApproachesIsikli, Cansel 01 January 2010 (has links) (PDF)
Hard tissue engineering holds the promise of restoring the function of failed hard tissues and involves growing specific cells on extracellular matrix (ECM) to develop &bdquo / &bdquo / tissue-like&rdquo / structures or organoids. Chitosan is a linear amino polysaccharide that can provide a convenient physical and biological environment in tissue regeneration attempt. To improve chitosan& / #8223 / s mechanical and biological properties, it was blended with another polymer gelatin. 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) and N-hydroxysuccinimide (NHS) were used to crosslink the chitosan-gelatin matrix to produce stable structures. These natural polymers are mechanically weak especially to serve as a bone substitude and therefore, an inorganic calcium phosphate ceramic, hydroxyapatite, was incorporated to improve this aspect.
The objective of this study was to develop chitosan-gelatin/hydroxyapatite scaffolds for a successful hard tissue engineering approach. For this reason, two types of hydroxyapatite, as-precipitated non-sintered (nsHA) and highly crystalline sintered (sHA) were synthesized and blended into mixtures of chitosan (C) and gelatin (G)
v
to produce 2-D (film) and 3-D (sponge) structures. The physicochemical properties of the structures were evaluated by scanning electron microscopy, X-Ray Diffraction (XRD), Fourier Transform Infrared-Attenuated Total Reflectance spectrometer (FTIR-ATR), differential scanning calorimetry, contact angle and surface free energy measurements and swelling tests. Mechanical properties were determined through tensile and compression tests. In vitro cell affinity studies were carried out with SaOs-2 cells. MTS assays were carried out to study cell attachment and proliferation on the 2-D and 3-D scaffolds. Several methods such as confocal, fluorescence and scanning electron microscopy were used to examine the cell response towards the scaffolds. Cell affinities of the samples were observed to change with changing chitosan-gelatin ratio and hydroxyapatite addition into the matrices. XRD and FTIR results confirmed the purity of the hydroxyapatite synthesized. Mechanical test results showed that 2-D and 3-D chitosan-gelatin/hydroxyapatite constructs have similar properties as bones, and in vitro studies demonstrated that the prepared matrices have the potential to serve as scaffold materials in hard tissue engineering applications.
|
126 |
Electrospun membranes for implantable glucose biosensorsWang, Ning January 2012 (has links)
The goal for this thesis was to apply electrospun biomimetic coatings on implantable glucose biosensors and test their efficacy as mass-transport limiting and tissue engineering membranes, with special focus on achieving reliable and long sensing life-time for biosensors when implanted in the body. The 3D structure of electrospun membranes provides the unique combination of extensively interconnected pores, large pore volumes and mechanical strength, which are anticipated to improving sensor sensitivity. Their structure also mimics the 3D architecture of natural extracellular matrix (ECM), which is exploited to engineer tissue responses to implants. A versatile vertical electrospinning setup was built in our workshop and used to electrospin single polymer - Selectophore™ polyurethane (PU) and two polymer (coaxial) – PU and gelatin (Ge) fibre membranes. Extensive studies involving optimization of electrospinning parameters (namely solvents, polymer solution concentration, applied electric potential, polymer solution feed flow rate, distance between spinneret and collector) were carried out to obtain electrospun membranes having tailorable fibre diameters, pore sizes and thickness. The morphology (scanning electron microscopy (SEM) and optical microscopy), fibre diameter (SEM), porosity (bubble point and gravimetry methods), hydrophilicity (contact angle), solute diffusion (biodialyzer) and uniaxial mechanical properties (tensile tester) were used to characterize certain shortlisted electrospun membranes. Static and dynamic collector configurations for electrospinning fibres directly on sensor surface were optimized of which the dynamic collections system helped achieve snugly fit membranes of uniform thickness on the entire surface of the sensor. The biocompatibility and the in vivo functional efficacy of electrospun membranes off and on glucose biosensors were evaluated in rat subcutaneous implantation model. Linear increase in thickness of electrospun membranes with increasing electrospinning time was observed. Further, the smaller the fibre diameter, smaller was the pore size and higher was the fibre density (predicted), the hydrophilicity and the mechanical strength. Very thin membranes showed zero-order (Fickian diffusion exponent ‘n’ ~ 1) permeability for glucose transport. Increasing membrane thickness lowered ‘n’ value through non-Fickian towards Fickian (‘n’ = 0.5) diffusion. Thin electrospun PU membranes (~10 μm thick) did not affect, while thicknesses between 20 and 140 μm all decreased sensitivity of glucose biosensor by about 20%. PU core - Ge shell coaxial fibre membranes caused decrease in ex vivo sensitivity by up to 40%. The membranes with sub-micron to micron sized pore sizes functioned as mass-transport limiting membranes; but were not permeable to host cells when implanted in the body. However, PU-Ge coaxial fibre membranes, having <2 μm pore sizes, were infiltrated with fibroblasts and deposition of collagen in their pores. Such tissue response prevented the formation of dense fibrous capsule around the implants, which helped improve the in vivo sensor sensitivity. To conclude, this study demonstrated that electrospun membrane having tailorable fibre diameters, porosity and thickness, while having mechanical strength similar to the natural soft tissues can be spun directly on sensor surfaces. The membranes can function as mass-transport limiting membranes, while causing minimal or no effect on sensor sensitivity. With the added bioactive Ge surfaces, evidence from this study indicates that reliable long-term in vivo sensor function can be achieved.
|
127 |
Fabrication, Biocompatibility, and Tissue Engineering Substrate Analysis of Polyvinyl Alcohol-Gelatin Core-Shell Electrospun NanofibersMerkle, Valerie Marie January 2013 (has links)
Cardiovascular disease is the leading cause of death in the United States with approximately 49% of the cardiovascular related deaths attributed to coronary heart disease (CHD). CHD is the accumulation of plaque resulting in the narrowing of the vessel lumen and a decrease in blood flow to the downstream heart muscle. In order to restore blood flow, arterial by-pass procedures can be undertaken. However, the patient's own arteries/veins may not be suitable for use as a vessel replacement, and synthetic grafts lack the compliancy and durability needed for these small diameter locations (<5 mm). Therefore, the goal of this research is to develop a nanofibrous material that can be used in vascular applications such as this. In this study, we fabricate coaxial electrospun nanofibers with gelatin in the shell and polyvinyl alcohol (PVA) in the core using 1 Gelatin: 1 PVA and 3 Gelatin: 1 PVA mass ratios. Gelatin, derived from collagen, is highly bioactive while PVA, a synthetic polymer, has appealing mechanical properties. Therefore, by combining these materials in a core-shell structure, we hypothesize that the resulting nanofibers will have enhanced mechanical properties, cellular growth and migration, as well as minimal platelet deposition and activation compared to scaffolds composed solely of gelatin or PVA. First, the coaxial scaffolds exhibited an enhanced Young's modulus and ultimate strength compared to scaffolds composed of PVA or gelatin alone. Endothelial cells had high proliferation and migration on the coaxial electrospun scaffolds with higher migration seen on the stiffer, coaxial scaffolds. The smooth muscle cells had less proliferation and lower migration rates on the coaxial scaffolds than the endothelial cells. Using a modified prothrombinase assay, the coaxial scaffolds had minimal platelet activation. Lastly, when pre-seeding the coaxial scaffolds with endothelial cells or smooth muscle cells, the platelet deposition decreased in comparison to platelet deposition with no cell pre-seeding. Overall, the 1 Gel: 1 PVA coaxial scaffolds promoted endothelial cell growth and migration, minimized smooth muscle cell growth and migration, and had minimal platelet activation. Therefore, the 1 Gel: 1 PVA coaxial nanofibers are an intriguing material for use in vascular applications.
|
128 |
Development of Surrogate Spinal Cords for the Evaluation of Electrode Arrays Used in Intraspinal ImplantsCheng,Cheng Unknown Date
No description available.
|
129 |
Microsphere Spray System for Wound CoverageAndersen, Nicholas J 01 January 2014 (has links)
Spinal fusion is used to treat diseases or disorders of the spine by fusing together two or more vertebrae. Two associated risks with spinal fusion are infection and blood loss. Administration of tranexamic acid is used to prevent blood loss, and transfusions are given following blood loss. Surgical site infections are prevented with vancomycin powder spread into the surgical wound, while established infections are treated by debridement and delivery of antibiotics for 4 to 6 weeks. The present research explored an alternate method to prevent and treat blood loss or infection in spinal fusion. Poly(lactic-co-glycolic acid) (PLGA) microspheres was used to encapsulate vancomycin for 42 days to treat infection. Vancomycin encapsulated in gelatin microspheres had a controlled release of 7 days to prevent infection. Tranexamic acid was dissolved into phosphate-buffered saline or carboxymethylcellulose to provide a release of 6 hours to prevent blood loss after surgery. The microspheres and tranexamic acid were delivered to a target region using a water based spray system. The spray system demonstrated the delivery and distribution of drugs to a target region. The microsphere spray system is capable of spraying drugs onto a target region to prevent or treat blood loss and infection over time.
|
130 |
Influência de adjuvantes sobre as características farmacêuticas de cápsulas de gelatina dura contendo hidroclorotiazidaGuterres, Silvia Stanisçuaski January 1990 (has links)
A biodisponibilidade é uma característica decisiva para a eficácia dos medicamentos, podendo sua intensidade ser estimada através da cedência "in vitro". Vários fatores são capazes de influenciá-la, entre eles a composição quali e quantitativa dos adjuvantes, assim como as características da substância ativa e da forma farmacêutica. A hidroclorotiazida é um diurético de amplo emprego, que apresenta problemas de biodisponibilidade e bioequivalência devido a sua baixa hidrossolubilidade. Através de planejamento fatorial 2 3 foram preparadas formulações de cápsulas de gelatina dura contendo 50 mg de hidroclorotiazida. Foi analisada a influência dos fatores material de enchimento (lactose e celulose microcristalina), reguladores de fluxo (dióxido de silício altamente disperso e estearato de magnésio) e hidrofilizante (polissorbato 80) sobre as características de qualidade dos complexos farmacêuticos e das cápsulas. O regulador de fluxo ou a interação entre este e o material de enchimento foram os fatores determinantes nas características de fluxo dos complexos farmacêuticos, analisadas através do ângulo de repouso e do índice de compressibilidade. A cedência "in vitro" das cápsulas, determinada com auxílio de aparelho de célula de fluxo e parametrizada pela eficiência de dissolução, foi influenciada preponderantemente pelo regulador de fluxo. Foram comparados os perfis de cedência "in vitro" entre as cápsulas e comprimido do mercado. O comportamento intermediário demonstrado pelo comprimido indica a necessidade de avaliação comparativa entre medicamentos contendo hidroclorotiazida a fim de assegurar sua bioequivalência. / The bioavailability is a decisive characteristic to drugs efficacy that can be predict by different "in vitro" dissolution methods. The bioavailability has been shown to be dependent on factors such as the drug, the dosage forms, type and quality of adjuvants. Hydrochlorothiazide is a widely used diuretic. Due to its limited aqueous solubility, this drug has potencial bioavailability problems. Eight differents hydrochlorothiazide hard gelatin capsules, containing 50 mg of the drug, were prepared according to a 2 3 factorial design. The influence of fillers (lactose or microcrystaline cellulose), glidants (magnesium stearate or coloidal silicon dioxide) and surfactant (polysorbate 80) on the pharmaceutical characteristics of powder mixtures and capsules were evaluated. The powder mixtures flow characteristics were evaluated through repose angle and compressibility index. It was determined that the glidant and its interaction with filler influenced this characteristic. The "in vitro" release of hydrochlorothiazide from capsules was carried out by a open flow-though dissolution method. The dissolution efficiency was the selected parameter to express the drug release. The glidant was the determinant factor. The dissolution profile of these capsules and marketed tablets was compared. The results evidenced the importance of comparative evaluation of hydrochlorothiazide dosage forms to assure their bioequivalence.
|
Page generated in 0.0614 seconds