• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 28
  • 11
  • 9
  • 4
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 82
  • 33
  • 30
  • 29
  • 27
  • 17
  • 14
  • 11
  • 10
  • 10
  • 9
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Elucidating the role of BCL6 in helper T cell activation, proliferation, and differentiation

Hollister, Kristin N. January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The transcriptional repressor BCL6 has been shown to be essential for the differentiation of germinal center (GC) B cells and follicular T helper (TFH) cells. The interaction of TFH and GC B cells is necessary for the development of high affinity antibodies specific for an invading pathogen. Germline BCL6-deficient mouse models limit our ability to study BCL6 function in T cells due to the strong inflammatory responses seen in these mice. To overcome this, our lab has developed a new BCL6 conditional knockout (cKO) mouse using the cre/lox system, wherein the zinc finger region of the BCL6 gene is flanked by loxP sites. Mating to a CD4-Cre mouse allowed us to study the effects of BCL6 loss specifically in T cells, without the confounding effects seen in germline knockout models. Using this cKO model, we have reaffirmed the necessity of BCL6 for TFH differentiation, including its role in sustained CXCR5 surface expression, a signature marker for TFH cells. This model also allowed us to recognize the role of BCL6 in promoting the expression of PD-1, another key surface marker for TFH cells. Without BCL6, CD4+ T cells cannot express PD-1 at the high levels seen on TFH cells. Our discovery of DNMT3b as a target for BCL6 suggests BCL6-deficient T cells have increased DNA methyltransferase activity at the PD-1 promoter. This data establishes a novel pathway for explaining how BCL6, a transcriptional repressor, can activate genes. Experiments with the BCL6 cKO model have also established a role for BCL6 in naïve CD4+ T cell activation. Furthermore, we did not observe increased differentiation of other helper T cell subsets, in contrast to what has been reported elsewhere with germline BCL6-deficient models. Unexpectedly, we found decreased T helper type 2 (Th2) cells, whereas mouse models with a germline mutation of BCL6 have increased Th2 cells. These results indicate that BCL6 activity in non-T cells is critical for controlling T cell differentiation. Finally, using an HIV-1 gp120 immunization model, we have, for the first time, shown BCL6-dependent GCs to be limiting for antibody development and affinity maturation in a prime-boost vaccine scheme.
72

Raný embryonální vývoj a morfogeneze vybraných orgánových soustav redií a cerkárií motolice Fascioloides magna. / Early embryonal development and morphogenesis of selected organ systems of the rediae and cercariae of Fascioloides magna.

Pankrác, Jan January 2014 (has links)
Fascioloides magna (giant liver fluke) is a digenetic trematode with two-host life cycle and high veterinary importancy. Typical definitive host is a deer (Cervidae), but many other species from different families can be accidentally infected, for example sheep, goat or cattle. Very important role in the life cycle of F. magna has the first host - fresh water snail of the family Lymnaeidae. Three different life stages of F. magna, two of them with ability of reproduction - sporocysts and rediae develop in the body of snail. The third stage - cercaria is produced by rediae. Cercariae are able to escape from the snail, encyst and become infective for the definitive host. Since the second half of the 19th century many researchers studied the development of particular stages in the first intermediate host, but many characteristics of this process are still not fully understood. This thesis should reveal some of unanswered questions concerning to the reproduction and ontogenetic development of trematodes, which is presented on the examples of three organ systems - muscles, nerves and excretory system of rediae and cercariae of F. magna.
73

Fondements mathématiques de la maturation d’affinité des anticorps / Mathematical foundations of antibody affinity maturation

Balelli, Irène 30 November 2016 (has links)
Le système immunitaire adaptatif est capable de produire une réponse spécifique contre presque tous le pathogènes qui agressent notre organisme. Ceci est dû aux anticorps qui sont des protéines secrétées par les cellules B. Les molécules qui provoquent cette réaction sont appelées antigènes : pendant une réponse immunitaire, les cellules B sont soumises à un processus d’apprentissage afin d’améliorer leur capacité à reconnaitre un antigène donne. Ce processus est appelé maturation d’affinité des anticorps. Nous établissons un cadre mathématique très flexible dans lequel nous définissons et étudions des modelés évolutionnaires simplifies inspirés par la maturation d’affinité des anticorps. Nous identifions les éléments constitutifs fondamentaux de ce mécanisme d’évolution extrêmement rapide et efficace : mutation, division et sélection. En commençant par une analyse rigoureuse du mécanisme de mutation dans le Chapitre 2, nous procédons à l’enrichissement progressif du modelé en ajoutant et analysant le processus de division dans le Chapitre 3 ,puis des pressions sélectives dépendantes de l’affinité dans le Chapitre 4. Notre objectif n’est pas de construire un modèle mathématique très détaillé et exhaustif de la maturation d’affinité des anticorps, mais plutôt d’enquêter sur les interactions entre mutation, division et sélection dans un contexte théorique simplifie. On cherche à comprendre comment les différents paramètres biologiques influencent la fonctionnalité du système, ainsi qu’à estimer les temps caractéristiques de l’exploration de l’espace d’états des traits des cellules B. Au-delà des motivations biologiques de la modélisation de la maturation d’affinité des anticorps, l’analyse de ce processus d’apprentissage nous a amenée à concevoir un modèle mathématique qui peut également s’appliquer à d’autres systèmes d’évolution, mais aussi à l’étude de la propagation de rumeurs ou de virus. Notre travail théorique s’accompagne de nombreuses simulations numériques qui viennent soit l’illustrer soit montrer que certains résultats demeurent extensibles a des situations plus compliquées. / The adaptive immune system is able to produce a specific response against almost any pathogen that could penetrate our organism and inflict diseases. This task is assured by the production of antigen-specific antibodies secreted by B-cells. The agents which causes this reaction are called antigens: during an immune response B-cells are submitted to a learning process in order to improve their ability to recognize the immunizing antigen. This process is called antibody affinity maturation. We set a highly flexible mathematical environment in which we define and study simplified mathematical evolutionary models inspired by antibody affinity maturation. We identify the fundamental building blocks of this extremely efficient and rapid evolutionary mechanism: mutation, division and selection. Starting by a rigorous analysis of the mutational mechanism in Chapter 2, we proceed by successively enriching the model by adding and analyzing the division process in Chapter 3 and affinity-dependent selection pressures in Chapter 4. Our aim is not to build a very detailed and comprehensive mathematical model of antibody affinity maturation, but rather to investigate interactions between mutation, division and selection in a simplified theoretical context. We want to understand how the different biological parameters affect the system’s functionality, as well as estimate the typical time-scales of the exploration of the state-space of B-cell traits. Beyond the biological motivations of antibody affinity maturation modeling, the analysis of this learning process leads us to build a mathematical model which could be relevant to model other evolutionary systems, but also gossip or virus propagation. Our method is based on the complementarity between probabilistic tools and numerical simulations.
74

Role of the CBL Family of E3-Ubiquitin Ligases in the Humoral Immune Response

Li, Xin 04 1900 (has links)
No description available.
75

Exploring Transcriptional Heterogeneity in the Postnatal SVZ / Explorer l'hétérogénéité transcriptionnelle dans la SVZ postnatale

Zweifel, Stefan 28 March 2018 (has links)
Une activité germinale persiste après la naissance dans des niches spécialisées du cerveau des mammifères, à savoir le gyrus denté de l'hippocampe et la zone sous-ventriculaire (SVZ) bordant le ventricule latéral. Les cellules souches neurales (NSC) de la SVZ postnatale se différencient en progéniteurs transitoires qui vont générer des neuroblastes migrant à travers la voie de migration rostrale vers le bulbe olfactif, où ils se différencient en neurones. La SVZ génère également des progéniteurs gliaux qui se dispersent dans le parenchyme voisin. Les travaux récents auxquels j'ai participé soulignent la nature hétérogène de la SVZ postnatale, composée de différents microdomaines générant des lignées neurales distinctes. Les objectifs de mon travail de thèse ont permis de : 1) développer de nouveaux moyens pour explorer l'hétérogénéité de la SVZ; et 2) d'identifier et d'étudier le rôle d'un facteur de transcription exprimé par une sous population des NSCs de la SVZ. Objectif 1: La SVZ est une région hautement complexe et irrégulière dans laquelle une forte activité germinale persiste après la naissance. Le caractère hétérogène de la SVZ est évident et des études récentes ont généré une très grande base de données de transcrits, qui sont différentiellement exprimés entre les microdomaines. Cependant, un outil approprié pour l'analyse rapide du niveau d'expression d'une protéine d'intérêt, le long des axes rostro-caudal et dorso-ventral de la SVZ est toujours manquant et nécessaire. Par conséquent, j'ai développé "FlashMap", un logiciel semi-automatique qui permet une analyse rapide des niveaux d'expression de protéines dans le SVZ, basé sur des mesures de densité optique après immunohistochimie. "FlashMap" génère des cartes thermiques facilement lisibles en deux dimensions, qui peuvent être superposées avec précision aux reconstructions tridimensionnelles du système ventriculaire pour une visualisation spatiale fine et rapide. Cette nouvelle approche accélérera la recherche sur la régionalisation de la SVZ, en permettant l'identification de marqueurs (e.g. facteurs de transcription) exprimés dans des régions discrètes de la SVZ. Objectif 2: J'ai utilisé des approches de transcriptomique et de « fate mapping » des NSCs pour étudier la relation entre l'expression régionale de facteurs de transcription et leur différenciation dans des lignées neurales distinctes. Mes résultats supportent un amorçage précoce des NSCs à produire différents types cellulaires en fonction de leur localisation spatiale dans la SVZ. Nos données identifient Hopx comme un marqueur d'une sous population de NSCs qui génère principalement des astrocytes. De façon intéressante, la manipulation de l'expression de Hopx montre des effets mineurs sur l'astrogénèse, mais entraîne des changements marqués quant au nombre de NSCs et de leur descendance. Dans son ensemble, Mes résultats mettent en évidence à la fois une hétérogénéité spatiale des NSCs postnatales ainsi que leur amorçage précoce à produire des types cellulaires distincts / Germinal activity persists in the postnatal mammalian brain in specialized niches, namely the dentate gyrus of the hippocampus and the subventricular zone (SVZ) surrounding the lateral ventricle. Neural stem cells (NSCs) of the postnatal SVZ differentiate into transient amplifying progenitors that will generate neuroblasts migrating through the rostral migratory stream, into the olfactory bulb, where they differentiate into neurons. The SVZ additionally generates glial progenitors that invade the nearby parenchyma. Recent work to which I have participated, highlights the heterogeneous nature of the postnatal SVZ in respect to different microdomains generating distinct neural lineages. The objectives of my PhD work were twice: 1) to develop new means to explore the heterogeneity of the SVZ; and 2) to identify transcription factors expressed by subpopulations of NSCs of the SVZ and acting in their differential specification. Objective 1: The SVZ is a highly complex and irregular region of ongoing postnatal germinal activity. The heterogeneous character of the SVZ is evident and recent studies generated enormous datasets of transcripts, which are differentially expressed between divergent microdomains. However, an appropriate tool for fast analysis of the protein level along the full rostro-caudal and dorso-ventral extend of the SVZ is still missing. Therefore, I developed “FlashMap”, a semi-automatic software that allows rapid analysis of protein levels in the full SVZ, based on optical density measurements after immunohistochemistry. “FlashMap” generates easy readable heatmaps in two dimensions, which can be accurately superimposed on three-dimensional reconstructions of the ventricular system for rapid spatial visualization and analysis. This new approach will fasten research onto SVZ regionalization, by guiding the identification of markers, such as transcription factors expressed in specific SVZ microdomains. Objective 2: I used transcriptomic as well as fate mapping approaches to investigate the relation between regional expression of transcription factors by NSCs and their acquisition of distinct neural lineage fates. Our results support an early priming of NSCs to produce defined cell types depending of their spatial location in the SVZ and identify Hopx as a marker of a subpopulation biased to generate astrocytes. Interestingly, manipulation of Hopx expression showed minor effects on astrogenesis, but resulted in marked changes in the number of NSCs and of their progenies. Taken together, our results highlight transcriptional and spatial heterogeneity of postnatal NSCs, as well as their early priming toward specific lineages and suggest a role for Hopx in the evolution of SVZ germinal activity
76

The role of the kinetochore in chromosome segregation during Meiosis I

Turrin, Evelyne 12 1900 (has links)
La ségrégation des chromosomes est un processus complexe permettant la division égale du matériel génétique entre les cellules filles. Contrairement aux cellules somatiques, ce processus est sujet à des erreurs dans les cellules germinales telles que les ovocytes. Lorsque des erreurs surviennent lors de la ségrégation des chromosomes durant la méiose cela peut conduire à une aneuploïdie. L’aneuploïdie est la présence d’un nombre incorrect de chromosomes dans une cellule et est connue pour causer l’infertilité et des arrêts de grossesses chez l’humain. L’incidence de l’aneuploïdie augmente avec l’âge maternel (1). Le kinétochore est une structure cellulaire impliqué dans la ségrégation des chromosomes. Il est composé de plus de 100 protéines et se situe entre les microtubules et les centromères. Les microtubules se lient aux kinétochores, et ces derniers s’attachent sur les centromères afin de séparer les chromosomes homologues durant la méiose et les chromatides des sœurs pendant la mitose (1–3). Dans les cellules somatiques, cette structure est bien connue (2). Pourtant, moins d’informations sont connues à dans l’ovocyte de mammifère en développement au cours de la méiose I (3,4). Ce projet vise à étudier le rôle du kinétochore durant la ségrégation des chromosomes dans l’ovocyte de souris en développement. Plus spécifiquement, l’assemblage, le désassemblage, la dynamique et la tension des protéines du kinétochore seront évalués. Ce projet permettra de mieux comprendre le rôle du kinétochore durant la méiose I, ses implications durant la séparation des chromosomes, et éventuellement ses implications dans l’aneuploïdie. / Chromosome segregation is an intricate process in dividing genetic material equally between daughter cells. This process, unlike in somatic cells, is error prone in germ cells like the oocyte. When errors occur during meiosis in segregating chromosomes, aneuploidy results when the cell has an incorrect number of chromosomes. This can result in infertility and birth defects in human reproduction. The incidences of aneuploidy are also seen to increase with increasing maternal age (1). The kinetochore is a cellular structure at the heart of chromosome segregation. It is composed of more than 100 proteins and is located between the microtubules and the centromeres. The microtubules attach onto the kinetochores, which themselves attach onto the centromeres, in order to pull the homologous chromosomes apart during meiosis and the sister chromatids during mitosis (1–3). Much is known about this multi-protein structure in somatic cells (2). Yet, very little is known about this in the developing mammalian oocyte during Meiosis I (1,3,4). This project aims to investigate the role of the kinetochore in chromosome segregation in a developing mouse oocyte. More specifically, kinetochore protein assembly, disassembly, dynamics and tension will be assessed. This project will achieve a better understanding of the kinetochore’s role in Meiosis I, its implications in chromosome segregation in a developing mouse oocyte, and how it may be involved in aneuploidy.
77

Immune mechanisms controlling angioimmunoblastic T cell lymphoma progression

Witalis, Mariko 08 1900 (has links)
Le lymphome angioimmunoblastique à cellules T (AITL) est un lymphome périphérique à cellules T agressif dont les symptômes sont la lymphadénopathie et l'hypergammaglobulinémie. Actuellement, les patients atteints du AITL ont des options de thérapeutiques limitées et des résultats cliniques défavorables, avec un taux de survie sur 5 ans d'environ 30%. Les cellules tumorales du AITL proviennent de cellules T CD4+ appelées cellules T auxiliaires folliculaires (Tfh). Les cellules Tfh sont essentielles dans le centre germinatif (GC), où elles facilitent l'expansion et la différentiation des cellules B en plasmocytes. Cette fonction d'aide est soutenue par de nombreuses protéines dérivées des cellules Tfh et des programmes de transcription qui pourraient aussi fonctionner dans les cellules tumorales du AITL. Par conséquent, la perturbation des principaux mécanismes de signalisation soutenant l'identité des cellules Tfh et leurs interactions avec les cellules B pourrait inhiber la croissance du AITL. Des études ont démontré que les cellules hyperactives de type Tfh provoquent une accumulation de cellules immunitaires telles que les cellules B, les plasmocytes et les macrophages dans les tumeurs. Cependant, le microenvironnement du AITL n'a pas été bien étudié et il n'a pas été vérifié si certaines cellules immunitaires pourraient être utilisées pour arrêter la croissance de la tumeur. Bien que l’on trouve des cellules Tfh circulantes dans l’AITL humain, le taux de propagation peut varier d’un patient à l’autre. Ainsi, une possibilité est la présence de mécanismes de surveillance immunitaire s'opposant à la progression de la tumeur. En accord avec cette hypothèse, un signal positif pour la phagocytose nommé SLAMF7 (contrebalancé par la voie inhibitrice CD47-SIRPα) est exprimé dans un sous-ensemble de patients atteints du AITL. Toutefois, la corrélation entre les différents niveaux d'expression du SLAMF7 et l'amélioration des résultats pour les patients n'a pas été étudiée. En utilisant des souris Roquinsan/+, qui développent spontanément l’AITL, nous avons étudié le rôle des mécanismes de signalisation immunitaire dans les cellules tumorales de type Tfh et du microenvironnement tumoral. Nous avons cherché à inhiber les protéines et les voies de signalisation typiques des cellules Tfh dans les tumeurs afin d'évaluer la valeur thérapeutique potentielle. Nous avons aussi étudié le rôle de la phagocytose dépendante des macrophages dans le contexte SLAMF7 et comment la modulation de la signalisation de CD47-SIRPα peut améliorer l'efficacité de la phagocytose des cellules tumorales. Notre hypothèse centrale est qu'en supprimant les programmes fondamentaux des cellules Tfh ou en favorisant l'élimination phagocytaire des cellules tumorales de type Tfh, nous pouvons favoriser la régression de la tumeur. Nous avons démontré que les tumeurs AITL nécessitent des protéines d’identité des cellules Tfh essentielles telles que le facteur de transcription Bcl6 et la protéine adaptatrice SAP, ainsi que la communication entre les cellules T et B (T-B). Même en l'absence de GC classiques, les cellules tumorales de type Tfh ont apporté un soutien aux cellules B. Cela est démontré par des titres élevés d'IgG et l'accumulation de cellules précurseurs des plasmocytes dans les tumeurs. Nous avons trouvé des preuves de l'opposition entre la surveillance immunitaire et l'évasion au sein des tumeurs de type AITL, car les cellules Tfh augmentent l’expression de la molécule inhibitrice CD47 tandis que les macrophages stimulent le niveau de SLAMF7. Les cellules de type AITL ont été phagocytées plus efficacement in vitro quand la signalisation du CD47 était bloquée. En résumé, nous démontrons que les voies de signalisation importantes pour l'identité des cellules Tfh et la communication entre les cellules T et B sont essentielles pour la progression de l’AITL et suggèrent qu’une surveillance immunitaire continue par les macrophages peut influencer l’évolution de la maladie. Des études futures pourraient explorer la possibilité de combiner des inhibiteurs de l'activité des cellules Tfh ou T-B avec des médicaments qui stimulent l'activité phagocytaire antitumorale pour améliorer l'efficacité thérapeutique du traitement. / Angioimmunoblastic T cell lymphoma (AITL) is an aggressive peripheral T cell lymphoma manifesting with symptoms such as generalized lymphadenopathy and hypergammaglobulinemia. Currently, AITL patients have limited treatment options and poor clinical outcomes with a 5-year survival rate around 30%. AITL tumor cells derive from a subset of CD4+ T cell, the T follicular helper (Tfh) cell. Tfh cells are essential in germinal centers (GC), where they facilitate B cell expansion and differentiation into plasma cells. This helper function is supported by numerous Tfh cell-derived proteins and transcriptional programs which may still be operational in AITL tumor cells. Therefore, disrupting key signaling mechanisms sustaining Tfh cell identity and their ability to interact with B cells could inhibit AITL tumor growth. Studies have demonstrated that these hyperactive Tfh-like cells lead to the accumulation of immune cell subsets such as B cells, plasma cells, and macrophages within tumor lymph nodes. Nevertheless, the AITL tumor microenvironment itself has not been well-studied and whether some immune cells could be harnessed to impede tumor growth has not been tested. In human AITL, although circulating Tfh cells have been reported, the rate of tumor spreading can vary between patients. As such, one possibility is the presence of immune surveillance mechanisms opposing tumor progression. In line with this idea, SLAMF7, a positive signal for macrophage-mediated phagocytosis (counterbalanced by the inhibitory CD47-SIRPα pathway), is expressed in a subset of AITL patients. Despite this, whether differing levels of SLAMF7 expression correlates with improved patient outcomes has not been investigated. Using Roquinsan/+ mice, a spontaneous AITL-like mouse model, we addressed the role of immune signaling mechanisms within Tfh-like tumor cells and the surrounding tumor microenvironment that would promote tumor regression. First, we aimed to inhibit signature Tfh cell proteins and downstream signaling pathways in developed AITL-like tumors to evaluate potential therapeutic value. Second, we investigated the role of macrophage-mediated phagocytosis in the context of SLAMF7 and how modulating CD47-SIRPα signaling may enhance the efficiency of AITL tumor cell engulfment. Our central hypothesis is that by removing fundamental Tfh cell supporting programs from tumor cells or by promoting the phagocytic removal of Tfh-like tumor cells we can favour tumor regression and impair future growth. Through this work, we demonstrated that AITL-like tumors continuously require critical Tfh cell identity proteins such as transcription factor Bcl6 and adaptor protein SAP, as well as T cell-B cell (T-B) crosstalk. Importantly, despite the absence of conventional GCs, Tfh-like tumor cells provided functional support to B cells as evidenced by elevated IgG titers and accumulation of plasma cell precursors in tumors. We also found evidence of opposition between immune surveillance and evasion within AITL-like tumors as Tfh-like cells upregulated inhibitory CD47 levels while macrophages increased expression of prophagocytic SLAMF7. Moreover, AITL-like tumor cells were more efficiently phagocytosed in vitro when CD47 signaling was blocked. Taken together, we demonstrate that pathways important for Tfh cell identity and T-B communication are critical for AITL-like disease progression and suggest that ongoing macrophage-mediated immune surveillance may influence disease outcomes. Future studies may explore combining inhibitors of Tfh cell activity or T-B crosstalk along with drugs which boost antitumor phagocytic activity to further improve the therapeutic efficacy of treatment.
78

Caractérisation de la réponse adaptative humorale contre le streptocoque du groupe B

Gaudreau, Annie 07 1900 (has links)
Le streptocoque du groupe B (GBS) est un agent causant des septicémies et des méningites chez les nouveaux nés et chez les adultes. Une réaction sérologique dirigée contre la capsule polysaccharidique (CPS) permet de différencier les 10 sérotypes de GBS, dont le sérotype III qui est le plus fréquemment isolé en cas de méningite. Actuellement l’efficacité de l’unique traitement disponible, l’antibioprophylaxie intrapartum, est controversée. Dans l’optique d’élargir les options de prévention, cette étude vise à mieux comprendre les interactions entre GBS III et le développement de la réponse adaptative, sujet qui est peu documenté. Cette étude a évalué, par cytométrie en flux (FACS), les sous-populations des lymphocytes B (LB) spléniques impliquées suite à l’infection systémique de GBS III dans un modèle in vivo. De plus, la réponse humorale contre GBS III et contre la CPS III purifiée ainsi que la formation des centres germinatifs (GCs) spléniques dans un contexte de multiples infections par GBS ont été évalués. Les résultats suggèrent que la première infection stimule la production d’anticorps contre GBS III mais peu contre sa CPS. De plus, GBS III activerait la différenciation des LB et induirait la formation des GCs liée au déclenchement d’une réponse mémoire permettant un meilleur contrôle lors des infections subséquentes. Malgré sa faible immunogénicité, la CPS ne semblerait pas interférer avec le développement de l’immunité adaptative humorale contre la bactérie. La production d’anticorps contre GBS III qui implique la commutation de classe serait principalement produite contre des épitopes différents de ceux composant la CPS III. / Group B Streptococcus (GBS) is an agent of septicemia and meningitis in newborns but also in adults. A serological reaction directed against the polysaccharide capsule (CPS) allows to differentiate 10 GBS serotypes, including serotype III which is the most frequently isolated in cases of meningitis. Currently the effectiveness of the only available treatment, intrapartum antibiotic prophylaxis, is controversial. To improve prevention strategies, this study aims to better understand the interactions between GBS and the development of the adaptive response, a subject that is poorly documented. This study evaluated, by flow cytometry (FACS), the splenic subpopulations of B lymphocytes (LB) involved following systemic GBS infection in an in vivo model. This study also evaluated the serum anti-GBS antibody response and against its purified capsule as well as the formation of splenic germinal centers (GCs) in the context of multiple GBS infections. Results suggest that the first infection stimulates the production of antibodies against GBS III but little against its capsule. Furthermore, results suggest that GBS activates B cell differentiation by inducing the production of GCs, which are linked to triggering a memory response allowing better control in subsequent infections. Despite its low immunogenicity, the CPS does not appear to interfere with the development of adaptive humoral immunity against the bacteria. Therefore, the production of antibodies against GBS III, involving class switching, would recognize different epitopes from those found on its capsule.
79

The SMURF2-YY1-C-MYC Axis in the Germinal Center Reaction and Diffuse Large B Cell Lymphoma: A Dissertation

Trabucco, Sally E. 27 June 2016 (has links)
Diffuse large B cell lymphoma (DLBCL) is the most common non-Hodgkin’s lymphoma. Patients who fail conventional therapy (~50%) have a poor prognosis and few treatment options. It is essential to understand the underlying biological processes, the progression of the disease, and utilize this information to develop new therapeutics. DLBCL patients with high C-MYC expression have a poor prognosis and new therapeutics for these patients are needed. This thesis describes work testing the hypothesis that JQ1, which can indirectly inhibit C-MYC in some tumors, can be used as an effective treatment for DLBCL. Some tumors have an unknown mechanism causing high C-MYC expression, leading me to investigate the underlying mechanisms. YY1 is a transcriptional regulator of c- Myc and has been implicated in DLBCL and as a potential regulator of the germinal center (GC) reaction. DLBCL arises from GC cells or post-GC cells. I tested the hypothesis that YY1 regulates the GC reaction. SMURF2 is an E3-ubiquitin ligase for YY1 and a tumor suppressor for DLBCL. I was interested in examining the mechanism underlying the suppression of DLBCL by SMURF2 leading to the hypothesis that SMURF2 regulates the GC. This thesis shows JQ1 leads to cell death and cellular senescence in human DLBCL cells. I conclude that BRD4 inhibition by JQ1 or derivatives could provide a new therapeutic avenue for DLBCL patients. I also show loss of YY1 perturbs the GC by decreasing the dark zone and increasing apoptosis. Finally I show modulation of SMURF2 does not affect the GC, suggesting SMURF2 utilizes a different mechanism to act as a tumor suppressor and may not modulate YY1 in the context of the GC.
80

Étude de l’impact de la variabilité génétique sur les aspects cellulaires de la réponse humorale

Aubin, Anne-Marie 08 1900 (has links)
La réponse immunitaire de type humorale se déclenche suivant certaines infections virales et bactériennes de même que suivant une immunisation. Au niveau cellulaire, ce type de réponse favorise la formation de petites structures, nommées centres germinatifs (CG), qui se développeront dans les organes lymphoïdes secondaires (OLS) tels que la rate et les ganglions. Ces CG sont orchestrés par la présentation des antigènes étrangers par les cellules dendritiques et les cellules dendritiques folliculaires (FDC), aux cellules T et B respectivement, ainsi que par des interactions complexes survenant entre ces lymphocytes T et B. Suivant ce processus, les lymphocytes B quittant les CG se différencieront soient en plasmocytes sécréteurs d’anticorps de fortes affinités ou en cellules B mémoires qui assureront une protection lors d’une seconde exposition face à un antigène étranger ayant précédemment été rencontré. Plusieurs évidences suggèrent que la qualité de la réponse humorale est influencée par des variants génétiques. Par exemple, des études quantifiant les titres d’anticorps suivant la vaccination ont observé que ces titres variaient en fonction de différents groupes ethniques. Toutefois, malgré ces évidences, la contribution de la génétique quant à la variation des aspects cellulaires de la réponse humorale demeure incomplète. En utilisant douze lignées de souris génétiquement éloignées, nous avons donc évalué l'impact de la variabilité génétique sur les aspects cellulaires de cette réponse humorale, et ce, à l'état d'équilibre et suivant l’immunisation avec un antigène étranger. Pour ces deux conditions, nous avons quantifié, par cytométrie en flux, le nombre ainsi que la composition cellulaire (cellules B, plasmocytes et cellules T auxiliaires folliculaires) des CG contenus dans plusieurs OLS ainsi que dans la moelle osseuse des différentes lignées de souris. Après immunisation, le positionnement cellulaire au sein des CG de la rate a également été évalué par immunofluorescence. Nos résultats indiquent que le nombre et la taille des CG après immunisation ainsi que la composition cellulaire de ces CG à l’état d’équilibre et suivant l’immunisation varient entre les différentes lignées de souris à l’étude. Comme les douze lignées de souris ont été soumises aux mêmes conditions, ces résultats suggèrent que les variants génétiques, étant différents d’une lignée de souris à une autre, sont responsables des variations que nous avons observées au niveau des aspects cellulaires de la réponse humorale. Ce projet permettant de mieux comprendre l’impact de la variabilité génétique sur certains aspects de la réponse humorale pourrait ultimement mener à une amélioration des approches vaccinales chez les individus répondant moins bien à un certain type de vaccination. / The humoral immune response is triggered following certain viral and bacterial infections as well as following immunization. At the cellular level, this type of response promotes the formation of small structures, called germinal centers (GC), which develop into secondary lymphoid organs such as the spleen and lymph nodes. These GC are orchestrated by the presentation of foreign antigens by dendritic cells and follicular dendritic cells (FDC), to T and B cells respectively, and by subsequent interactions between these T and B lymphocytes. Following this process, B cells leaving the GC will differentiate into high-affinity antibody-secreting plasma cells or memory B cells that will provide protection upon a second exposure to a previously encountered foreign antigen. There is some evidence to suggest that the quality of the humoral response is influenced by genetic variants. For example, studies quantifying antibody titers following vaccination have observed that these titers vary across different ethnic groups. However, despite this evidence, the contribution of genetics to the variation of the cellular aspects of the humoral responses remains incomplete. Using twelve genetically divergent mouse strains, we therefore evaluated the impact of genetic variability on the cellular aspects of this humoral response at steady state and following immunization with a foreign antigen. For these two conditions, we quantified, by flow cytometry, the number as well as the cellular composition (B cells, plasma cells and T follicular helper cells) of the GC contained in several SLO and in the bone marrow of the different mouse strains. After immunization, cell positioning within the GC of the spleen was also assessed by immunofluorescence. Our results indicate that the number and size of GC after immunization as well as the cellular composition of these GC at steady state and following immunization vary between the different mouse strains studied. As the twelve mouse strains were subjected to the same conditions, these results suggest that the genetic variants, being different from one mouse strain to another, are responsible for the variations that we observed in the cellular aspects of the humoral response. This project, which allows us to better understand the impact of genetic variability on some aspects of the humoral response, could ultimately lead to an improvement in vaccine approaches in individuals who respond less well to a certain type of vaccination.

Page generated in 0.1223 seconds