Spelling suggestions: "subject:"glacial"" "subject:"placial""
141 |
A floresta de Araucária em Monte Verde (MG): história sedimentológica, palinológica e isotópica desde o último máximo glacialSiqueira, Eliane de 12 November 2012 (has links)
A regiäo de Monte Verde (Camanducaia, MG) está sìtuada a 1500 m de altitude, na porção sul da serra da Mantiqueira. Alvéolos do relevo serrano, como o entroncamento dos córregos do cadete e da Minhoca com o rio Jaguari, junto à sua área urbana, propìciaram o acúmulo de sucessões métricas de sedimentos argilo-arenosos em condiçöes favoráveis à formação de material turfoso e à preservação de palinomorfos. Nesta área, o presente estudo reconstitui, a partir da integração dos registros palinológico, sedimentológico (granulometria e minerais pesados) e geoquímico/isotópico (C e N) de três testemunhos rasos (até 230 cm), a evoluçäo e os possíveis controles sedimentares e paleoclimáticos do cenário paleoflorístico no Quaternário tardio, com especial atençäo para a Floresta de Araucária. O contexto geral registrado nos testemunhos é de planície de inundação fluvial, com cobertura arbórea próxima, e influência varìável de fluxos de encosta. Na parte montante do vale do cadete, obtiveram-se idades compreendidas entre 38695 - 40522 anos cal A.P., em 220 cm de profundidade, e 2060 - 1880 anos cal 4.P., em 5 cm. Na parte inferior da coluna, até cerca de 16000 anos A.P., há indícios de aumento de distalidade para cima. Entre cerca de 16000 e 3500 anos A.P., evidencia-se redução da influência da matéria orgânica de plantas terrestres, em detrimento de algas, possivelmente em momento de abeÍura relativa da cobertura florestal. Os últimos 3500 anos seriam de restabelecimento da cobeÍura florestal, possivelmente já nos moldes da existente hoje, com redução gradual do aporte de areia. Mais a jusante do mesmo vale, as idades ficaram compreendidas entre 26764-26023 anos cal 4.P., em 210 cm de profundidade, e 2350 - 2150 anos cal A.P., em 10 cm, A parte inferior do intervalo, mais antiga que 20830-20370 anos cal A.P., é dominada por influência de áreas fontes locais, graníticas. Em 20000 anos A.P., fontes distais, metamórficas, passam a atuar, com aumento da influência de algas. Nos últimos 5000 a 6000 anos A.P., tem-se o readensamento da Floresta de Araucária, com manutenção de brejos, sob condiçöes climáticas frias e úmidas. Os resultados sugerem que as mudanças climáticas nos últimos 40 mil anos em Monte Verde não foram acentuadas a ponto de exercer grande impacto florístico e que houve predomínio de Araucaria e elementos associados a essa floresta durante todo intervalo estudado, sob condições climáticas frias e úmidas. / he Monte Verde region (Camanducaia, MG) is located in the southern portion of the Mantiqueira Range, with 1500 m of elevation. Relief alveoli, as the junction of cadete and Minhoca creeks with Jaguari River, sited close to the urban area, propitiated the accumulation of metric sucessions of sandy-mud sediments, under cond itions favorable to the formation of peat material and preservation of paìynomorphs. ln this area, the present study integrates palynological, sedimentological (grain size and heavy minerals) and geochemical/isotopic (C and N) records of three shallow cores (up to 230 cm deep) to reconstruct the evolution and possible sedtmentary and paleoclimatic controls of the Laie Quaternary paleofloristic scenario, with special emphasìs in the Araucaria Forest. The general sedimentary context recorded in the cores is a river floodplain close to tree cover areas, and with variable influence of slope flows. On the upstream Cadete valley, were obtained ages of 38695-40522 cal years BP, at the deep of 220 cm, and 2060-1880 cal years BP, at 5 cm. From the bottom of the column until about 16000 BP, there is evidence of increased distality upwards The time interval between about 16000 and 3500 yr BP shows a reduction in the influence of organic matter derived from terrestrial plants, to the detriment of algae, possibly in a moment of relative opening of the forest cover. The last 3500 years would be characterized by the restoration of forest cover, possibly similar to the existing today, with gradual reduction of the sand supply ln the downstream of the same valley, the ages vary from 26,764 fo 26,023 cal years BP, at 210 cm deep, to 2350 to 2150 cal years BP, at 10 cm. The lower part of the sedimentary column, older than 20830-20370 AP\' is dominated by the influence of local granitìc sources areas. ln 20000 years BP, distal metamorphic sources begin to act paralel with a increased influence of algae. over the last 5000-6000 years, a increase of Araucaria Forest is recorded, with maintenance of weflands under cold and wet climatic conditions. This results suggest that climate changes during the last 40 k years in Monte Verde region were not sufficient to exert great floristic impact. Araucaria and associated forest elements predominated during the whole studied interval, under cold and wet weather conditions.
|
142 |
Continental-scale characterization of molecular variation in quaking aspenCallahan, Colin M. 01 August 2012 (has links)
Quaking aspen (Populus tremuloides) has the largest natural distribution of any tree native to North America, ranging from Alaska through the breadth of Canada and south to mid-Mexico. The Laurentide ice sheet occupied most of the current range of P. tremuloides until the late Pleistocene epoch, so this species has undergone a significant, geologically recent range expansion. Surprisingly, range-wide patterns of genetic variation in P. tremuloides have never been described. Using a sample set representing the full longitudinal and latitudinal extent of the species distribution, I have conducted a phylogeographic analysis for P. tremuloides. Preliminary results comparing both nuclear and chloroplast DNA sequences revealed surprisingly low levels of divergence across the range. Because of this remarkably shallow genetic divergence among aspen populations, I used a set of rapidly-evolving molecular markers (microsatellites) to describe patterns of gene flow and diversity and to correlate those patterns with landscape features and histories. I analyzed eight microsatellite loci in 794 individuals from 30 sampling sites. From this multilocus data set, I identified pronounced genetic structuring across the range. Strikingly, sampling sites representing the southwestern portion of the range, the western United States and Mexico, form a distinct cluster. Sites within this southwestern cluster display dramatically reduced within-site genetic diversity but elevated regional genetic diversity, which suggests that populations in the southwestern portion of the range make up a stable edge persisting through multiple climate oscillations. Based on the uniqueness of the southwestern cluster and the climatic differences between the southwest and northern portions of the range, I propose that the southwestern cluster may represent a distinct ecotype. I also identified hotspots of diversity that correspond with potential refugia during the last glacial maximum but additional work is needed to refine these patterns. Further, my findings provide a solid foundation for a range of future studies on adaptive genetic and trait variation in this species.
|
143 |
Palaeoglaciology of the central Tibetan PlateauMorén, Björn January 2010 (has links)
<p>The glacial history of the Tibetan Plateau has long been a contentious topic with widely different reconstructions. For Tanggula Shan, an extensive mountain range on the central Tibetan Plateau, multiple glacial reconstruc- tions and studies on the glacial chronology have been presented. However, the glacial geomorphological record has been sparse resulting in insufficient data to fully infer the area’s palaeoglaciology. Focussing on four landform categories, glacial valleys, marginal moraines, hummocky terrain, and glacial lineations; a glacial geomorphological map was produced, using Landsat 7 ETM+ satellite imagery, SRTM digital elevation model, and Google Earth. This map, together with GIS analyses and available cosmogenic exposure and electron spin reso- nance ages from the study area, was used to investigate the extent of former glaciations. Cosmogenic exposure and electron spin resonance ages range from 18.4 ± 1.6 to 203.4 ± 33.2 ka (recalculated using the CRONUS calculator). The extent of the glacial footprint is restricted to the high mountain areas, and is similar in extent to earlier glacial reconstructions. This glacial footprint can tentatively be explained by a monsoonal influence in the southeast, with the influence diminishing to the northwest. Alternatively, the precipitation gradient might have resulted in cold-based ice in the west and warm-based ice in the east. These variations in ice regime could have left fewer traces of glaciation in the west, than in the east. There is no evidence supporting an ice sheet covering the entire Tibetan Plateau. Rather, the available data support a smaller ice field in the high mountain areas, with a maximum extent well before the Last Glacial Maximum.</p>
|
144 |
Diagenesis and Sequence Stratigraphy : Predictive Models for Reservoir Quality Evolution of Fluvial and Glaciogenic and Non-glaciogenic, Paralic DepositsKalefa, Mohamed January 2005 (has links)
<p>Development of a predictive model for the distribution of diagenetic alterations and related evolution of reservoir quality of sandstones was achieved by integrating the knowledge of diagenesis to sequence stratigraphy. This approach allows a better elucidation of the distribution of eogenetic alterations within sequence stratigraphy, because changes in the relative sea level induce changes to: (i) pore water chemistry, (ii) residence time of sediments under certain near-surface geochemical conditions, (iii) variations in the detrital composition, and (iv) amounts and type of organic matter.</p><p>This thesis revealed that eogenetic alterations, which are linked to sequence stratigraphy and have an impact on reservoir quality evolution, include formation of: (i) pseudomatrix and mechanically infiltrated clays in fluvial sandstones of the lowstand and highstand systems tracts (LST and HST, respectively), (ii) kaolinite in tide-dominated deltaic and foreshore-shoreface sandstones of HST, Gilbert-type deltaic sandstones of LST and fluvial deltaic sandstones of LST, (iii) kaolinite and mechanically infiltrated clays in sandstones lying below sequence boundary, (iv) K-feldspar overgrowths in fluvial deltaic LST, (v) glaucony towards the top of fluvial deltaic LST immediately below and at transgressive surface (TS) and in foreshore and shoreface transgressive systems tracts (TST) below parasequence boundaries (PB) and maximum flooding surface (MFS), (vi) framboidal pyrite and extensive cementation by calcite and dolomite in foreshore and shoreface and tide-dominated deltaic TST, and shoreface and tidal flat HST bioclastic-rich arenites particularly in the vicinity of PB, TS and MFS, (vii) pervasive cementation by iron oxide in shoreface-offshore and shoreface sandstones of TST immediately below the MFS, (viii) zeolites and palygroskite in shoreface sandstones of TST and HST, particularly above PB, and (ix) cementation by siderite in Gilbert-type deltaic sandstones of LST, tide-dominated deltaic and foreshore-shoreface sandstones of HST and in tide-dominated deltaic sandstones of TST, particularly at MFS. Moreover, this thesis revealed that the distribution of eogenetic alterations strongly control, and thus provide information for constraining the distribution patterns of mesogenetic alterations, such as illitization of mechanically infiltrated clays and dickitization of kaolinite, and hence of related reservoir quality evolution of sandstones during progressive burial.</p>
|
145 |
Diagenesis and Sequence Stratigraphy : Predictive Models for Reservoir Quality Evolution of Fluvial and Glaciogenic and Non-glaciogenic, Paralic DepositsKalefa, Mohamed January 2005 (has links)
Development of a predictive model for the distribution of diagenetic alterations and related evolution of reservoir quality of sandstones was achieved by integrating the knowledge of diagenesis to sequence stratigraphy. This approach allows a better elucidation of the distribution of eogenetic alterations within sequence stratigraphy, because changes in the relative sea level induce changes to: (i) pore water chemistry, (ii) residence time of sediments under certain near-surface geochemical conditions, (iii) variations in the detrital composition, and (iv) amounts and type of organic matter. This thesis revealed that eogenetic alterations, which are linked to sequence stratigraphy and have an impact on reservoir quality evolution, include formation of: (i) pseudomatrix and mechanically infiltrated clays in fluvial sandstones of the lowstand and highstand systems tracts (LST and HST, respectively), (ii) kaolinite in tide-dominated deltaic and foreshore-shoreface sandstones of HST, Gilbert-type deltaic sandstones of LST and fluvial deltaic sandstones of LST, (iii) kaolinite and mechanically infiltrated clays in sandstones lying below sequence boundary, (iv) K-feldspar overgrowths in fluvial deltaic LST, (v) glaucony towards the top of fluvial deltaic LST immediately below and at transgressive surface (TS) and in foreshore and shoreface transgressive systems tracts (TST) below parasequence boundaries (PB) and maximum flooding surface (MFS), (vi) framboidal pyrite and extensive cementation by calcite and dolomite in foreshore and shoreface and tide-dominated deltaic TST, and shoreface and tidal flat HST bioclastic-rich arenites particularly in the vicinity of PB, TS and MFS, (vii) pervasive cementation by iron oxide in shoreface-offshore and shoreface sandstones of TST immediately below the MFS, (viii) zeolites and palygroskite in shoreface sandstones of TST and HST, particularly above PB, and (ix) cementation by siderite in Gilbert-type deltaic sandstones of LST, tide-dominated deltaic and foreshore-shoreface sandstones of HST and in tide-dominated deltaic sandstones of TST, particularly at MFS. Moreover, this thesis revealed that the distribution of eogenetic alterations strongly control, and thus provide information for constraining the distribution patterns of mesogenetic alterations, such as illitization of mechanically infiltrated clays and dickitization of kaolinite, and hence of related reservoir quality evolution of sandstones during progressive burial.
|
146 |
Surface exposure dating of glacial deposits from the last glacial cycle : evidence from the Eastern Alps, the Bavarian Forest, the Southern Carpathians and the Altai Mountains /Reuther, Anne U. January 2007 (has links) (PDF)
Univ., Diss.--Regensburg, 2005.
|
147 |
Deglaciationen och högsta kustlinjen i norra Dalsland The deglaciation and the highest shoreline in northern Dalsland, western Sweden /Lind, Bo. January 1983 (has links)
Thesis (doctoral)--Chalmers tekniska högskola, 1983. / Errata slip inserted. Summary in English. Includes bibliographical references (p. 164-171).
|
148 |
A floresta de Araucária em Monte Verde (MG): história sedimentológica, palinológica e isotópica desde o último máximo glacialEliane de Siqueira 12 November 2012 (has links)
A regiäo de Monte Verde (Camanducaia, MG) está sìtuada a 1500 m de altitude, na porção sul da serra da Mantiqueira. Alvéolos do relevo serrano, como o entroncamento dos córregos do cadete e da Minhoca com o rio Jaguari, junto à sua área urbana, propìciaram o acúmulo de sucessões métricas de sedimentos argilo-arenosos em condiçöes favoráveis à formação de material turfoso e à preservação de palinomorfos. Nesta área, o presente estudo reconstitui, a partir da integração dos registros palinológico, sedimentológico (granulometria e minerais pesados) e geoquímico/isotópico (C e N) de três testemunhos rasos (até 230 cm), a evoluçäo e os possíveis controles sedimentares e paleoclimáticos do cenário paleoflorístico no Quaternário tardio, com especial atençäo para a Floresta de Araucária. O contexto geral registrado nos testemunhos é de planície de inundação fluvial, com cobertura arbórea próxima, e influência varìável de fluxos de encosta. Na parte montante do vale do cadete, obtiveram-se idades compreendidas entre 38695 - 40522 anos cal A.P., em 220 cm de profundidade, e 2060 - 1880 anos cal 4.P., em 5 cm. Na parte inferior da coluna, até cerca de 16000 anos A.P., há indícios de aumento de distalidade para cima. Entre cerca de 16000 e 3500 anos A.P., evidencia-se redução da influência da matéria orgânica de plantas terrestres, em detrimento de algas, possivelmente em momento de abeÍura relativa da cobertura florestal. Os últimos 3500 anos seriam de restabelecimento da cobeÍura florestal, possivelmente já nos moldes da existente hoje, com redução gradual do aporte de areia. Mais a jusante do mesmo vale, as idades ficaram compreendidas entre 26764-26023 anos cal 4.P., em 210 cm de profundidade, e 2350 - 2150 anos cal A.P., em 10 cm, A parte inferior do intervalo, mais antiga que 20830-20370 anos cal A.P., é dominada por influência de áreas fontes locais, graníticas. Em 20000 anos A.P., fontes distais, metamórficas, passam a atuar, com aumento da influência de algas. Nos últimos 5000 a 6000 anos A.P., tem-se o readensamento da Floresta de Araucária, com manutenção de brejos, sob condiçöes climáticas frias e úmidas. Os resultados sugerem que as mudanças climáticas nos últimos 40 mil anos em Monte Verde não foram acentuadas a ponto de exercer grande impacto florístico e que houve predomínio de Araucaria e elementos associados a essa floresta durante todo intervalo estudado, sob condições climáticas frias e úmidas. / he Monte Verde region (Camanducaia, MG) is located in the southern portion of the Mantiqueira Range, with 1500 m of elevation. Relief alveoli, as the junction of cadete and Minhoca creeks with Jaguari River, sited close to the urban area, propitiated the accumulation of metric sucessions of sandy-mud sediments, under cond itions favorable to the formation of peat material and preservation of paìynomorphs. ln this area, the present study integrates palynological, sedimentological (grain size and heavy minerals) and geochemical/isotopic (C and N) records of three shallow cores (up to 230 cm deep) to reconstruct the evolution and possible sedtmentary and paleoclimatic controls of the Laie Quaternary paleofloristic scenario, with special emphasìs in the Araucaria Forest. The general sedimentary context recorded in the cores is a river floodplain close to tree cover areas, and with variable influence of slope flows. On the upstream Cadete valley, were obtained ages of 38695-40522 cal years BP, at the deep of 220 cm, and 2060-1880 cal years BP, at 5 cm. From the bottom of the column until about 16000 BP, there is evidence of increased distality upwards The time interval between about 16000 and 3500 yr BP shows a reduction in the influence of organic matter derived from terrestrial plants, to the detriment of algae, possibly in a moment of relative opening of the forest cover. The last 3500 years would be characterized by the restoration of forest cover, possibly similar to the existing today, with gradual reduction of the sand supply ln the downstream of the same valley, the ages vary from 26,764 fo 26,023 cal years BP, at 210 cm deep, to 2350 to 2150 cal years BP, at 10 cm. The lower part of the sedimentary column, older than 20830-20370 AP\' is dominated by the influence of local granitìc sources areas. ln 20000 years BP, distal metamorphic sources begin to act paralel with a increased influence of algae. over the last 5000-6000 years, a increase of Araucaria Forest is recorded, with maintenance of weflands under cold and wet climatic conditions. This results suggest that climate changes during the last 40 k years in Monte Verde region were not sufficient to exert great floristic impact. Araucaria and associated forest elements predominated during the whole studied interval, under cold and wet weather conditions.
|
149 |
Palaeoglaciology of the central Tibetan PlateauMorén, Björn January 2010 (has links)
The glacial history of the Tibetan Plateau has long been a contentious topic with widely different reconstructions. For Tanggula Shan, an extensive mountain range on the central Tibetan Plateau, multiple glacial reconstruc- tions and studies on the glacial chronology have been presented. However, the glacial geomorphological record has been sparse resulting in insufficient data to fully infer the area’s palaeoglaciology. Focussing on four landform categories, glacial valleys, marginal moraines, hummocky terrain, and glacial lineations; a glacial geomorphological map was produced, using Landsat 7 ETM+ satellite imagery, SRTM digital elevation model, and Google Earth. This map, together with GIS analyses and available cosmogenic exposure and electron spin reso- nance ages from the study area, was used to investigate the extent of former glaciations. Cosmogenic exposure and electron spin resonance ages range from 18.4 ± 1.6 to 203.4 ± 33.2 ka (recalculated using the CRONUS calculator). The extent of the glacial footprint is restricted to the high mountain areas, and is similar in extent to earlier glacial reconstructions. This glacial footprint can tentatively be explained by a monsoonal influence in the southeast, with the influence diminishing to the northwest. Alternatively, the precipitation gradient might have resulted in cold-based ice in the west and warm-based ice in the east. These variations in ice regime could have left fewer traces of glaciation in the west, than in the east. There is no evidence supporting an ice sheet covering the entire Tibetan Plateau. Rather, the available data support a smaller ice field in the high mountain areas, with a maximum extent well before the Last Glacial Maximum.
|
150 |
Linking glacial erosion and rock type via spectral roughness and spatial patterns of fractures on glaciated bedrock in the Teton Range, Wyoming, USADodson, Zoey January 2018 (has links)
No description available.
|
Page generated in 0.0792 seconds