• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 55
  • 22
  • 10
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 97
  • 97
  • 97
  • 34
  • 27
  • 24
  • 21
  • 20
  • 18
  • 18
  • 18
  • 13
  • 13
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Transcription regulation of the class II alcohol dehydrogenase 7 (ADH7)

Jairam, Sowmya January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The class IV alcohol dehydrogenase (ADH7, µ-ADH, σ-ADH) efficiently metabolizes ethanol and retinol. ADH7 is expressed mainly in the upper gastrointestinal tract with no expression in the liver unlike the other ADHs, and is implicated in various diseases including alcoholism, cancer and fetal alcohol syndrome. Genome wide studies have identified significant associations between ADH7 variants and alcoholism and cancer, but the causative variants have not been identified. Due to its association with two important metabolic pathways and various diseases, this dissertation is focused on studying ADH7 regulation and the effects of variants on this regulation using cell systems that replicate endogenous ADH7 expression. We identified elements regulating ADH7 transcription and observed differences in the effects of variants on gene expression. A7P-G and A7P-A, two promoter haplotypes differing in a single nucleotide at rs2851028, had different transcriptional activities and interacted with variants further upstream. A sequence located 12.5 kb upstream (7P10) can function as an enhancer. These complex interactions indicate that the effects of variants in the ADH7 regulatory elements depend on both sequence and cellular context, and should be considered in interpretation of the association of variants with alcoholism and cancer. The mechanisms governing the tissue-specific expression of ADH7 remain unexplained however. We identified an intergenic region (iA1C), located between ADH7 and ADH1C, having enhancer blocking activity in liver-derived HepG2 cells. This enhancer blocking function was cell- and position- dependent with no activity seen in CP-A esophageal cells. iA1C had a similar effect on the ectopic SV40 enhancer. The CCCTC-binding factor (CTCF) bound iA1C in HepG2 cells but not in CP-A cells. Our results suggest that in liver-derived cells, iA1C blocks the effects of downstream ADH enhancers and thereby contributes to the cell specificity of ADH7 expression. Thus, while genetic factors determine level of ADH7 transcriptional activity, iA1C helps determine the cell specificity of transcription.
82

Discovery and evolutionary dynamics of RBPs and circular RNAs in mammalian transcriptomes

Badve, Abhijit 30 March 2015 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / RNA-binding proteins (RBPs) are vital post-transcriptional regulatory molecules in transcriptome of mammalian species. It necessitates studying their expression dynamics to extract how post-transcriptional networks work in various mammalian tissues. RNA binding proteins (RBPs) play important roles in controlling the post-transcriptional fate of RNA molecules, yet their evolutionary dynamics remains largely unknown. As expression profiles of genes encoding for RBPs can yield insights about their evolutionary trajectories on the post-transcriptional regulatory networks across species, we performed a comparative analyses of RBP expression profiles across 8 tissues (brain, cerebellum, heart, lung, liver, lung, skeletal muscle, testis) in 11 mammals (human, chimpanzee, gorilla, orangutan, macaque, rat, mouse, platypus, opossum, cow) and chicken & frog (evolutionary outgroups). Noticeably, orthologous gene expression profiles suggest a significantly higher expression level for RBPs than their non-RBP gene counterparts, which include other protein-coding and non-coding genes, across all the mammalian tissues studied here. This trend is significant irrespective of the tissue and species being compared, though RBP gene expression distribution patterns were found to be generally diverse in nature. Our analysis also shows that RBPs are expressed at a significantly lower level in human and mouse tissues compared to their expression levels in equivalent tissues in other mammals: chimpanzee, orangutan, rat, etc., which are all likely exposed to diverse natural habitats and ecological settings compared to more stable ecological environment humans and mice might have been exposed, thus reducing the need for complex and extensive post-transcriptional control. Further analysis of the similarity of orthologous RBP expression profiles between all pairs of tissue-mammal combinations clearly showed the grouping of RBP expression profiles across tissues in a given mammal, in contrast to the clustering of expression profiles for non-RBPs, which frequently grouped equivalent tissues across diverse mammalian species together, suggesting a significant evolution of RBPs expression after speciation events. Calculation of species specificity indices (SSIs) for RBPs across various tissues, to identify those that exhibited restricted expression to few mammals, revealed that about 30% of the RBPs are species-specific in at least one tissue studied here, with lung, liver, kidney & testis exhibiting a significantly higher proportion of species specifically expressed RBPs. We conducted a differential expression analysis of RBPs in human, mouse and chicken tissues to study the evolution of expression levels in recently evolved species (i.e., humans and mice) than evolutionarily-distant species (i.e., chickens). We identified more than 50% of the orthologous RBPs to be differentially expressed in at least one tissue, compared between human and mouse, but not so between human and an outgroup chicken, in which RBP expression levels are relatively conserved. Among the studied tissues (brain, liver and kidney) showed a higher fraction of differentially expressed RBPs, which may suggest hyper- regulatory activities by RBPs in these tissues with species evolution. Overall, this study forms a foundation for understanding the evolution of expression levels of RBPs in mammals, facilitating a snapshot of the wiring patterns of post-transcriptional regulatory networks in mammalian genomes. In our second study, we focused on elucidating novel features of post-transcriptional regulatory molecules called as circRNA from LongPolyA RNA-sequence data. The debate over presence of nonlinear exon splicing such as exon-shuffling or formation of circularized forms has finally come to an end as numerous repertoires have shown of their occurrence and presence through transcriptomic analyses. It is evident from previous studies that along with consensus-site splicing non-consensus site splicing is robustly occurring in the cell. Also, in spite of applying different high-throughput approaches (both computational and experimental) to determine their abundance, the signal is consistent and strongly conforming the plausible circularization mechanisms. Earlier studies hypothesized and hence focused on the ribo-minus non-polyA RNA-sequence data to identify circular RNA structures in cell and compared their abundance levels with their linear counterparts. Thus far, the studies show their conserved nature across tissues and species also that they are not translated and preferentially are without poly (A) tail, with one to five exons long. Much of this initial work has been performed using non-polyA sequencing thus probably underestimates the abundance of circular RNAs originating from long poly (A) RNA isoforms. Our hypothesis is if the circular RNA events are not the artifact of random events, but has a structured and defined mechanism for their formation, then there would not be biases on preferential selection / leaving of polyA tails, while forming the circularized isoforms. We have applied an existing computational pipeline from earlier studies by Memczack et. al., on ENCODE cell-lines long poly (A) RNA-sequence data. With the same pipeline, we achieve a significant number of circular RNA isoforms in the data, some of which are overlapping with known circular RNA isoforms from the literature. We identified an approach and worked upon to identify the precise structure of circular RNA, which is not plausible from the existing computational approaches. We aim to study their expression profiles in normal and cancer cell-lines, and see if there exists any pattern and functional significance based on their abundance levels in the cell.
83

Differentiation and contractility of colon smooth muscle under normal and diabetic conditions

Touw, Ketrija 07 October 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Intestinal smooth muscle development involves complex transcriptional regulation leading to cell differentiation of the circular, longitudinal and muscularis mucosae layers. Differentiated intestinal smooth muscle cells express high levels of smooth muscle-specific contractile and regulatory proteins, including telokin. Telokin is regulatory protein that is highly expressed in visceral smooth muscle. Analysis of cis-elements required for transcriptional regulation of the telokin promoter by using hypoxanthine-guanine phosphoribosyltransferase (Hprt)-targeted reporter transgenes revealed that a 10 base pair large CC(AT)₆GG ciselement, called CArG box is required for promoter activity in all tissues. We also determined that an additional 100 base pair region is necessary for transgene activity in intestinal smooth muscle cells. To examine how transcriptional regulation of intestinal smooth muscle may be altered under pathological conditions we examined the effects of diabetes on colonic smooth muscle. Approximately 76% of diabetic patients develop gastrointestinal (GI) symptoms such as constipation due to intestinal dysmotility. Mice were treated with low-dose streptozotocin to induce a type 1 diabetes-like hyperglycemia. CT scans revealed decreased overall GI tract motility after 7 weeks of hyperglycemia. Acute (1 week) and chronic (7 weeks) diabetic mice also had decreased potassium chloride (KCl)-induced colon smooth muscle contractility. We hypothesized that decreased smooth muscle contractility at least in part, was due to alteration of contractile protein gene expression. However, diabetic mice showed no changes in mRNA or protein levels of smooth muscle contractile proteins. We determined that the decreased colonic contractility was associated with an attenuated intracellular calcium increase, as measured by ratio-metric imaging of Fura-2 fluorescence in isolated colonic smooth muscle strips. This attenuated calcium increase resulted in decreased myosin light chain phosphorylation, thus explaining the decreased contractility of the colon. Chronic diabetes was also associated with increased basal calcium levels. Western blotting and quantitative real time polymerase chain reaction (qRT-PCR) analysis revealed significant changes in calcium handling proteins in chronic diabetes that were not seen in the acute state.These changes most likely reflect compensatory mechanisms activated by the initial impaired calcium response. Overall my results suggest that type 1 diabetes in mice leads to decreased colon motility in part due to altered calcium handling without altering contractile protein expression.
84

Mechanisms of recruitment of the CTD phosphatase Rtr1 to RNA polymerase II

Berna, Michael J., Sr. 19 October 2012 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The C-terminal domain (CTD) of the RNA polymerase II (RNAPII) subunit Rpb1 must exist in a hypophosphorylated state prior to forming a competent transcription initiation complex. However, during transcription, specific kinases and phosphatases act on the RNAPII CTD to regulate its phosphorylation state, which serves to recruit sequence-specific and general transcription factors at the appropriate stage of transcription. A key phosphatase involved in this process, Rtr1 (Regulator of Transcription 1), was shown to regulate a key step important for transcription elongation and termination. Although the role that Rtr1 plays in regulating RNAPII transcription has been described, the mechanism involved in the recruitment of Rtr1 to RNAPII during transcription has not been elucidated in yeast. Consequently, the present work utilized both affinity purification schemes in Saccharomyces cerevisiae and mass spectrometry to identify key Rtr1-interacting proteins and post-translational modifications that potentially play a role in recruiting Rtr1 to RNAPII. In addition to RNAPII subunits, which were the most consistently enriched Rtr1-interacting proteins, seven proteins were identified that are potentially involved in Rtr1 recruitment. These included PAF complex subunits (Cdc73, Ctr9, Leo1), the heat shock protein Hsc82, the GTPase Npa3, the ATPase Rpt6, and Spn1. Indirect evidence was also uncovered that implicates that the CTDK-I complex, a kinase involved in RNAPII CTD phosphorylation, is important in facilitating interactions between Rtr1, RNAPII, and select transcription factors. Additionally, a putative phosphorylation site was identified on Ser217 of Rtr1 that may also play a role in its recruitment to RNAPII during transcription.
85

REGULATION OF CHOP TRANSLATION IN RESPONSE TO eIF2 PHOSPHORYLATION AND ITS ROLE IN CELL FATE

Palam, Lakshmi Reddy 11 December 2012 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / In response to different environmental stresses, phosphorylation of eukaryotic initiation factor-2 (eIF2) rapidly reduces protein synthesis, which lowers energy expenditure and facilitates reprogramming of gene expression to remediate stress damage. Central to the changes in gene expression, eIF2 phosphorylation also enhances translation of ATF4, a transcriptional activator of genes subject to the Integrated Stress Response (ISR). The ISR increases the expression of genes important for alleviating stress, or alternatively triggering apoptosis. One ISR target gene encodes the transcriptional regulator CHOP whose accumulation is critical for stress-induced apoptosis. In this dissertation research, I show that eIF2 phosphorylation induces preferential translation of CHOP by a mechanism involving a single upstream ORF (uORF) located in the 5’-leader of the CHOP mRNA. In the absence of stress and low eIF2 phosphorylation, translation of the uORF serves as a barrier that prevents translation of the downstream CHOP coding region. Enhanced eIF2 phosphorylation during stress facilitates ribosome bypass of the uORF, and instead results in the translation of CHOP. Stable cell lines were also constructed that express CHOP transcript containing the wild type uORF or deleted for the uORF and each were analyzed for expression changes in response to the different stress conditions. Increased CHOP levels due to the absence of inhibitory uORF sensitized the cells to stress-induced apoptosis when compared to the cells that express CHOP mRNA containing the wild type uORF. This new mechanism of translational control explains how expression of CHOP and the fate of cells are tightly linked to the levels of phosphorylated eIF2 and stress damage.
86

Bone Metabolism: The Role of STAT3 and Reactive Oxygen Species

Newnum, America Bethanne 14 August 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Signal Transducers and Activators of Transcription 3 (STAT3), a transcription factor expressed in many cell types, including osteoblasts and osteoclasts, is emerging as a key regulator of bone mass and strength. STAT3 mutations cause a rare human immunodeficiency disease characterized by extremely elevated levels of IgE in serum that have associated craniofacial and skeletal features, such as reduced bone mineral density and recurrent pathological fractures. Our microarray data and immunohistochemical staining using a normal rat model have shown that STAT3 mRNA and protein levels markedly increase in response to mechanical loading. In addition, as indicated by STAT3 phosphorylation in MC3T3-E1 osteoblastic cells, STAT3 activity significantly increases in response to 30 to 90 minutes fluid shear stress. In order to further study the role that STAT3 plays in bone responsiveness to loading, tissue-selective STAT3 knockout (KO) mice, in which inactivation of STAT3 occurs in osteoblasts, were generated by breeding the transgenic mice in which Cre recombinase cDNA was cloned downstream of a 3.6 or 2.3 kb fragment of the rat Col1a1 promoter (Col3.6-Cre and Col2.3-Cre, respectively) with a strain of floxed mice in which the two loxP sites flank exons 18-20 of the STAT3 gene were used. Mice engineered with bone selective inactivation of STAT3 in osteoblasts exhibited significantly lower bone mineral density (7-12%, p<0.05) and reduced ultimate force (21-34%, p<0.01) compared to their age-matched littermate controls. The right ulnae of 16-week-old bone specific STAT3 KO mice and the age-matched control mice were loaded with peak forces of 2.5 N and 2.75 N for female and male mice, respectively, at 2 Hz, 120 cycles/day for 3 consecutive days. Mice with inactivation of STAT3 specific in bone were significantly less responsive to mechanical loading than the control mice as indicated by decreased relative mineralizing surface (rMS/BS, 47-59%, p<0.05) and relative bone formation rate (rBFR/BS, 64-75%, p<0.001). Bone responsiveness was equally decreased in mice in which STAT3 is inactivated either in early osteoblasts (Col3.6-Cre) or in mature osteoblasts (Col2.3-Cre). Accumulating evidence indicates that bone metabolism is significantly affected by activities in mitochondria. For instance, although STAT3 is reported to be involved in bone formation and resorption through regulation of nuclear genes, inactivation of STAT3 is shown to disrupt mitochondrial activities and result in an increased level of reactive oxygen species (ROS). Inactivation of STAT3 suppressed load-driven mitochondrial activity, which led to an elevated level of ROS in cultured primary osteoblasts. Oxidative stress induced by administration of buthionine sulfoximine (BSO) significantly inhibits load-induced bone formation in wild type mice. Taken together, the results support the notion that the loss-of-function mutation of STAT3 in osteoblasts and osteocytes diminishes load-driven bone formation and impairs the regulation of oxidative stress in mitochondria.
87

Insights into Occurrence and Divergence of Intrinsic Terminators and Studies on Rho-Dependent Termination in Mycobacterium Tuberculosis

Mitra, Anirban January 2013 (has links) (PDF)
Two mechanisms, intrinsic and factor-dependent, have evolved for accomplishing the termination of transcription in eubacteria. In this thesis, the first chapter is an introduction to the topic that presents what is known about the mechanisms of termination. The properties of the primary and secondary ‘players’- intrinsic terminators, Rho protein, rho-dependent terminators, RNA polymerse and Nus factors - are presented and the known mechanisms by which termination functions are discussed. In Chapter 2, a detailed analysis of intrinsic terminators – their differential distribution, similarity and divergence - has been penned. The database, compiled using the program GeSTer (Genome Scanner for Terminators), comprises ~2000 sequences and is one of the largest of its kind. Furthermore, analyzing the data from over 700 bacteria reveals how different species have fine-tuned intrinsic terminators to suit their cellular needs. Non-canonical intrinsic terminators emerge to be a significant fraction of the observed structures. The conserved structural features of identified intrinsic terminators are discussed and the relationship between the two modes of termination is assessed. Chapter 3 deals with the importance of transcription termination in regulating horizontally acquired DNA. The results show that genomic islands are scarce in intrinsic terminators and thus constitute most likely sites for Rho-dependent termination. Plausible reasons for why such a scenario has evolved are discussed and a generally applicable model is presented. Chapters 4 and 5 focus on Rho protein from Mycobacterium tuberculosis. In silico identification of M. tuberculosisgenes that rely on MtbRho-dependent termination is followed by experimental validation. The data show that Rho-dependent termination is the predominant mechanism in this species.MtbRho is a majorly expressed protein that governs termination of protein-coding and non-protein coding genes. Further, MtbRho can productively interact with RNA that has considerable secondary structure. Such interactions cause conformational changes in the enzyme. Given that MtbRho has to function with a GC-rich transcriptome, the altered properties could have evolved for optimal function. Taken together, the thesis extends our current understanding of both modes of termination. The importance of non-canonical intrinsic terminators in mycobacteria and other organisms is discussed. The unusual function of Rho and its predominant role in mycobacteria is elucidated. Finally, the inter-relationship between the two modes of termination is also discussed.
88

Transcriptional and Posttranscriptional Regulation of the Tumor Suppressor CDC73 in Oral Squamous Cell Carcinoma : Implications for Cancer Therapeutics

Rather, Mohammad Iqbal January 2013 (has links) (PDF)
CDC73, also known as HRPT2, is a tumour suppressor gene whose expression is lost or downregulated in parathyroid, renal, breast, uterine and gastric cancers. However, the reports regarding the role of CDC73 in oral squamous cell carcinoma (OSCC) are lacking. As part of the Paf1 complex, it remains associated with ribonucleic acid (RNA) polymerase II and is involved in transcript site selection, transcriptional elongation, histone H2B ubiquitination, histone H3 methylation, poly(A) length control and, coupling of transcriptional and posttranscriptional events. It has been reported to negatively regulate cellularproliferation by targeting oncogenes CCND1 (cyclin D1) and MYC (c-Myc). Moreover, it has also been indicated to inhibitβ-catenin-mediated transcription. Taken together, these findings strongly suggest that it contributes to the expression of genes whose products have an important role in the suppression of tumor development and cell death. In this study, we have attempted to study the transcriptional and posttranscriptional regulation of CDC73 and its role in OSCC. The main findings of the present study are listed below. 1. To begin with, the expression analysis of CDC73 was performed both at the RNA and the protein levels by qRT-PCR and IHC, respectively. As expected, a majority of the OSCC samples showed downregulation of CDC73 both at the RNA and the protein levels compared to their normal oral tissues. 2. Loss-of-heterozygosity (LOH), mutation and promoter methylation are the hallmarks of a tumor suppressor gene (TSG). Therefore, to characterize CDC73 as a TSG in OSCC and to look into the mechanisms that could be the cause of CDC73 downregulation in OSCC, LOH, mutation and promoter methylation of CDC73 were studied. The results showed that LOH, mutation and promoter methylation are not the major causes of CDC73 downregulation in OSCC. 3. To identify the alternate mechanisms as the cause of CDC73 downregulation in OSCC, a combination of bioinformatics and molecular approaches were used. The results showed that the upregulation of an inhibitory transcription factor WT1 (Wilms tumor protein 1) and an oncogenic microRNA-155 are the major causes of its downregulation in OSCC. 4. The luciferase reporter assay of SCC131 cells co-transfected with a WT1 construct and a CDC73 promoter construct showed that WT1 over expression represses CDC73 expression in a dose-dependent manner. 5. Due to the presence of zinc fingers in its C-terminal half, WT1 has been found to be a potent transcriptional regulator of genes. Therefore, to determine if WT1 down regulates CDC73 via binding its promoter, the chromatin immunoprecipitation (ChIP) assay was performed. The results showed the binding of WT1 to the CDC73 promoter in vivo. Binding of WT1 to the CDC73 promoter was further confirmed in vitro by the electrophoretic mobility shift assay (EMSA). 6. The 5-aza-2’-deoxycytidine (AZA) treatment of SCC131 cells led to upregulation of WT1 with a concomitant downregulation of CDC73. The COBRA technique demonstrated that the upregulation of WT1 upon the 5-AZA treatment was due to its promoter methylation. 7. To determine if the WT1-mediated reduction of CDC73 expression has a functional relevance in cell growth and proliferation, we knocked down CDC73 expression by transient over expression of WT1 in SCC131 cells and quantitated cell proliferation by the MTT assay. As expected, the results demonstrated that the reduced CDC73 level was associated with an increased cell proliferation. Cotransfection of CDC73 with WT1 in SCC131 cells attenuated the pro-oncogenic effect of WT1 by apoptosis induction. 8. After validating CDC73 as the target of WT1 by bioinformatics and in vitro assays, we quantitated the expression levels of WT1 and CDC73 by qRT-PCR in OSCC samples and their matched normal oral tissue samples. The results showed an inverse correlation between the expression levels of WT1 and CDC73 in a majority of the samples. To exclude the possibility of alternate mechanisms as the cause of CDC73 downregulation in OSCC, we selected a subset of OSCC samples with downregulated level of CDC73 and analysed them for LOH at the CDC73 locus and promoter methylation. Further, some of these OSCC samples were also analyzed for mutations in CDC73. The results showed that these OSCC samples did not have LOH, promoter methylation or any mutation, again validating the fact that CDC73 is a biological target of oncogenic WT1, and the transcriptional repression of CDC73 by WT1 could be a major mechanism for CDC73 downregulation in OSCC. 9. Recent studies have shown that a growing class of noncoding RNAs called microRNAs (miRNAs) is involved in posttranscriptional regulation of genes. There is a growing body of literature supporting the potential role of miRNAs in tumorigenesis. The importance of CDC73 in orchestration of several cellular functions and its role in tumorigenesis make it an attractive candidate for miRNA-mediated regulation of cell growth and proliferation. Using bioinformatics approaches, we identified an oncogenic microRNA-155 (miR-155) that could posttranscriptionally regulate CDC73 expression. 10. Consistent with its oncogenic role, miR-155 was found dramatically upregulated in OSCC samples and was found to be another mechanism for downregulation of CDC73 in a panel of human cell lines and a subset of OSCC samples in the absence of LOH, mutations and promoter methylation. 11. miRNAs regulate posttranscriptional gene expression generally via binding to their cognate sites in the 3’UTR. Therefore, a luciferase reporter construct was made by cloning the 3’UTR of CDC73 downstream to the luciferase reporter gene and the reporter assay was performed. Our experiments clearly indicated that the mature miR-155 regulates CDC73 expression by interacting with its 3’UTR in a site specific manner. 12 Ectopic expression of miR-155 in HEK293 cells dramatically reduced CDC73 levels, enhanced cell viability and decreased apoptosis. Conversely, the delivery of a miR-155 antagonist (antagomir-155) to KB cells over expression miR-155 resulted in increased CDC73 level, decreased cell viability, increased apoptosis and marked regression of engrafts in nude mice. Cotransfection of miR-155 with CDC73 in HEK293 cells abrogated its pro-oncogenic effect. Reduced cell proliferation and increased apoptosis of KB cells were dependent on the presence or absence of the 3’UTR in CDC73. In nutshell, the knockdown of CDC73 expression due to over expression of WT1 and miR-155 not only adds a novelty to the list of mechanisms responsible for its downregulation in different tumors, but the restoration of CDC73 levels by the use of inhibitors to WT1 and antagomir-155 may also have an important role in therapeutic intervention of cancers, including OSCC.
89

The role of the Borrelia oxidative stress regulator protein in virulence gene expression of the Lyme disease spirochete

Khoo, Joleyn Yean Chern 25 February 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The Lyme disease agent, Borrelia burgdorferi, has a complex system that allows it to thrive in the harsh and distinct environments of its tick vector and mammalian host. Although it has been known for some time that the Borrelia oxidative stress regulator protein (BosR) plays a necessary role in mammalian infectivity and functions as a transcriptional regulator of alternative sigma factor RpoS, very little is known about its mechanism of action, other than the suggestion that BosR activates rpoS transcription by binding to certain upstream regions of the gene. In our studies, we performed protein degradation assays and luciferase reporter assays for further understanding of BosR function. Our preliminary findings suggest that BosR is post-transcriptionally regulated by an unknown protease and may not need to bind to any rpoS upstream regions in order to activate transcription. We also describe the construction of luciferase reporter systems that will shed light on BosR’s mechanism of action. We postulate the provocative possibility that unlike its homologs Fur and PerR in other bacterial systems, BosR may not utilize a DNA-binding mechanism in order to fulfill its role as a transcriptional regulator to modulate virulence gene expression.
90

Serum response factor-dependent regulation of smooth muscle gene transcription

Chen, Meng 07 July 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Several common diseases such as atherosclerosis, post-angioplasty restenosis, and graft vasculopathies, are associated with the changes in the structure and function of smooth muscle cells. During the pathogenesis of these diseases, smooth muscle cells have a marked alteration in the expression of many smooth muscle-specific genes and smooth muscle cells undergo a phenotypic switch from the contractile/differentiated status to the proliferative/dedifferentiated one. Serum response factor (SRF) is the major transcription factor that plays an essential role in coordinating a variety of transcriptional events during this phenotypic change. The first goal of my thesis studies is to determine how SRF regulates the expression of smooth muscle myosin light chain kinase (smMLCK) to mediate changes in contractility. Using a combination of transgenic reporter mouse and knockout mouse models I demonstrated that a CArG element in intron 15 of the mylk1 gene is necessary for maximal transcription of smMLCK. SRF binding to this CArG element modulates the expression of smMLCK to control smooth muscle contractility. A second goal of my thesis work is to determine how SRF coordinates the activity of chromatin remodeling enzymes to control expression of microRNAs that regulate the phenotypes of smooth muscle cells. Using both mouse knockout models and in vitro studies in cultured smooth muscle cells I showed how SRF acts together with Brg1-containing chromatin remodeling complexes to regulate expression of microRNAs-143, 145, 133a and 133b. Moreover, I found that SRF transcription cofactor myocardin acts together with SRF to regulate expression of microRNAs-143 and 145 but not microRNAs-133a and 133b. SRF can, thus, further modulate gene expression through post-transcriptional mechanisms via changes in microRNA levels. Overall my research demonstrates that through direct interaction with a CArG box in the mylk1 gene, SRF is important for regulating expression of smMLCK to control smooth muscle contractility. Additionally, SRF is able to harness epigenetic mechanisms to modulate expression of smooth muscle contractile protein genes directly and indirectly via changes in microRNA expression. Together these mechanisms permit SRF to coordinate the complex phenotypic changes that occur in smooth muscle cells.

Page generated in 0.1667 seconds