• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 4
  • 1
  • Tagged with
  • 14
  • 14
  • 10
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Study of the molecular cause of anophthalmia in a consanguineous pedigree

Khorshidi, Azam Unknown Date
No description available.
2

Genetics of Circadian Rhythms and Sleep

Lee, Yin Yeng January 2022 (has links)
No description available.
3

Identification du gène Anoctamine 5 responsable d'une nouvelle forme récessive de dystrophie musculaire des ceintures

Bolduc, Véronique 10 1900 (has links)
Les dystrophies musculaires des ceintures (ou limb-girdle muscular dystrophy, LGMD) sont un groupe hétérogène de dystrophies musculaires chez l’adulte et sont définies par une atrophie et une faiblesse progressive qui surviennent dans les muscles proximaux. Chez une cohorte canadienne-française, nous avons précédemment décrit une nouvelle forme récessive, désignée LGMD2L et marquée par une atrophie asymétrique du quadriceps, que nous avions cartographiée au chromosome 11p12-p13 grâce à des analyses de liaison. L’objectif de ce projet de thèse était de raffiner l’intervalle candidat, puis d’identifier et de caractériser le gène muté responsable de la LGMD2L. Grâce à une cartographie par homozygotie de polymorphismes de nucléotide simple (SNPs) réalisée sur une grande famille consanguine, nous avons redéfini l’intervalle candidat à une région du chromosome 11p14.3-p15.1. Par séquençage de l’ADN génomique et complémentaire au gène Anoctamine 5 (ANO5) inclus dans cet intervalle, nous avons identifié trois mutations, chez autant de familles: une substitution créant un site d’épissage aberrant, une insertion d’un nucléotide et une mutation faux-sens. Les deux premières mutations étaient associées à une hausse de la dégradation de l’ARN messager médiée par une troncation prématurée. Nous avons également identifié des mutations ANO5 chez une seconde dystrophie musculaire de type distal cartographiant au même locus que la LGMD2L, nommée MMD3, et dont la manifestation initiale était une faiblesse des mollets, mais qui pouvait progresser vers une atrophie des quadriceps. Une réparation membranaire défective avait été observée chez les fibroblastes de deux patients MMD3, suggérant un rôle pour ANO5 dans ce mécanisme. La localisation et la fonction d’ANO5 dans le muscle sont inconnues, mais cette protéine fait partie d’une famille conservée de protéines à huit domaines transmembranaires, les Anoctamines, dont certains membres sont des transporteurs chloriques activés par le calcium. Les résultats de nos études d’immunofluorescence suggèrent qu’ANO5 se localise peu au sarcolemme, mais plutôt à une structure intracellulaire qui suit la ligne Z des myofibrilles. De façon étonnante, cette localisation était préservée chez un patient LGMD2L porteur homozygote de la mutation d’épissage, en dépit du fait que cette dernière était considérée comme une mutation nulle. Néanmoins, nous avons identifié un épissage alternatif de l’exon 15 qui se produisait sur une proportion des transcrits porteurs de la mutation d’épissage, ce qui rétablirait le cadre de lecture, soulignant la complexité de la régulation de l’épissage d’ANO5 et laissant croire que la LGMD2L pourrait être causée par une perte de fonction partielle, et non complète, d’ANO5. Des études subséquentes par des groupes européens ont montré que les anoctaminopathies 5 sont une cause fréquente de dystrophies musculaires des ceintures chez l’adulte. Notre découverte de mutations au gène Anoctamine 5 a mis en évidence une nouvelle classe de protéines importantes pour la biologie du muscle et a ouvert la voie à de nouvelles pistes pour étudier les mécanismes par lesquels un défaut de réparation membranaire progresse en une dystrophie musculaire. / Limb-girdle muscular dystrophies (LGMD) encompass a broad spectrum of muscular dystrophies in which the initial weakness arises in proximal muscles. We previously described in French-Canadian (FC) families a new form of LGMD characterized by asymmetrical quadriceps femoris atrophy, named LGMD2L, which we mapped to chromosome 11p12-p13 using linkage analyses. The objectives of this thesis project were to refine the candidate interval, identify and characterize the LGMD2L gene. Using single nucleotide polymorphisms (SNPs) homozygosity mapping in a large consanguineous family, we narrowed down the LGMD2L candidate interval to a region on chromosome 11p14.3-p15.1, and identified three mutations in the Anoctamin 5 (ANO5) gene located in the interval. These mutations consisted of a missense, a one-bp duplication and a splice site mutation. We demonstrated that the latter two triggered the nonsense-mediated RNA decay pathway. In addition, we identified ANO5 mutations in cases affected by a non-dysferlin Miyoshi muscular dystrophy mapped also to chromosome 11, termed MMD3. In two MMD3 families of European descent, patients presented with calf weakness as the initial symptoms, sometimes evolving to quadriceps atrophy. Fibroblasts from one MMD3 family were shown to be defective for membrane repair. ANO5 localization and function in muscle are unknown, but it is a member of the conserved Anoctamin family of proteins with eight transmembrane domains, of which some function as calcium-activated chloride channel. Our immunofluorescence studies on longitudinal muscle sections suggest that ANO5 is not importantly localized to the sarcolemma, but rather to a structure following the Z-line. To our surprise, this localization was preserved for a LGMD2L patient homozygous for the splice site mutation, previously considered as a null mutation. By studying the splicing isoforms in this patient, we observed that skipping of exon 15 occurs on a proportion of transcripts, in addition to the aberrant splicing caused by the mutation. This alternative splicing event would recover the reading frame, thus underlining the complexity of ANO5 splicing and suggesting that LGMD2L could be the consequence of a partial, rather than complete, loss-of-function. Subsequent studies by other groups have shown that anoctaminopathies 5 are a common cause of adult-onset LGMD. Our discovery of ANO5 mutations has shed light on a new class of proteins important for the muscle biology and opened new research avenues to study how defective membrane repair progresses into muscular dystrophies.
4

Identification du gène Anoctamine 5 responsable d'une nouvelle forme récessive de dystrophie musculaire des ceintures

Bolduc, Véronique 10 1900 (has links)
Les dystrophies musculaires des ceintures (ou limb-girdle muscular dystrophy, LGMD) sont un groupe hétérogène de dystrophies musculaires chez l’adulte et sont définies par une atrophie et une faiblesse progressive qui surviennent dans les muscles proximaux. Chez une cohorte canadienne-française, nous avons précédemment décrit une nouvelle forme récessive, désignée LGMD2L et marquée par une atrophie asymétrique du quadriceps, que nous avions cartographiée au chromosome 11p12-p13 grâce à des analyses de liaison. L’objectif de ce projet de thèse était de raffiner l’intervalle candidat, puis d’identifier et de caractériser le gène muté responsable de la LGMD2L. Grâce à une cartographie par homozygotie de polymorphismes de nucléotide simple (SNPs) réalisée sur une grande famille consanguine, nous avons redéfini l’intervalle candidat à une région du chromosome 11p14.3-p15.1. Par séquençage de l’ADN génomique et complémentaire au gène Anoctamine 5 (ANO5) inclus dans cet intervalle, nous avons identifié trois mutations, chez autant de familles: une substitution créant un site d’épissage aberrant, une insertion d’un nucléotide et une mutation faux-sens. Les deux premières mutations étaient associées à une hausse de la dégradation de l’ARN messager médiée par une troncation prématurée. Nous avons également identifié des mutations ANO5 chez une seconde dystrophie musculaire de type distal cartographiant au même locus que la LGMD2L, nommée MMD3, et dont la manifestation initiale était une faiblesse des mollets, mais qui pouvait progresser vers une atrophie des quadriceps. Une réparation membranaire défective avait été observée chez les fibroblastes de deux patients MMD3, suggérant un rôle pour ANO5 dans ce mécanisme. La localisation et la fonction d’ANO5 dans le muscle sont inconnues, mais cette protéine fait partie d’une famille conservée de protéines à huit domaines transmembranaires, les Anoctamines, dont certains membres sont des transporteurs chloriques activés par le calcium. Les résultats de nos études d’immunofluorescence suggèrent qu’ANO5 se localise peu au sarcolemme, mais plutôt à une structure intracellulaire qui suit la ligne Z des myofibrilles. De façon étonnante, cette localisation était préservée chez un patient LGMD2L porteur homozygote de la mutation d’épissage, en dépit du fait que cette dernière était considérée comme une mutation nulle. Néanmoins, nous avons identifié un épissage alternatif de l’exon 15 qui se produisait sur une proportion des transcrits porteurs de la mutation d’épissage, ce qui rétablirait le cadre de lecture, soulignant la complexité de la régulation de l’épissage d’ANO5 et laissant croire que la LGMD2L pourrait être causée par une perte de fonction partielle, et non complète, d’ANO5. Des études subséquentes par des groupes européens ont montré que les anoctaminopathies 5 sont une cause fréquente de dystrophies musculaires des ceintures chez l’adulte. Notre découverte de mutations au gène Anoctamine 5 a mis en évidence une nouvelle classe de protéines importantes pour la biologie du muscle et a ouvert la voie à de nouvelles pistes pour étudier les mécanismes par lesquels un défaut de réparation membranaire progresse en une dystrophie musculaire. / Limb-girdle muscular dystrophies (LGMD) encompass a broad spectrum of muscular dystrophies in which the initial weakness arises in proximal muscles. We previously described in French-Canadian (FC) families a new form of LGMD characterized by asymmetrical quadriceps femoris atrophy, named LGMD2L, which we mapped to chromosome 11p12-p13 using linkage analyses. The objectives of this thesis project were to refine the candidate interval, identify and characterize the LGMD2L gene. Using single nucleotide polymorphisms (SNPs) homozygosity mapping in a large consanguineous family, we narrowed down the LGMD2L candidate interval to a region on chromosome 11p14.3-p15.1, and identified three mutations in the Anoctamin 5 (ANO5) gene located in the interval. These mutations consisted of a missense, a one-bp duplication and a splice site mutation. We demonstrated that the latter two triggered the nonsense-mediated RNA decay pathway. In addition, we identified ANO5 mutations in cases affected by a non-dysferlin Miyoshi muscular dystrophy mapped also to chromosome 11, termed MMD3. In two MMD3 families of European descent, patients presented with calf weakness as the initial symptoms, sometimes evolving to quadriceps atrophy. Fibroblasts from one MMD3 family were shown to be defective for membrane repair. ANO5 localization and function in muscle are unknown, but it is a member of the conserved Anoctamin family of proteins with eight transmembrane domains, of which some function as calcium-activated chloride channel. Our immunofluorescence studies on longitudinal muscle sections suggest that ANO5 is not importantly localized to the sarcolemma, but rather to a structure following the Z-line. To our surprise, this localization was preserved for a LGMD2L patient homozygous for the splice site mutation, previously considered as a null mutation. By studying the splicing isoforms in this patient, we observed that skipping of exon 15 occurs on a proportion of transcripts, in addition to the aberrant splicing caused by the mutation. This alternative splicing event would recover the reading frame, thus underlining the complexity of ANO5 splicing and suggesting that LGMD2L could be the consequence of a partial, rather than complete, loss-of-function. Subsequent studies by other groups have shown that anoctaminopathies 5 are a common cause of adult-onset LGMD. Our discovery of ANO5 mutations has shed light on a new class of proteins important for the muscle biology and opened new research avenues to study how defective membrane repair progresses into muscular dystrophies.
5

Caractérisation génétique d’une forme d’ataxie tardive

Menasria, Samira 04 1900 (has links)
Les ataxies forment un groupe de maladies neurodégénératives qui sont caractérisées par un manque de coordination des mouvements volontaires. Mes travaux ont porté sur une forme d'ataxie à début tardif (LOCA), après l’âge de 50 ans. Les principales caractéristiques cliniques sont: atrophie cérébelleuse à l’IRM (88%), dysarthrie (81%), atrophie du lobe frontal (50%) et nystagmus (52%). La ségrégation dans les familles de cette ataxie est en faveur d’une transmission récessive. Afin d'identifier le gène responsable de LOCA, nous avons recruté 38 patients affectés d'une forme tardive d'ataxie, issus du SLSJ, des Cantons de l’Est ou d’autres régions du Québec. Un premier criblage du génome a été effectué avec des marqueurs microsatellites sur une famille clé. Une analyse de liaison paramétrique nous a suggéré une liaison au chromosome 13 (4.4Mb). Une recherche d’un haplotype partagé entre 17 familles LOCA a diminué la taille de l'intervalle candidat à 1.6Mb, mais l’haplotype s’est avéré fréquent dans la population canadienne-française. Un second criblage du génome avec des marqueurs SNP nous a permis d’évaluer par cartographie d’homozygotie la possibilité qu’une mutation fondatrice partagée dans des sous-groupes de malades. Plusieurs stratégies d'analyse ont été effectuées, entre autre par regroupement régional. Aucun loci candidats ne fut identifié avec confiance. Nous avons donc combiné les données de génotypage avec le séquençage exomique afin d'identifier le gène responsable. L'analyse de six individus atteints nous a permis d'obtenir une liste de variants rare contenant quatre gènes potentiels. Cette analyse doit se poursuivre pour identifier le gène responsable de LOCA. / Ataxias are a heterogeneous group of neurodegenerative diseases and are characterized by a lack of voluntary movements. My Master's project was on a late-onset ataxia (LOCA), after 50 years of age. The main clinical features are: cerebellar atrophy on MRI (88%), dysarthria (81%), frontal lobe atrophy (50%) and nystagmus (52%). Disease segregation in the family is suggestive of a recessive transmission. In order to identify the causal gene of LOCA, we have recruited 38 patients affected by a late-onset ataxia, originated from SLSJ, Eastern townships or other region in Quebec. A first genome scan was done with microsatellite markers on an informative family. Parametric linkage analysis suggested linkage on chromosome 13 (4.4Mb). Haplotype sharing analysis on 17 families reduced the candidate interval to 1.6Mb, but this haplotype was found to be frequent in the French-Canadian population. A second genome scan with SNPs markers allowed us to performed homozygozity mapping and look for founder mutations in subgroup of patients. Many strategies were performed, including regional clustering. No candidate loci were identified with confidence. We decided to combine the genotyping analysis results with exome sequencing to uncover the causative gene. The analysis on six affected individuals allowed us to obtain a rare variants list with four putative genes. More analysis is needed to identify the gene responsible for LOCA.
6

Genetic and epigenetic mechanisms in the aetiology of orofacial clefts / Mecanismos genéticos e epigenéticos na etiologia das fissuras orofaciais

Cruz, Lucas Alvizi 29 September 2017 (has links)
Craniofacial development is a tightly regulated event that requires expression of many genes at a precise space-temporal specificity. Interference in the regulation of such genes and their pathways is known to lead to abnormal phenotypes affecting the face and cranium. In this manner, regulation of these pathways is further complicated by interaction between genetic and environmental factors such that disturbance to either may result in craniofacial malformation, as orofacial clefts. Despite several at-risk loci have been identified, they do not completely explain the high heritability observed for the orofacial clefts and many questions remain open. For example, concerning the orofacial clefts transcriptome, the gene pathways which may be dysregulated and the affected cellular processes are still poorly understood. Further, if there is gene expression dysregulation in orofacial clefts, the causes leading to that need to be elucidated, such as the investigation of epigenetic factors. Also, since the multifactorial contribution makes environment relevant to this malformation, epigenetic and epigenomic differences in orofacial clefts should clarified. At last, rare syndromic forms of orofacial clefts with still unknown molecular cause and mechanisms should be elucidated in order to better understand craniofacial development and their impact in non-syndromic forms. Therefore, the main objective of this study was to investigate the molecular mechanisms involved in the aetiology of orofacial clefts, which was focused in gene expression and epigenetic analysis in non-syndromic cleft lip and/or palate (NSCL/P) as well as genetic, gene expression, animal modelling and epigenetics in Richieri-Costa-Pereira Syndrome (RCPS), a rare autosomal recessive syndromic form of orofacial cleft. We found significant transcriptome differences in NSCL/P in comparison to controls, revealing the BRCA1-dependent DNA damage repair pathway as compromised in NSCL/P cells leading to DNA damage accumulation. Next, we studied the potential of DNA methylation in those cells and found a slight but significant increase of BRCA1 promoter DNA methylation in NSCL/P cells and a distinct DNA methylation distribution, point to a possible epigenetic contribution in this phenomenon. We also evaluated the contribution of DNA methylation in 8q24.21 region, one of the most replicated regions in NSCL/P Genome-wide association studies and found no significant differences in our sample. Attempting to investigate DNA methylation in NSCL/P in an epigenomic level, we analysed methylomes and found 578 methylation variable positions in NSCL/P, highly enriched in regulatory regions and in relevant gene pathways for craniofacial development as Epithelial-Mesenchymal Transition pathway. We also studied effect of DNA methylation in familial NSCL/P displaying incomplete penentrance and found a significant increase of CDH1 promoter hypermethylation in penetrant cases in comparison to non-penetrants. Finally, by the use of different sequencing strategies and identity-by-descent analysis we mapped the mutation region of RCPS to EIF4A3 5\'UTR/promoter and found a complex structure of expanded repeats in RCPS patients leading to EIF4A3 downregulation. We were also able to validate the phenotypes using an animal modelling strategy in zebrafish. Because those repeats are CG rich, we investigated whether they were submitted to DNA hypermethylation in RCPS patients as a cause for EIF4A3 hypomorphism, however we found no evidence of methylation increase in RCPS. In conclusion, we were able to associate dysregulated pathways to NSCL/P susceptibility and DNA methylation differences to both non-familial and familial NSCLP. Besides, we were able to identify the genetic cause of RCPS, which now can be molecularly diagnosed. Altogether, our results add to the understanding of craniofacial development and the aetiology of orofacial clefts / O desenvolvimento craniofacial é um evento finamente regulado que requer a expressão de muitos genes em uma precisão espaço-temporal específica. A interferência na regulação de tais genes e suas respectivas vias é sabidamente causadora de fenótipos que afetam a face e o crânio. Neste sentido, a regulação destas vias é decorrente da interação entre fatores genéticos e ambientais, de tal forma que a perturbação de quaisquer destes fatores pode resultar em malformações craniofaciais, como as fissuras orofaciais. Apesar dos muitos loci de risco já identificados, estes não explicam completamente a alta herdabilidade observadas nas fissuras orofaciais e muitas questões permanecem em aberto. Por exemplo, em relação ao transcriptoma em fissuras orofaciais, as vias genéticas que podem estar desreguladas, assim como processos celulares afetados em decorrência, são ainda pouco compreendidos. Além disso, se há desregulação na expressão de genes em fissuras orofaciais, as causas que levam a essas diferenças necessitam ser elucidadas, como, por exemplo, por meio da investigação de fatores epigenéticos. Também, uma vez que o componente multifatorial torna a influência do ambiente relevante para esta malformação, diferenças epigenéticas e epigenômicas nas fissuras orofaciais devem ser melhor compreendidas. Por fim, formas raras e sindrômicas de fissuras orofaciais sem elucidação de causa moleculares devem ser estudadas para que melhor se compreenda o desenvolvimento craniofacial e o impacto destes mecanismos moleculares em formas não-sindrômicas. Portanto, nosso objetivo principal neste estudo foi investigar os mecanismos moleculares envolvidos na etiologia das fissuras orofaciais, com o foco na análise de expressão gênica e epigenètica em fissuras de lábio-palatinas não-sindrômicas (FL/P NS) e também o estudo genético, de expressão gênica, modelagem animal e epigenética na Síndrome de Richieri-Costa-Pereira (RCPS), uma forma sindrômica e autossômica recessiva de fissura orofacial. Nós encontramos diferenças significantes no transcriptoma de FL/P NS em comparação com controles, que revelaram o comprometimento da via do BRCA1 no reparo ao dano de DNA e o acúmulo de dano de DNA em células FL/P NS. Em seguida, nós estudamos o potencial da metilação de DNA nestas células e encontramos um pequeno, porém significante, aumento de metilação de DNA no promotor do BRCA1 e uma distribuição diferente de metilação, apontando para uma possível contribuição epigenética na desregulação do gene. Nós também avaliamos a contribuição da metilação de DNA na região 8q24.21, uma das mais associadas às FL/P NS por meio de Genome-wide association studies, porém não encontramos diferenças significantes na nossa amostra. Com o intuito de investigar a metilação de DNA em FL/P NS em uma escala epigenômica, nós analisamos o perfil de metilomas e encontramos 578 sítios diferencialmente metilados nas FL/P NS, altamente enriquecidos em regiões regulatórias e em vias relevantes para o desenvolvimento craniofacial como a via de Transição Epitélio-Mesenquimal. Nós também estudamos o efeito da metilação de DNA em casos famílias de FL/P NS com penetrância incompleta e encontramos um aumento significativo de metilação do promotor do CDH1 nos casos penetrantes em comparação aos não-penetrantes. Por último, por meio de diferentes estratégias de sequenciamento e análise de segregação de haplótipos nós mapeamos a mutação de RCPS na região 5\'UTR/promotor do EIF4A3 e encontramos uma estrutura complexa de expansão de repetições nos pacientes RCPS, ocasionando a diminuição da expressão do EIF4A3. Nós também reproduzimos fenótipos comparáveis aos da RCPS por meio de modelo animal em zebrafish. Uma vez que tais repetições são ricas em CG, nós investigamos se estas poderiam ser submetidas à metilação de DNA em pacientes RCPS como uma causa para a redução dos transcritos do EIF4A3, porém não encontramos evidências de aumento de metilação em RCPS. Em conclusão, nós conseguimos associar vias gênicas desreguladas à susceptibilidade para as FL/P NS e diferenças de metilação de DNA tanto em casos familiais como não-familiais de FL/P NS. Além disso, identificamos a causa genética de RCPS, sendo que a síndrome pode ser agora diagnosticada molecularmente. Em conjunto, nossos resultados adicionam ao conhecimento do desenvolvimento craniofacial e na etiologia das fissuras orofaciais
7

Identification de gènes impliqués dans des dysplasies osseuses rares dans des familles libanaises consanguines / Identification of genes involved in rare autosomal recessive skeletal dysplasias in consanguineous Lebanese families

Mehawej, Cybel 25 November 2013 (has links)
La pratique du mariage entre apparentés au sein de la population libanaise, favorisée par des raisons sociales, religieuses, géographiques et aussi politiques, a vu apparaître des sous-groupes de populations de taille plus ou moins réduite, parfois à la limite d’isolats génétiques. Ceci a engendré une augmentation de la prévalence des maladies autosomiques récessives fréquentes mais aussi et surtout rares. Parmi ces dernières, les chondrodysplasies ont retenu notre attention. Elles sont caractérisées par un retard statural dû à un défaut du processus d’ossification endochondale, qui est responsable de la croissance des os longs. Au cours de ces dernières décennies, plus de 230 gènes responsables d’environ 400 maladies osseuses constitutionnelles ont été identifiés. Cependant, les bases moléculaires d'une centaine de dysplasies osseuses restent, à ce jour, inconnues. L’identification de gènes codant pour des protéines de nature extrêmement variée a contribué à la compréhension du mécanisme complexe d’ossification endochondrale. Mon travail de thèse, réalisé en cotutelle entre l’équipe de recherche « Bases moléculaires et physiopathologiques des chondrodysplasies » de l’hôpital Necker enfants-malades, à Paris en France et l’Unité de Génétique Médicale (UGM) de l’Université Saint-Joseph au Liban, a consisté à identifier des gènes impliqués dans des dysplasies osseuses autosomiques récessives dans quatre familles libanaises consanguines. Dans ce cadre, différentes stratégies ont été adoptées. La première a été une stratégie d’intersection des variations détectées par le séquençage de l’exome de deux patients, atteints d’une forme sévère de dysplasie spondylodysplastique létale et issus de deux familles libanaises consanguines et non apparentées (Familles A et B). Nous avons identifié une mutation homozygote du gène MAGMAS (NM_016069, p.Asn76Asp) (Mitochondria-associated granulocyte macrophage CSF-signaling molecule) à l’origine de la maladie dans les deux familles A et B. MAGMAS est une protéine associée à la mitochondrie et impliquée dans la régulation de l’import actif des protéines vers la matrice mitochondriale. Par immunohistochimie, nous avons montré que MAGMAS est spécifiquement exprimée au niveau de l’os et de la zone hypertrophique du cartilage. MAGMAS, ayant une fonction cruciale pour la survie, est très conservé entre les espèces. Après avoir généré des souches de levures exprimant une copie normale ou mutée du gène humain MAGMAS, nous avons validé l’effet délétère de la mutation p.Asn76Asp, i) sur la croissance des levures, en montrant que les souches portant le gène humain muté présentent un caractère thermosensible, ii) sur la fonction d’import des protéines vers la matrice mitochondriale, qui est altérée dans les souches mutées et iii) sur la stabilité de la protéine. Nous avons également observé un effet de la mutation sur la morphologie des mitochondries et des peroxysomes des cellules de levures, suggérant une induction de l’autophagie dans les souches de levures portant la mutation p.Asn76Asp. L’identification de mutations de MAGMAS dans une dysplasie osseuse sévère, permet d’attribuer à cette protéine un rôle spécifique dans le processus complexe d’ossification endochondrale. La deuxième stratégie a été une combinaison, au sein d’une même famille, d’une stratégie de cartographie par homozygotie et du séquençage de l’exome d’un seul patient. Cette approche a été utilisée dans une famille consanguine avec 3 enfants atteints porteurs d’une dysplasie rhizomélique (Famille C). Nous avons identifié une mutation homozygote du gène NWD1 (NACHT and WD repeat domain containing 1) (NM_001007525, p.Cys1376Tyr) responsable de la maladie dans cette famille C. Ce gène code pour une protéine ayant des domaines WD répétés qui lui confèrent un rôle dans divers mécanismes comme la transduction de signal, la régulation de la transcription, le transport vésiculaire et le contrôle du cycle cellulaire. (...) / Social, religious, geographic and political reasons have favored the consanguineous marriage in the Lebanese population. This led to an increase in the prevalence of autosomal recessive disorders, especially the rare entities including chondrodysplasias. This group of diseases is due to an impairment of the endochondral ossification process. Causative mutations have now been identified in over 230 different genes in more than 400 unique skeletal phenotypes. However, the genetic basis of over 100 different entities remains to be determined. My PhD research project, held between the research group « Bases moléculaires et physiopathologiques des chondrodysplasies » of Necker enfants-malades hospital (INSERM U781, PARIS, France) and the Medical Genetics Unit of Saint-Joseph University (Lebanon), aims to identify genes involved in autosomal recessive skeletal dysplasias in four consanguineous Lebanese families. Different strategies were carried out: the first consists in overlapping data from whole exome sequencing of two patients affected by a new lethal type of spondylodysplastic dysplasia and issued from two consanguineous unrelated Lebanese families (Families A and B). Here, we report a homozygous missense mutation in the Mitochondria-associated granulocyte macrophage CSF-signaling gene (MAGMAS: NM_016069, p.Asn76Asp) in this severe skeletal dysplasia. MAGMAS, also referred to as PAM16, is a mitochondria-associated protein, involved in pre-proteins import into mitochondria and essential for cell growth and development. We demonstrate that MAGMAS is expressed in trabecular bone and cartilage at early developmental stages underlining its specific role in skeletogenesis. We also give strong evidence of the deleterious effect of the identified mutation on the stability of the protein, its in-vivo activity and the viability of yeast strains. We also show that the mutation is able to induce autophagy in yeast cells. Reporting deleterious MAGMAS mutation in a skeletal dysplasia supports a key and specific role for this mitochondrial protein in ossification. Additional studies would be of interest to further understand the specific role of magmas in ossification. The second strategy was to combine, in a consanguineous family, homozygosity mapping with whole exome sequencing of one of the patients. This strategy was undertaken in family C with 3 patients affected by a rhizomelic dysplasia. It allowed us to identify a homozygous missense mutation in the NWD1 gene (NACHT and WD repeat domain containing 1: NM_001007525, p.Cys1376Tyr) as responsible for the skeletal dysplasia in this family. NWD1 belongs to a large group of WD-repeat domain-containing proteins that are involved in different physiological mechanisms such as signal transduction, transcription regulation, vesicular transport and cell cycle control. (...)
8

Identification de nouveaux gènes d'ataxies récessives syndromiques : implication des désordres métaboliques modérés / Identification of new genes in syndromic recessive ataxias : involvement of moderate metabolic disorders

Guissart, Claire 21 September 2016 (has links)
Les ataxies héréditaires représentent un groupe hétérogène de maladies neurodégénératives caractérisées par des anomalies de la coordination des mouvements associées à des troubles de l’équilibre et de la marche. L’immense diversité fonctionnelle des protéines touchées dans les ataxies autosomiques récessives (AR) souligne que celles-ci ne peuvent pas être classées selon les voies physiopathologiques en cause. De ce constat résulte une classification émergente des AR en fonction de la raison expliquant la nature « modérée » de l’atteinte neurologique, à savoir : (i) les mutations avec perte de fonction partielle, (ii) la présence redondante de protéines de la même famille fonctionnelle, (iii) la présence redondante d’autres voies détoxifiantes. L’objectif de ce travail était d’identifier de nouveaux gènes responsables d’AR syndromiques grâce à une stratégie couplant la cartographie par homozygotie et l’analyse d’exomes de larges familles consanguines. L’analyse par génotypage de l’une de ces familles nous a permis d’identifier 2 régions homozygotes partagées par les 3 enfants atteints par le syndrome de Lichtenstein-Knorr (ataxie-surdité). Parmi les variants présents dans ces régions, j’ai identifié une mutation faux-sens dans le gène SLC9A1 codant pour l'échangeur Na+/H+1, NHE1. Cette mutation transforme la Glycine 305, un petit acide aminé très conservé et localisé dans le 8ème domaine transmembranaire, en Arginine, acide aminé chargé positivement. Bien que NHE1 soit une protéine exprimée de façon ubiquitaire, 2 modèles souris « knock-out » de ce gène ont montré sa fonction essentielle au niveau des noyaux profonds cérébelleux, vestibulaires et cochléaires où a été observé une dégénérescence spécifique suite à l’inactivation du gène Slc9a1. Nous avons ensuite apporté la preuve de l’effet délétère de la mutation p.Gly305Arg en montrant une réduction importante mais pas totale de l’activité de l’échangeur muté ainsi qu’une abolition de son expression à la surface cellulaire, démontrant ainsi que SLC9A1 est le gène impliqué dans le syndrome de Lichtenstein-Knorr (Guissart et al. Hum Mol Genet 2015). L’analyse de l’exome d’une famille consanguine multi-générationnelle présentant une ataxie spino-cérébelleuse, une cécité et une surdité et dont le locus avait été identifié par notre équipe en 2000 sur le chromosome 6p23-p21 (SCAR3 ; MIM #271250) m’a permis d’identifier la mutation faux-sens homozygote p.Gly306Arg dans le gène SLC52A2, pourtant située sur le chromosome 8qter et déjà décrite chez des patients atteints du syndrome de Brown-Vialetto-Van Laere type 2, indiquant que la liaison génétique initialement publiée pour cette famille était due au hazard. Le séquençage d’exome d'une autre famille avec 2 enfants atteints d’une AR progressive et d’une rétinite pigmentaire et présentant une région homozygote partagée en 6p23-p21 m’a permis d’identifier la mutation faux-sens p.Ala912Val dans le gène PEX6. L'analyse rétrospective des marqueurs du peroxysome a montré un taux d’acide phytanique sérique très modérément augmenté, alors que les fibroblastes m’ont permis de confirmer le caractère pathogène de la mutation p.Ala912Val par l'absence de marquage à la catalase, la présence de structures peroxysomales anormales et une nette augmentation des AGTLC, indiquant une perte de fonction partielle de la protéine PEX6. Par conséquent, en dépit d’une liaison génétique initiale erronée, l’entité SCAR3 est confirmée et est causée par certaines mutations du gène PEX6 (Guissart et al. Eur J Hum Genet 2016). En conclusion, la présence des mutations faux-sens hypomorphes dans ces familles et les données de la littérature démontrent le concept selon lequel de nombreuses AR sont causées par des mutations de type « perte de fonction partielle » touchant une grande variété de voies physiopathologiques, ceci en raison de l’extrême sensibilité des neurones cérébelleux, spino-cérébelleux et sensitifs profonds, à des désordres métaboliques même légers. / Inherited ataxias are a heterogeneous group of neurodegerative diseases that are characterized by incoordination of movement and unsteadiness. The huge functional diversity of affected proteins in autosomal recessive ataxia highlights that these disorders cannot be classified according to relevant physiopathological pathways. Rather, current knowledge shows that no specific physiopathological pathway explains directly the appearance of the symptoms. This gives rise to an emerging recessive ataxia classification based on the reason explaining the “moderate” nature of neurological involvement, namely: (i) partial loss of function mutation, (ii) the presence of redundant functional family member proteins, (iii) the presence of redundant detoxifying pathways. The purpose of this work was to identify new causative genes for syndromic recessive ataxia using a strategy combining homozygosity mapping and exome analysis in large consanguineous families. Genotyping analysis of one of those families has enabled us to identify 2 significant regions of homozygosity shared by the 3 siblings affected by Lichtenstein-Knorr syndrome (ataxia-deafness): one of 23.6 Mb on chromosome 1 and the other of 5.5 Mb on chromosome 7. Among the variants located in the shared homozygous regions, I rapidly identified a missense mutation located in the SLC9A1 gene encoding for NHE1, the Na+/H+ exchanger family member 1. This mutation replaces Glycine 305, a small neutral highly conserved amino-acid, located in the 8th transmembrane segment and conserved in all investigated metazoans by Arginine, a positively charged amino acid. Despite NHE1 is ubiquitously expressed, extensive analysis of 2 Slc9a1 knock-out mice models revealed its crucial role in 3 regions of the central nervous system: vestibular nuclei, cochlear nuclei, and most prominently deep cerebellar nuclei. We then demonstrated the deleterious effect of the p.Gly305Arg mutation showing a significant but not complete reduction of the proton pump activity of NHE1 as well as absence of expression at the cell surface, thus demonstrating that SLC9A1 is the causative gene in Lichtenstein-Knorr syndrome (Guissart et al. Hum Mol Genet 2015). Exome analysis of a multigenerational consanguineous family with spinocerebellar ataxia, blindness and deafness for which we identified linkage to chromosome 6p23-p21 in 2000 (SCAR3; MIM #271250) allowed me to identify in all patients the homozygous p.Gly306Arg missense mutation in SLC52A2, yet located on chromosome 8qter and previously found mutated in patients with Brown-Vialetto-Van Laere type 2, indicating that the genetic linkage published for the SCAR3 family was a false positive result. High recombination rate in the telomeric region and use of widely spaced microsatellite markers explain why correct linkage was initially missed. Exome sequencing of another family with 2 children affected with progressive ataxia and retinitis pigmentosa and with linkage to 6p23-p21 revealed the p.Ala912Val mutation in PEX6. Retrospective analysis of peroxisomal markers showed very moderate increase of serum phytanic acid levels, but fibroblasts allowed me to confirm the pathogenicity of the p.Ala912Val mutation by absent peroxisomal catalase immunostaining, presence of peroxisomal ghosts with abnormal structure and markedly increased very long-chain fatty acids, indicating a partial loss of function of the PEX6 protein. Therefore, despite initial false genetic linkage, the SCAR3 locus is confirmed and is caused by some PEX6 mutation (Guissart et al. Eur J Hum Genet 2016). In conclusion, the identification of these hypomorphic missense mutations in ataxia families as well as literature data lend credence to the concept that numerous recessive ataxias are caused by partial loss of function mutations in a large variety of pathophysiological pathways, as a consequence of an exquisite sensitivity of cerebellar, spinocerebellar and deep sensory neurons to even mild metabolic insults.
9

Genetic and epigenetic mechanisms in the aetiology of orofacial clefts / Mecanismos genéticos e epigenéticos na etiologia das fissuras orofaciais

Lucas Alvizi Cruz 29 September 2017 (has links)
Craniofacial development is a tightly regulated event that requires expression of many genes at a precise space-temporal specificity. Interference in the regulation of such genes and their pathways is known to lead to abnormal phenotypes affecting the face and cranium. In this manner, regulation of these pathways is further complicated by interaction between genetic and environmental factors such that disturbance to either may result in craniofacial malformation, as orofacial clefts. Despite several at-risk loci have been identified, they do not completely explain the high heritability observed for the orofacial clefts and many questions remain open. For example, concerning the orofacial clefts transcriptome, the gene pathways which may be dysregulated and the affected cellular processes are still poorly understood. Further, if there is gene expression dysregulation in orofacial clefts, the causes leading to that need to be elucidated, such as the investigation of epigenetic factors. Also, since the multifactorial contribution makes environment relevant to this malformation, epigenetic and epigenomic differences in orofacial clefts should clarified. At last, rare syndromic forms of orofacial clefts with still unknown molecular cause and mechanisms should be elucidated in order to better understand craniofacial development and their impact in non-syndromic forms. Therefore, the main objective of this study was to investigate the molecular mechanisms involved in the aetiology of orofacial clefts, which was focused in gene expression and epigenetic analysis in non-syndromic cleft lip and/or palate (NSCL/P) as well as genetic, gene expression, animal modelling and epigenetics in Richieri-Costa-Pereira Syndrome (RCPS), a rare autosomal recessive syndromic form of orofacial cleft. We found significant transcriptome differences in NSCL/P in comparison to controls, revealing the BRCA1-dependent DNA damage repair pathway as compromised in NSCL/P cells leading to DNA damage accumulation. Next, we studied the potential of DNA methylation in those cells and found a slight but significant increase of BRCA1 promoter DNA methylation in NSCL/P cells and a distinct DNA methylation distribution, point to a possible epigenetic contribution in this phenomenon. We also evaluated the contribution of DNA methylation in 8q24.21 region, one of the most replicated regions in NSCL/P Genome-wide association studies and found no significant differences in our sample. Attempting to investigate DNA methylation in NSCL/P in an epigenomic level, we analysed methylomes and found 578 methylation variable positions in NSCL/P, highly enriched in regulatory regions and in relevant gene pathways for craniofacial development as Epithelial-Mesenchymal Transition pathway. We also studied effect of DNA methylation in familial NSCL/P displaying incomplete penentrance and found a significant increase of CDH1 promoter hypermethylation in penetrant cases in comparison to non-penetrants. Finally, by the use of different sequencing strategies and identity-by-descent analysis we mapped the mutation region of RCPS to EIF4A3 5\'UTR/promoter and found a complex structure of expanded repeats in RCPS patients leading to EIF4A3 downregulation. We were also able to validate the phenotypes using an animal modelling strategy in zebrafish. Because those repeats are CG rich, we investigated whether they were submitted to DNA hypermethylation in RCPS patients as a cause for EIF4A3 hypomorphism, however we found no evidence of methylation increase in RCPS. In conclusion, we were able to associate dysregulated pathways to NSCL/P susceptibility and DNA methylation differences to both non-familial and familial NSCLP. Besides, we were able to identify the genetic cause of RCPS, which now can be molecularly diagnosed. Altogether, our results add to the understanding of craniofacial development and the aetiology of orofacial clefts / O desenvolvimento craniofacial é um evento finamente regulado que requer a expressão de muitos genes em uma precisão espaço-temporal específica. A interferência na regulação de tais genes e suas respectivas vias é sabidamente causadora de fenótipos que afetam a face e o crânio. Neste sentido, a regulação destas vias é decorrente da interação entre fatores genéticos e ambientais, de tal forma que a perturbação de quaisquer destes fatores pode resultar em malformações craniofaciais, como as fissuras orofaciais. Apesar dos muitos loci de risco já identificados, estes não explicam completamente a alta herdabilidade observadas nas fissuras orofaciais e muitas questões permanecem em aberto. Por exemplo, em relação ao transcriptoma em fissuras orofaciais, as vias genéticas que podem estar desreguladas, assim como processos celulares afetados em decorrência, são ainda pouco compreendidos. Além disso, se há desregulação na expressão de genes em fissuras orofaciais, as causas que levam a essas diferenças necessitam ser elucidadas, como, por exemplo, por meio da investigação de fatores epigenéticos. Também, uma vez que o componente multifatorial torna a influência do ambiente relevante para esta malformação, diferenças epigenéticas e epigenômicas nas fissuras orofaciais devem ser melhor compreendidas. Por fim, formas raras e sindrômicas de fissuras orofaciais sem elucidação de causa moleculares devem ser estudadas para que melhor se compreenda o desenvolvimento craniofacial e o impacto destes mecanismos moleculares em formas não-sindrômicas. Portanto, nosso objetivo principal neste estudo foi investigar os mecanismos moleculares envolvidos na etiologia das fissuras orofaciais, com o foco na análise de expressão gênica e epigenètica em fissuras de lábio-palatinas não-sindrômicas (FL/P NS) e também o estudo genético, de expressão gênica, modelagem animal e epigenética na Síndrome de Richieri-Costa-Pereira (RCPS), uma forma sindrômica e autossômica recessiva de fissura orofacial. Nós encontramos diferenças significantes no transcriptoma de FL/P NS em comparação com controles, que revelaram o comprometimento da via do BRCA1 no reparo ao dano de DNA e o acúmulo de dano de DNA em células FL/P NS. Em seguida, nós estudamos o potencial da metilação de DNA nestas células e encontramos um pequeno, porém significante, aumento de metilação de DNA no promotor do BRCA1 e uma distribuição diferente de metilação, apontando para uma possível contribuição epigenética na desregulação do gene. Nós também avaliamos a contribuição da metilação de DNA na região 8q24.21, uma das mais associadas às FL/P NS por meio de Genome-wide association studies, porém não encontramos diferenças significantes na nossa amostra. Com o intuito de investigar a metilação de DNA em FL/P NS em uma escala epigenômica, nós analisamos o perfil de metilomas e encontramos 578 sítios diferencialmente metilados nas FL/P NS, altamente enriquecidos em regiões regulatórias e em vias relevantes para o desenvolvimento craniofacial como a via de Transição Epitélio-Mesenquimal. Nós também estudamos o efeito da metilação de DNA em casos famílias de FL/P NS com penetrância incompleta e encontramos um aumento significativo de metilação do promotor do CDH1 nos casos penetrantes em comparação aos não-penetrantes. Por último, por meio de diferentes estratégias de sequenciamento e análise de segregação de haplótipos nós mapeamos a mutação de RCPS na região 5\'UTR/promotor do EIF4A3 e encontramos uma estrutura complexa de expansão de repetições nos pacientes RCPS, ocasionando a diminuição da expressão do EIF4A3. Nós também reproduzimos fenótipos comparáveis aos da RCPS por meio de modelo animal em zebrafish. Uma vez que tais repetições são ricas em CG, nós investigamos se estas poderiam ser submetidas à metilação de DNA em pacientes RCPS como uma causa para a redução dos transcritos do EIF4A3, porém não encontramos evidências de aumento de metilação em RCPS. Em conclusão, nós conseguimos associar vias gênicas desreguladas à susceptibilidade para as FL/P NS e diferenças de metilação de DNA tanto em casos familiais como não-familiais de FL/P NS. Além disso, identificamos a causa genética de RCPS, sendo que a síndrome pode ser agora diagnosticada molecularmente. Em conjunto, nossos resultados adicionam ao conhecimento do desenvolvimento craniofacial e na etiologia das fissuras orofaciais
10

Exclusion de liaison génétique au locus SPAX2 de cas canadiens-français d’ataxie spastique

Poirier St-Georges, Emmanuelle 08 1900 (has links)
Les ataxies héréditaires sont des désordres neuro-dégénératifs qui causent une ataxie comme symptôme primaire; soit une perte de coordination des mouvements volontaires, un sens de l’équilibre déficient et un trouble à la motricité. Elles forment un groupe cliniquement et génétiquement hétérogène. De ce fait, de nombreuses classifications existent basées sur différents critères. Cependant, le consensus actuel veut que le mode de transmission soit le critère premier de classement. On estime la prévalence mondiale des ataxies héréditaires à 6/100 000 bien que ce nombre diffère entre régions. C’est le cas du Québec où la structuration historique du bassin génétique canadien-français a menée à des effets fondateurs régionaux, ce qui a eu comme conséquence de hausser la prévalence régionale de certaines maladies. L’Acadie est également une région canadienne-française avec des effets fondateurs où le taux de prévalence de certaines ataxies héréditaires est plus élevé. Nous avons recruté huit familles canadiennes-françaises provenant de diverses régions du Québec, ayant un lien génétique plus ou moins rapproché avec l’Acadie, dans lesquelles nous avons observé dix cas d’une forme d’ataxie spastique autosomique récessive relativement légère qui a résistée à l’analyse des gènes d’ataxies connues. Nous avons émis l’hypothèse d’être en présence d’une nouvelle forme d’ataxie à effet fondateur pour la population canadienne-française. Afin d’identifier le gène muté responsable de cette ataxie, un criblage génomique des marqueurs SNP pour les individus recrutés fut effectué. Puis, par cartographie de l’homozygotie, une région de 2,5 Mb fut identifiée sur le chromosome 17p13 dans une famille. Une revue de la littérature nous a permis de constater, qu’en 2007, quatre familles nord-africaines atteintes d’une ataxie dénommée SPAX2 qui présentaient des manifestations cliniques semblables avaient déjà été liées au même locus sur le chromosome 17. Afin de supporter notre hypothèse que les malades étaient porteurs de deux copies de la même mutation fondatrice et de cartographier plus finement notre région d’intérêt, les haplotypes de tous les atteints de nos huit familles furent étudiés. Nous avons établie qu’un intervalle de 200 kb (70 SNP), soit du marqueur rs9900036 à rs7222052, était partagé par tous nos participants. Les deux gènes les plus prometteurs des 18 se trouvant dans la région furent séquencés. Aucune mutation ne fut trouvée dans les gènes SLC25A11 et KIF1C. Par la suite, une analyse de liaison génétique stricte avec calcul de LOD score nous a permis d’exclure ce locus de 200 kb comme étant celui porteur du gène muté causant l’ataxie dans la majorité de nos familles. Nous avons donc conclus que malgré qu’une famille soit homozygote pour une grande région du chromosome 17, l’absence d’Informativité des marqueurs SNP dans la région de 200 kb fut responsable de l’apparent partage d’haplotype homozygote. Le travail reste donc entier afin d’identifier les mutations géniques responsables de la présentation ataxique chez nos participants de souche acadienne. / Hereditary ataxias are neurodegenerative disorders which share ataxia as common feature is manifested by a decrease in limb coordination, imbalance and an unsteady gait. They consist in a clinically and genetically heterogeneous group. Many ataxia classifications have been proposed, however, the current consensus is to first characterize them according to their mode of transmission. Hereditary ataxias as a whole have a prevalence of 6/100 000, with variable estimation between country and region. In the Province of Quebec where the French Canadian genetic pool can be seen has a mosaic of regional gene pools there is clear differences in local variation in the prevalence of different ataxias. Acadia is also a French Canadian region with a history of many founder effects and a higher prevalence for certain hereditary ataxias. We recruit 8 French Canadian families from Quebec and with genealogical links with Acadia in which 10 cases manifest a presumably relatively mild autosomal recessive spastic ataxia of unknown etiology. The shared phenotype and Acadian background raised the possibility that they suffered from a new form of ataxia with a founder effect. To identify the mutated gene causing this ataxia, the individuals recruited were genotyped. By homozygosity mapping, a region of 2,5 Mb was identified in one family on chromosome 17p13. A literature review established that in 2007 four North Africans families segregating also a mild spastic ataxia were linked to the same locus on chromosome 17. To support our hypothesis that our patients were carrier of the same founder mutation we look closer at their haplotype in the region. We defined an interval of 200kb (70 SNP) between markers rs9900036 and rs7222052 shared by all affected cases. The two most promising gene in the interval were sequenced. No mutation was found in SLC25A11 and KIF1C. Thereafter a linkage analysis by LOD score excluded the candidate interval of 200 kb in the majority of our families. We conclude that even if in one family exists a large homozygous region on chromosome 17, the lack of informative SNP in the 200 kb region was responsible for the apparent sharing rather than they shared a common mutation. Further work will be necessary to identify the mutate gene causing the ataxia presentation in these cases of mild spastic ataxia.

Page generated in 0.0704 seconds