• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 3
  • Tagged with
  • 11
  • 11
  • 11
  • 7
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The genetic contribution to stroke in northern Sweden / Genetikens roll för stroke i norra Sverige

Janunger, Tomas January 2010 (has links)
Stroke is a common multi factorial cerebrovascular disorder with a large impact on global health. It is a disorder primarily associated with old age but environmental factors, lifestyle choices and medical history are all important for the risk of developing the disorder. It is also known that heritability is important for predisposition to the disorder. The aim of this work has been to identify genetic variations that increase the risk of being affected by stroke in the population of northern Sweden, a population well apt for genetic studies due to well kept church and medical records together with limited genetic diversity. In the first paper we used linkage analysis in families with early onset of stroke. By this approach we identified a region on chromosome 5q to be linked to an increased risk of developing stroke, a region previously identified as a susceptibility locus for stroke in the Icelandic population. In the second study we used genealogy to identify common ancestry and thereby identify common susceptibility to stroke. The seven families we connected showed significant linkage to the chromosome 9q31-33 region and four of the families shared a common haplotype over 2.1 megabases. In the third manuscript we investigated sequence variation of two candidate genes, TNFSF15 and TLR4. Sequencing of the TLR4 gene revealed previously identified variations in affected individuals from two of the families. Further SNP analysis showed five separate haplotypes among the investigated families and four haplotypes for TNFSF15. However none of these co-segregated with stroke among the investigated families. In the final paper we used a case-control stroke cohort to ascertain association for genetic variation in five genes and genetic regions previously suggested to be linked with stroke. Initial analyses showed association for the 9p21 chromosomal region and a variant in Factor 5 that showed protection against stroke, but after adjustments for common risk factors for stroke, the findings were no longer significant. In conclusion, by studying selected families we have been able to show linkage to two chromosomal regions, 5q and 9q31-33, that indicate genetic predisposition for developing stroke. Further we have shown that family based studies are still an important tool in deciphering the underlying mechanisms for complex disease.
2

Genetic epidemiology of prostate cancer

Wiklund, Fredrik January 2004 (has links)
Prostate cancer is a major health burden throughout the world, yet the etiology of prostate cancer is poorly understood. Evidence has accumulated supporting the existence of a hereditary form of this disease. Improved understanding of the genetic mechanisms underlying the development and progression of prostate cancer would be a major advance for improved prevention, detection and treatment strategies. This thesis evaluates different aspects of the genetic epidemiology of prostate cancer. In a genomic scan two chromosomal regions with evidence for linkage was observed. The strongest support was found on chromosome 19p with an allele sharing LOD score of 2.91 (genome-wide P = 0.032). The second region, showing suggestive evidence of linkage, was observed in the centromeric region of chromosome 5. Linkage analyses of densely spaced markers on chromosome 8p22-23 confirmed (P = 0.03) previously reported linkage to this region. A systematic evaluation of the possible impact that the RNASEL gene have on prostate cancer was performed. Overall, limited evidence for association with prostate cancer risk was found. The results provide strong evidence against a role of RNASEL in prostate cancer etiology in Sweden. In a comprehensive evaluation of occurrence of other malignancies in HPC families, previously reported association between gastric and prostate carcinoma was confirmed. The increased risk was of the same magnitude in early and late onset HPC families and confined to only male relatives. A genome-wide linkage analysis, stratified by occurrence of gastric carcinoma, identified a novel susceptibility locus on chromosome Xp21. In summary, chromosome 5q and 19p represents the regions most likely to harbor susceptibility genes predisposing to prostate cancer in the Swedish population. A common genetic basis for both gastric and prostate cancer has been confirmed and a novel susceptibility locus on chromosome Xp21 has been identified.
3

Genetic studies of stroke in Northern Sweden

Nilsson Ardnor, Sofie January 2006 (has links)
Stroke is a common disorder of later life with a complex etiology, including both environmental and genetic risk factors. The inherited predisposition is challenging to study due to the complexity of the stroke phenotype. Genetic studies in an isolated population have successfully identified a positional candidate gene for stroke, phosphodiesterase 4D (PDE4D). The aim of this thesis was to identify stroke susceptibility loci and positional candidate genes, taking advantage of low genetic variation in the northern Sweden population. All stroke cases were identified in a population-based stroke registry at the northern Sweden MONICA Centre. 56 families containing multiple cases of stroke and a follow up set of an additional 53 families were used for linkage studies. For association studies, 275 cases of first ever stroke together with 550 matched community controls were included. In paper I, we used a candidate region approach to investigate the PDE4D region on chromosome 5q. Linkage was obtained with a maximum allele-sharing LOD score of 2.06; P = 0.001. However, no significant association of ischemic stroke to the previously defined at-risk allele in PDE4D was observed. We next performed a genome wide linkage scan to explore new susceptibility loci for common forms of stroke (paper II). Non-parametric multipoint linkage analysis yielded allele-sharing LOD scores > 1.2 at nine locations; 1p34, 5q13, 7q35, 9q22, 9q34, 13q32, 14q32, 18p11, 20q13. The highest allele-sharing LOD score was obtained on chromosome 18p (LOD = 2.14). Fine mapping resulted in increased allele-sharing LOD scores for chromosome 5q13 and 9q22. In the follow up analysis of the nine regions, including all 109 families, the highest allele-sharing LOD scores were obtained on chromosomes 5q, 13q and 18p although none reached the initial genome wide values. In paper III, we focused on the chromosome 5q region, and further mapping and haplotype analysis in the families was performed. A common 1 cM haplotype was found to be shared among affected members of five families. In this region only the regulatory subunit 1 of phosphatidylinositol 3-kinase (PIK3R1) gene was located. Association of three single nucleotide polymorphisms in the PIK3R1 gene to common stroke was obtained in the case-control material. Finally, in paper IV, an extended pedigree containing seven families connected to common founders eight generations back was identified by genealogical analysis, and submitted to a separate genome wide scan analysis. A significant allele-sharing LOD score of 4.66 (genome wide P < 0.001) at chromosome 9q31-33 was obtained. Haplotype analysis identified a minimal common region of 3.2 cM, which was shared by four of the seven families. These four families contained all of the primary intracerebral hemorrhagic cases present in the extended pedigree. In conclusion we have replicated linkage of stroke susceptibility to the PDE4D region on chromosome 5q, but no significant association of ischemic stroke to PDE4D was observed. Linkage analysis of stroke did not identify any new major stroke loci, indicating that multiple minor susceptibility loci in addition to the previously known locus on chromosome 5q could contribute to the disease. In the chromosome 5q region a novel positional candidate gene for stroke was identified, the PIK3R1 gene. The PIK3R1 protein has several biological actions with potential roles in stroke susceptibility. Also a novel susceptibility locus for common forms of stroke at chromosome 9q was identified in a large pedigree, which may be of special importance for susceptibility to hemorrhagic stroke.
4

Genetics of pain : studies of migraine and pain insensitivity

Norberg, Anna January 2006 (has links)
Pain is a major public health issue throughout the world. Increased understanding of the different forms of pain and identification of susceptibility genes could contribute to improved treatments. The main aims of this thesis were to identify the underlying genetic causes of pain by studying two large families affected with migraine and pain insensitivity, respectively. Migraine is one of the most common neurovascular disorders, affecting over 12% of the western population. The genetic contribution to migraine is about 50% according to family and twin studies. To identify novel susceptibility loci for migraine, we performed a genome-wide screen in a large family with migraine from northern Sweden. Linkage analysis revealed significant evidence of linkage (LOD=5.41) on chromosome 6p12.2-p21.1. A predisposing haplotype spanning 10 Mb was inherited with migraine in all affected members of the pedigree. Further fine-mapping of multiple SNP markers restricted the disease critical region to 8.5 Mb. Nine candidate genes were sequenced, revealing no disease-associated polymorphisms in SLC29A1, CLIC5, PLA2G7, IL17, SLC25A27 and TNFRSF21, but rare novel polymorphisms segregating with the disease haplotype in EFHC1, RHAG and MEP1A. EFHC1 has recently been shown to be involved in epilepsy, which is interesting considering the link between migraine and epilepsy. However, association analysis of EFHC1 revealed no difference between patients and controls, suggesting that this gene is not a risk factor for migraine. The combination of the two polymorphisms in RHAG and MEP1A could, however, not be found in any control individuals, indicating that they might be involved in genetic predisposition to migraine in this family. Disorders with reduced pain sensitivity are very rare, since pain perception is essential for survival. A number of disorders have still been identified with pain insensitivity and peripheral nerve degeneration as major clinical signs, including the hereditary sensory and autonomic neuropathies (HSAN). In order to identify novel susceptibility genes for HSAN V, we performed a genome-wide screen in a large consanguineous pedigree from a small village in northern Sweden. A homozygous region identical-by-descent was identified on chromosome 1p11.2-p13.2 in the three most severely affected patients. Subsequent analysis of candidate genes revealed a missense mutation in a conserved region of the nerve growth factor beta (NGFB) gene, causing a drastic amino acid change (R211W) in the NGF protein. NGF is important for the development and maintenance of the sympathetic and sensory nervous system and is therefore likely to be involved in disease. Functional analysis revealed that mutant NGF failed to induce neurite outgrowth and cell differentiation in PC12 cells. Furthermore, almost no mutant NGF was secreted by COS-7 cells, indicating that the processing and/or secretion of the protein might be disrupted. In conclusion, these findings present a novel migraine locus on chromosome 6 and identification of two rare polymorphisms that might be risk factors for migraine. Furthermore, a mutation in NGFB was found to cause complete loss of deep pain perception, which represents a very interesting model system to study pain mechanisms.
5

Genetic and epidemiological studies of hereditary colorectal cancer

Cederquist, Kristina January 2005 (has links)
Lynch syndrome (Hereditary Nonpolyposis Colorectal Cancer, HNPCC) is the most common hereditary syndrome predisposing to colorectal cancer, accounting for 1-3% of all colorectal cancer. This multi-organ cancer predisposition syndrome is caused by mutations in the mismatch repair (MMR) genes, especially MLH1 and MSH2, and to lesser extents MSH6 and PMS2, which lead to widespread genetic instability and thus microsatellite instability (MSI). Hereditary cancer often manifests in two or more tumours in a single individual; 35-40% of Lynch syndrome patients have synchronous or metachronous tumours of the two major Lynch syndrome-related cancers: colorectal and endometrial. The main purposes of the work underlying this thesis were to identify persons at risk of Lynch syndrome or other types of hereditary colorectal cancer, to estimate the cancer risks associated with these predispositions and to identify the underlying genetic causes. A population-based cohort of 78 persons with double primary colorectal or colorectal and endometrial cancer was identified. Cancer risks in their 649 first-degree relatives were estimated in relation to tumour MSI status (positive or negative) and age at diagnosis (before or after 50 years of age) in the probands. The overall standardised incidence ratio was 1.69 (95% CI; 1.39-2.03). The highest risks for Lynch syndrome-associated cancers: (colorectal, endometrial, ovarian and gastric) were found in families with young MSI-positive probands, likely representing Lynch syndrome families. Importantly, no overall risk was found in families with old probands, irrespective of MSI status. Blood samples were available from 24 MSI-positive patients for mutation screening of MLH1, MSH2 and MSH6. Sequence variants or rearrangements predicted to affect protein function were found in 16 patients. Six novel variants were found: two large rearrangements, two truncating and two missense mutations. The missense mutations were found to segregate in the families. Studies of allele frequencies, MSI and loss of immunostaning in tumours from family members further supports the hypothesis that these missense changes play a role in Lynch syndrome, as do the non-conservative nature and evolutionary conservation of the amino acid exchanges. Five families had mutations in MLH1, five in MSH2, and six in MSH6. The unexpectedly large impact of MSH6 was in genealogical studies shown to be due to a founder effect. Cumulative risk studies showed that the MSH6 families, despite their late age of onset, have a high lifetime risk for all Lynch syndrome-related cancers, significantly higher in women (89% by age 80 years) than in men (69%). The gender differences are in part due to high endometrial (70%) and ovarian cancer risk (33%) in addition to the high colorectal cancer risk (60%). These findings are of great importance for counselling and surveillance of families with MSH6 mutations. Finally, in a large family with MSI-negative hereditary colorectal cancer for which the MMR genes and APC had been excluded as possible causes, a genome-wide linkage analysis was performed, resulting in a suggested linkage to chromosome 7. Conclusions: Relatives of probands with MSI-positive, double primary colorectal and endometrial cancer diagnosed before the age of 50 years have significantly increased risks of Lynch syndrome-related cancers. MSH6 mutations, which have unusually high impact in this study population due to a founder effect, confer high cumulative risks of cancer despite the generally late age of onset.
6

The genetic contribution to stroke in northern Sweden

Janunger, Tomas, January 2010 (has links)
Diss. (sammanfattning) Umeå : Umeå universitet, 2010.
7

Exclusion de liaison génétique au locus SPAX2 de cas canadiens-français d’ataxie spastique

Poirier St-Georges, Emmanuelle 08 1900 (has links)
Les ataxies héréditaires sont des désordres neuro-dégénératifs qui causent une ataxie comme symptôme primaire; soit une perte de coordination des mouvements volontaires, un sens de l’équilibre déficient et un trouble à la motricité. Elles forment un groupe cliniquement et génétiquement hétérogène. De ce fait, de nombreuses classifications existent basées sur différents critères. Cependant, le consensus actuel veut que le mode de transmission soit le critère premier de classement. On estime la prévalence mondiale des ataxies héréditaires à 6/100 000 bien que ce nombre diffère entre régions. C’est le cas du Québec où la structuration historique du bassin génétique canadien-français a menée à des effets fondateurs régionaux, ce qui a eu comme conséquence de hausser la prévalence régionale de certaines maladies. L’Acadie est également une région canadienne-française avec des effets fondateurs où le taux de prévalence de certaines ataxies héréditaires est plus élevé. Nous avons recruté huit familles canadiennes-françaises provenant de diverses régions du Québec, ayant un lien génétique plus ou moins rapproché avec l’Acadie, dans lesquelles nous avons observé dix cas d’une forme d’ataxie spastique autosomique récessive relativement légère qui a résistée à l’analyse des gènes d’ataxies connues. Nous avons émis l’hypothèse d’être en présence d’une nouvelle forme d’ataxie à effet fondateur pour la population canadienne-française. Afin d’identifier le gène muté responsable de cette ataxie, un criblage génomique des marqueurs SNP pour les individus recrutés fut effectué. Puis, par cartographie de l’homozygotie, une région de 2,5 Mb fut identifiée sur le chromosome 17p13 dans une famille. Une revue de la littérature nous a permis de constater, qu’en 2007, quatre familles nord-africaines atteintes d’une ataxie dénommée SPAX2 qui présentaient des manifestations cliniques semblables avaient déjà été liées au même locus sur le chromosome 17. Afin de supporter notre hypothèse que les malades étaient porteurs de deux copies de la même mutation fondatrice et de cartographier plus finement notre région d’intérêt, les haplotypes de tous les atteints de nos huit familles furent étudiés. Nous avons établie qu’un intervalle de 200 kb (70 SNP), soit du marqueur rs9900036 à rs7222052, était partagé par tous nos participants. Les deux gènes les plus prometteurs des 18 se trouvant dans la région furent séquencés. Aucune mutation ne fut trouvée dans les gènes SLC25A11 et KIF1C. Par la suite, une analyse de liaison génétique stricte avec calcul de LOD score nous a permis d’exclure ce locus de 200 kb comme étant celui porteur du gène muté causant l’ataxie dans la majorité de nos familles. Nous avons donc conclus que malgré qu’une famille soit homozygote pour une grande région du chromosome 17, l’absence d’Informativité des marqueurs SNP dans la région de 200 kb fut responsable de l’apparent partage d’haplotype homozygote. Le travail reste donc entier afin d’identifier les mutations géniques responsables de la présentation ataxique chez nos participants de souche acadienne. / Hereditary ataxias are neurodegenerative disorders which share ataxia as common feature is manifested by a decrease in limb coordination, imbalance and an unsteady gait. They consist in a clinically and genetically heterogeneous group. Many ataxia classifications have been proposed, however, the current consensus is to first characterize them according to their mode of transmission. Hereditary ataxias as a whole have a prevalence of 6/100 000, with variable estimation between country and region. In the Province of Quebec where the French Canadian genetic pool can be seen has a mosaic of regional gene pools there is clear differences in local variation in the prevalence of different ataxias. Acadia is also a French Canadian region with a history of many founder effects and a higher prevalence for certain hereditary ataxias. We recruit 8 French Canadian families from Quebec and with genealogical links with Acadia in which 10 cases manifest a presumably relatively mild autosomal recessive spastic ataxia of unknown etiology. The shared phenotype and Acadian background raised the possibility that they suffered from a new form of ataxia with a founder effect. To identify the mutated gene causing this ataxia, the individuals recruited were genotyped. By homozygosity mapping, a region of 2,5 Mb was identified in one family on chromosome 17p13. A literature review established that in 2007 four North Africans families segregating also a mild spastic ataxia were linked to the same locus on chromosome 17. To support our hypothesis that our patients were carrier of the same founder mutation we look closer at their haplotype in the region. We defined an interval of 200kb (70 SNP) between markers rs9900036 and rs7222052 shared by all affected cases. The two most promising gene in the interval were sequenced. No mutation was found in SLC25A11 and KIF1C. Thereafter a linkage analysis by LOD score excluded the candidate interval of 200 kb in the majority of our families. We conclude that even if in one family exists a large homozygous region on chromosome 17, the lack of informative SNP in the 200 kb region was responsible for the apparent sharing rather than they shared a common mutation. Further work will be necessary to identify the mutate gene causing the ataxia presentation in these cases of mild spastic ataxia.
8

Mapping genetic diseases in northern Sweden

Einarsdottir, Elisabet January 2005 (has links)
The population of northern Sweden has previously been shown to be well suited for the mapping of monogenic diseases. In this thesis we have tested the hypothesis that this population could also be used for efficient identification of risk genes for common diseases. In Paper I we have hypothesised that despite the admixture of Swedish, Finnish and Sami, the northern Swedish population consists of sub-populations geographically restricted by the main river valleys running through the region. This geographic isolation, in combination with founder effects and genetic drift, could represent a unique resource for genetic studies. On the other hand, it also underlines the importance of accounting for this e.g. in genetic association studies. To test this hypothesis, we studied the patterns of marriage within and between river valley regions and compared allelic frequencies of genetic markers between these regions. The tendency to find a spouse and live in the river valley where one was born is strong, and allelic frequencies of genetic markers vary significantly between adjacent regions. These data support our hypothesis that the river valleys are home to distinct sub-populations and that this is likely to affect mapping of genetic diseases in these populations. In Paper II, we tested the applicability of the population in mapping HSAN V, a monogenic disease. This disease was identified in only three consanguineous individuals suffering from a severe loss of deep pain perception and an impaired perception of heat. A genome-wide scan combined with sequencing of candidate genes resulted in the identification of a causative point mutation in the nerve growth factor beta (NGFB) gene. In Paper III, a large family with multiple members affected by familial forms of type 1 diabetes mellitus (T1DM) and autoimmune thyroiditis (AITD) was studied. This syndrome was mapped to the IDDM12 region on 2q33, giving positive lodscores when conditioning on HLA haplotype. The linkage to HLA and to the IDDM12 region thus confirmed previous reports of linkage and/or association of T1DM and AITD to these loci and provided evidence that the same genetic factors may be mediating these diseases. This also supported the feasibility of mapping complex diseases in northern Sweden by the use of familial forms of these diseases. In Paper IV, we applied the same approach to study type 2 diabetes mellitus (T2DM). A non-parametric genome-wide scan was carried out on a family material from northern Sweden, and linkage was found to the calpain-10 locus, a previously described T2DM-susceptibility gene on 2q37. Together, these findings demonstrate that selecting for familial forms of even complex diseases, and choosing families from the same geographical region can efficiently reduce the genetic heterogeneity of the disease and facilitate the identification of risk genes for the disease.
9

Caractérisation clinique et génétique d’une famille canadienne-française atteinte de la neuropathie héréditaire sensitive avec rétinite pigmentaire et ataxie

Putorti, Maria Lisa 04 1900 (has links)
La complexité de l’étude des neuropathies héréditaires provient de leur hétérogénéité clinique et génétique et de la diversité des fibres composant les nerfs périphériques. Cette complexité se reflète dans les nombreuses classifications différentes. Les neuropathies héréditaires se classifient entre autres selon leur mode de transmission et leur atteinte sensitive, autonomique et motrice. Les neuropathies héréditaires sensitives et autonomiques (NHSA) se présentent avec une perte de la sensation distale aux membres, accompagnée d’autres manifestations selon le type de NHSA. L’étude des NHSA est facilitée lorsqu’il existe des grappes de familles originaires de régions du Québec où des effets fondateurs pour des maladies récessives ont déjà été identifiés. Nous avons recruté une grande famille canadienne-française originaire de Paspébiac dans la Baie-des-Chaleurs dans laquelle nous avons identifié quatre cas atteints d’une neuropathie héréditaire sensitive avec rétinite pigmentaire et ataxie (NHSRPA). Nous avons émis l’hypothèse que nous étions en présence d’une nouvelle forme de neuropathie héréditaire sensitive récessive à effet fondateur. Afin d’identifier la position chromosomique du gène muté responsable de la NHSRPA, nous avons tout d’abord complété un criblage du génome en génotypant des marqueurs microsatellites «single tandem repeat» (STR) sur des individus clés et nous avons ensuite procédé à une analyse de liaison génétique paramétrique. Ces études nous ont permis de lier cette famille au chromosome 1 et de définir un premier intervalle candidat de 6,7 Mb. Grâce à un génotypage de marqueurs «single nucleotide polymorphism» (SNP), nous avons réduit l’intervalle candidat à 5,3 Mb au locus 1q32,2-q32,3. Cette région contient 44 gènes candidats. Une revue plus fine de la littérature a fait ressortir qu’une famille espagnole et une américaine de souche hollandaise souffrant de la même maladie avaient déjà été liées au même locus. L’origine possiblement basque de notre famille gaspésienne nous a poussé à comparer l’haplotype porteur avec celui de la famille espagnole qui, quoi que gitane, provient du pays basque espagnol. Ces travaux ont démontré le partage d’une région de 203 kb. Afin de rétrécir davantage notre intervalle candidat, nous avons comparé les haplotypes des cas entre les deux familles et nous avons identifié un dernier intervalle candidat de 60 SNP au locus 1q32,3. Cette région ne contient que quatre gènes candidats dont le plus intéressant est le gène «activating transcription factor» (ATF3). À ce jour, aucune mutation n’a été trouvée dans le gène ATF3 et les gènes FAM71A, BATF3 et NSL1. Des expériences supplémentaires sont nécessaires afin d’identifier le gène muté responsable de la NHSRPA. / Hereditary neuropathies study’s complexity comes from their clinical and genetic heterogeneity and the peripheral nerves fibers’ diversity. This complexity leads to numerous different classifications. Hereditary neuropathies are classified based on the transmission mode and the sensitive, autonomic and motor affection. Hereditary sensory and autonomic neuropathies (HSAN) present themselves with members’ distal loss and other manifestations depending on the HSAN type. HSAN study can be facilitated when there are existing family grapes originating from Quebec regions where recessive diseases founder effects have been identified. We have recruited a large French-Canadian family originating from Paspébiac in the Baie-des-Chaleurs in which we have identified four cases affected by a hereditary sensory neuropathy with retinitis pigmentosa and ataxia (HSNRPA). We have hypothesized that we were in presence of a new form of recessive hereditary sensitive neuropathy with founder effect. In order to identify the HSNRPA causing mutated gene chromosomal position, we first completed a genome wide scan by genotyping microsatellite single tandem repeat (STR) markers on informative individuals and we have then proceeded to a parametric genetic linkage analysis. These studies allowed us to link this family to chromosome 1 and define a first candidate interval of 6.7 Mb. Second to the single nucleotide polymorphism (SNP) markers genotyping, we have reduced the candidate interval at 5.3 Mb on locus 1q32.2-q32.3. This region contains 44 genes. A finer literature review made us realize that a Spanish family and an American from Dutch origin suffering from the same disease had already been linked to the same locus. The possible Gaspesian family’s Basque origins brought us to compare their carrier haplotype with the Spanish family’s, although Gypsy but coming from the Spanish Basque country. This work has demonstrated a shared region of 203 kb. In order to further refine our candidate interval, we have compared the haplotypes of the cases between the two families and we have identified a last candidate interval of 60 SNP at locus 1q32.3. This region contains only four candidate genes, the activating transcription factor (ATF3) gene being the most interesting one. Until today, no mutation has been found in the ATF3 gene and in the FAM71A, BATF3 and NSL1 genes. Further experiments will be necessary in order to identify the HSNRPA causing mutated gene.
10

Exclusion de liaison génétique au locus SPAX2 de cas canadiens-français d’ataxie spastique

Poirier St-Georges, Emmanuelle 08 1900 (has links)
Les ataxies héréditaires sont des désordres neuro-dégénératifs qui causent une ataxie comme symptôme primaire; soit une perte de coordination des mouvements volontaires, un sens de l’équilibre déficient et un trouble à la motricité. Elles forment un groupe cliniquement et génétiquement hétérogène. De ce fait, de nombreuses classifications existent basées sur différents critères. Cependant, le consensus actuel veut que le mode de transmission soit le critère premier de classement. On estime la prévalence mondiale des ataxies héréditaires à 6/100 000 bien que ce nombre diffère entre régions. C’est le cas du Québec où la structuration historique du bassin génétique canadien-français a menée à des effets fondateurs régionaux, ce qui a eu comme conséquence de hausser la prévalence régionale de certaines maladies. L’Acadie est également une région canadienne-française avec des effets fondateurs où le taux de prévalence de certaines ataxies héréditaires est plus élevé. Nous avons recruté huit familles canadiennes-françaises provenant de diverses régions du Québec, ayant un lien génétique plus ou moins rapproché avec l’Acadie, dans lesquelles nous avons observé dix cas d’une forme d’ataxie spastique autosomique récessive relativement légère qui a résistée à l’analyse des gènes d’ataxies connues. Nous avons émis l’hypothèse d’être en présence d’une nouvelle forme d’ataxie à effet fondateur pour la population canadienne-française. Afin d’identifier le gène muté responsable de cette ataxie, un criblage génomique des marqueurs SNP pour les individus recrutés fut effectué. Puis, par cartographie de l’homozygotie, une région de 2,5 Mb fut identifiée sur le chromosome 17p13 dans une famille. Une revue de la littérature nous a permis de constater, qu’en 2007, quatre familles nord-africaines atteintes d’une ataxie dénommée SPAX2 qui présentaient des manifestations cliniques semblables avaient déjà été liées au même locus sur le chromosome 17. Afin de supporter notre hypothèse que les malades étaient porteurs de deux copies de la même mutation fondatrice et de cartographier plus finement notre région d’intérêt, les haplotypes de tous les atteints de nos huit familles furent étudiés. Nous avons établie qu’un intervalle de 200 kb (70 SNP), soit du marqueur rs9900036 à rs7222052, était partagé par tous nos participants. Les deux gènes les plus prometteurs des 18 se trouvant dans la région furent séquencés. Aucune mutation ne fut trouvée dans les gènes SLC25A11 et KIF1C. Par la suite, une analyse de liaison génétique stricte avec calcul de LOD score nous a permis d’exclure ce locus de 200 kb comme étant celui porteur du gène muté causant l’ataxie dans la majorité de nos familles. Nous avons donc conclus que malgré qu’une famille soit homozygote pour une grande région du chromosome 17, l’absence d’Informativité des marqueurs SNP dans la région de 200 kb fut responsable de l’apparent partage d’haplotype homozygote. Le travail reste donc entier afin d’identifier les mutations géniques responsables de la présentation ataxique chez nos participants de souche acadienne. / Hereditary ataxias are neurodegenerative disorders which share ataxia as common feature is manifested by a decrease in limb coordination, imbalance and an unsteady gait. They consist in a clinically and genetically heterogeneous group. Many ataxia classifications have been proposed, however, the current consensus is to first characterize them according to their mode of transmission. Hereditary ataxias as a whole have a prevalence of 6/100 000, with variable estimation between country and region. In the Province of Quebec where the French Canadian genetic pool can be seen has a mosaic of regional gene pools there is clear differences in local variation in the prevalence of different ataxias. Acadia is also a French Canadian region with a history of many founder effects and a higher prevalence for certain hereditary ataxias. We recruit 8 French Canadian families from Quebec and with genealogical links with Acadia in which 10 cases manifest a presumably relatively mild autosomal recessive spastic ataxia of unknown etiology. The shared phenotype and Acadian background raised the possibility that they suffered from a new form of ataxia with a founder effect. To identify the mutated gene causing this ataxia, the individuals recruited were genotyped. By homozygosity mapping, a region of 2,5 Mb was identified in one family on chromosome 17p13. A literature review established that in 2007 four North Africans families segregating also a mild spastic ataxia were linked to the same locus on chromosome 17. To support our hypothesis that our patients were carrier of the same founder mutation we look closer at their haplotype in the region. We defined an interval of 200kb (70 SNP) between markers rs9900036 and rs7222052 shared by all affected cases. The two most promising gene in the interval were sequenced. No mutation was found in SLC25A11 and KIF1C. Thereafter a linkage analysis by LOD score excluded the candidate interval of 200 kb in the majority of our families. We conclude that even if in one family exists a large homozygous region on chromosome 17, the lack of informative SNP in the 200 kb region was responsible for the apparent sharing rather than they shared a common mutation. Further work will be necessary to identify the mutate gene causing the ataxia presentation in these cases of mild spastic ataxia.

Page generated in 0.4269 seconds