• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 294
  • 46
  • 33
  • 25
  • 17
  • 17
  • 17
  • 17
  • 17
  • 16
  • 15
  • 13
  • 8
  • 6
  • 5
  • Tagged with
  • 561
  • 129
  • 79
  • 71
  • 68
  • 63
  • 60
  • 60
  • 50
  • 50
  • 42
  • 42
  • 40
  • 37
  • 36
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

The long now: Re-framing prairie rivers

Workman, Trent W. 06 May 2016 (has links)
Spring flooding regularly occurs in the plain along the Assiniboine River’s low-lying terminus in eastern Manitoba as the river attempts to accommodate snowmelt drained from the central plains territory of North America. The annual insensitive response to the changing state of the river is a physical expression of competing understandings of time made manifest in the landscape. Can the consideration of time shift our understanding of flooding in the prairie context? How can a deep sense of time be expressed in our reaction to the design of the land? Shifting to thinking of a time-sensitive response to flooding, I aim to construct a hybrid cartography that addresses the relationship between observer and understanding fundamental to relevant critical projects in the landscape. This approach aims to understand the geographic and temporal context to reveal deep synchronicities ignored by rational approaches to both fluvial engineering and design. / May 2016
162

Numerical modelling of the Cordilleran ice sheet

Seguinot, Julien January 2014 (has links)
This doctoral dissertation presents a study of the glacial history of the North American Cordillera using numerical ice sheet modelling calibrated against field evidence. This area, characterized by the steep topography of several mountain ranges separated by large inter-montane depressions, was once covered by a large-scale ice mass: the former Cordilleran ice sheet. Because of the irregular topography on which the ice sheet formed, geological studies have often had only local or regional relevance, thus leaving the Cordilleran ice sheet least understood among Pleistocene ice sheets in terms of its extent, volume, and dynamics. Here, I present numerical simulations that allow quantitative reconstructions of the former ice sheet evolution based on approximated physics of glacier flow. These simulations show that the geometry of the Last Glacial Maximum Cordilleran ice sheet was largely controlled by sharp contrasts in regional temperature, precipitation, and daily temperature variability associated with the presence of mountain ranges. However, this maximum stage appears short-lived and out of balance with contemporaneous climate. During most of the simulated last glacial cycle, the North American Cordillera is characterized by an intermediate state of glaciation including isolated glaciers and ice caps covering major mountain ranges, the largest of which is located over the Skeena Mountains. The numerically modelled Cordilleran ice sheet appears in constant imbalance with evolving climate conditions, while the complexity of this transient response transcends that encapsulated in two-dimensional, conceptual models of ice sheet growth and decay. This thesis demonstrates the potential of numerical ice sheet modelling to inform on ice sheet history and former climate conditions over a glacial cycle, given that ice sheet models can be calibrated against field constraints. / <p>At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 4: Mansucript.</p>
163

A mass movement classification for the southern Drakensberg, South Africa

Hardwick, Devlyn 29 May 2013 (has links)
A thesis submitted to the Faculty of Science, University of the Witwatersrand, in fulfillment of the requirements for the degree of Doctor of Philosophy Johannesburg, 2012. / A variety of mass movement landforms occur in the southern Drakensberg, South Africa, and whilst a number of studies on individual landforms have been conducted, regional scale assessments of the Ukhahlamba Drakensberg Transfrontier Park have been relatively limited. Mass movement has been defined as the downward and outward movement of slope-forming material under the influence of a transporting agent such as water, air, ice or snow (Goudie, 2004). This includes landforms such as landslides, debris flows, terracettes, solifluction lobes and rockfall. Although two landslide risk assessments have been conducted in the region, one was site specific and focussed on shallow, translational slides (Bijker, 2001), whilst the other was at a much larger regional scale and focused on large palaeo-mass movements (Singh, 2008). Numerous international mass movement classifications have been developed over the years, and one of the primary aims of this research is to develop a classification for mass movement landforms within a southern African context. A number of mass movement landforms were identified, measured and mapped in the field to acquire a better understanding of how the landforms originate. This classification was then further adapted to facilitate the identification of mass movement landforms from orthophotos. Aerial photo interpretation techniques were used to map three terrace-type mass movement landforms and four shear-type mass movement landforms in the Garden Castle State Forest of the Ukhahlamba Drakensberg Transfrontier Park. A further level of detail was added to the classification by ascribing environmental conditions to the different landform types. A Geographic Information System was used to collate and generate spatial information which could be added to the landforms in the mass movement inventory. These were then analysed using univariate and multivariate statistical modelling. Histograms, as well as an area-weighted frequency distribution, were used to describe the landforms and then hierarchical partitioning was used to identify the environmental variables associated with each type of landform. One main environmental variable was identified for each type of mass movement. Logistic regression was then used to create probability maps for each type of landform. An average of 30% of the study area has a medium to very high likelihood of developing mass movements, although this percentage varies for each type, whilst rock movement deposits are predicted to occupy more than 80% of the study area. Gradient, altitude and lithology were selected most frequently by the statistical models as influencing landform distribution, whilst distance to a rock exposure had the strongest influence on the location of rock movement deposits. Aspect was selected least frequently by hierarchical partitioning which raises questions about the influence of aspect on valley asymmetry. Various models have been developed which describe slope development in the Drakensberg with reference to slope aspect, however the results of this study suggest that other environmental factors may be more important and that slope development is a complex process.
164

Interactions between glacial activity, dust-borne iron speciation, diatom productivity, and the biological pump

Shoenfelt, Elizabeth Marie January 2019 (has links)
Dust-borne iron plays an important role in modulating climate. Iron is a necessary micronutrient, crucial to growth of phytoplankton that fix atmospheric carbon dioxide into organic carbon. Bioavailable iron is relatively scarce in the oxygenated ocean due to the low solubility of oxidized iron, and it limits primary production in many ocean regions. Increased dust-borne iron reaching iron-limited regions is associated with lower atmospheric carbon dioxide, due to more complete utilization of new nitrogen (the biological pump). Since iron solubility in the ocean is low, most iron is in the solid phase, including particles and colloids from dust and insoluble iron oxyhydroxide minerals that precipitate when there is high dissolved iron not chelated by organic ligands. The chemical form (speciation) of iron greatly impacts its solubility, yet the mechanisms of solid-phase iron utilization by diatoms and the impact of solid-phase iron speciation on dust-borne iron bioavailability are not well known. Glacial activity has been associated with highly soluble minerals, but the impact of glacial activity on bioavailable iron supply has not previously been quantified. In this dissertation, I investigate the role of solid-phase dust-borne iron speciation on its bioavailability to iron-efficient diatoms, and its possible role in modulating climate through the efficiency of the biological pump in the Southern Ocean. In Chapter 1, I show that primary iron(II) silicates mobilized from bedrock through glacial physical weathering are more bioavailable than chemical weathering products such as iron(III)-rich iron oxyhydroxides and secondary clay minerals. In Chapter 2, I show that diatoms use solid-phase iron more efficiently when surface contact between the cell and particle is allowed, suggesting a mechanism of solid-phase iron utilization in addition to bulk solubility. In Chapter 3, I show that glacial activity increases the relative bioavailability of dust-borne iron reaching the Southern Ocean, by increasing the iron(II) silicate content. Finally, in Chapter 4, I present evidence that suggests physical weathering of iron(II)-rich bedrock controls the speciation and bioavailability of particulate iron across the globe. Thus, it is important to consider global and temporal changes in dust-borne iron speciation and the proximity of dust and phytoplankton cells when modeling carbon dioxide drawdown by iron fertilization of phytoplankton. It is also important to consider the relative importance of physical versus chemical weathering to understand iron fertilization on all timescales, and the relative importance of biotic and abiotic carbon dioxide drawdown.
165

Resolving chronological and temperature constraints on Antarctic deglacial evolution through improved dating methodology

Subt, Cristina 17 November 2017 (has links)
In order to determine the timing of Antarctic ice sheet retreat and advance during the Late Quaternary, various tools are used to measure the age of marginal marine sediments. Carbonate 14C dating is a well-established approach, but requires foraminiferal microfossils, shells or other carbonate materials that are rare in most Antarctic regions, and may also suffer from vital effects, which can result in variability of up to 500 years in living organisms. Bulk acid insoluble organic (AIO) 14C dates are frequently as an alternative, but this approach works best where high productivity and sedimentation rates reign, and not too well in condensed sequences where high proportions of detritus are present. Compound specific dating methods have also been employed, but these may still yield an average age from a mixture of components and require very large sample sizes. Alternate methods of applying a chronology have also been used, such as magnetic intensity dating, or regional correlation with well-dated cores, but these may not always provide accurate and precise dates. Here I present work, some published with co-authors, of progressive improvements of Ramped PyrOx 14C dating, which utilizes the thermochemical degradation of components within a bulk AIO sediment sample. This dissertation focuses on the study, improvement and application of advanced Ramped PyrOx techniques. These improvements include novel techniques, such as compositing and isotope dilution that I use to date sediments where the proportion of contemporaneously deposited carbon is very small relative to other detrital components, and maximize the accuracy of resulting dates while minimizing costs in precision from utilizing ultra-small fractions of the bulk sample. Ramped PyrOx 14C dating techniques allows us to generate chronologies for cores that would otherwise go undated. Furthermore, these techniques can be used to push the limits of radiocarbon dating not only to regions where accurate core chronologies have been difficult to come by, but also further back in time, into marine sediment horizons deposited at or before the last glacial maximum (LGM), where highly detrital material has precluded radiocarbon dating in the past. Wider use of these techniques can enable more coordinated a priori coring efforts to constrain regional glacial responses to rapid warming.
166

Late Pleistocene and Holocene glacier and climate change

Marcott, Shaun Andrew 05 May 2011 (has links)
This dissertation presents results from three studies that address major scientific questions in glacial geology and paleoclimatology for the late Pleistocene and Holocene using relatively new geochemical and statistical techniques. Each of the studies attempts to answer a longstanding question in the respective field using geochemical or statistical methods that have not been applied to the problem thus far. A longstanding question in glaciology is the nature and mechanism of the so- called "Heinrich events" of the last ~60 ka. These massive iceberg discharge events into the North Atlantic from the partial breakup of the Laurentide Ice Sheet are identified from distinct ice rafted debris and detrital carbonate layers in marine sediment cores. The mechanism associated with the initiation of these events is commonly thought to be related to internal ice sheet instabilities. However, Heinrich events consistently occur following a long cooling trend that culminates in an extreme cold event, thus suggesting a possible triggering mechanism by climate. Recent modeling work has proposed an oceanic mechanism associated with ocean warming, but no physical evidence has been made available to date. To test this ocean-warming hypothesis, we measured temperature sensitive trace metals and stable isotopes in benthic foraminifera from a sediment core collected in the western North Atlantic that spans the last six Heinrich events and compared our results to climate model simulations using CCSM3. Our results show subsurface warming occurred prior to or coeval with nearly all of the Heinrich events of the last ~60 ka, thus implicating subsurface ocean warming as the main trigger of these rapid breakups of the Laurentide Ice Sheet. In the field of glacial geology a longstanding question has been the timing of alpine glacial advances during the Holocene. A number of studies have interpreted several Holocene glacial advances in western North America, but age control is based largely on relative dating techniques, which have been shown to be in error by up to 10,000 yrs in some cases. Based on 124 ¹⁰Be surface exposure ages from twenty cirque moraines in ten mountain ranges across western North America, glacier were retreating from moraine positions during the latest Pleistocene or earliest Holocene and not throughout the Holocene epoch as previously assumed, thus requiring a refined interpretation of Holocene glacial activity in western North America and the associated climate forcing. In the field of paleoclimatology a question regarding how global temperature varied over the entirety of the Holocene epoch has remained to be answered for some time. While many temperature reconstructions exist for the last 2000 years, a full Holocene temperature stack does not exist, despite its potential utility of putting modern climate change into a full interglacial perspective. Based on a global composite of 73 proxy based temperature record, a Holocene temperature stack was constructed and used to demonstrate that a general cooling of ~1°C has occurred from the early to mid Holocene and that centennial and millennial scale variability is modest. We account for both temperature calibration and chronologic uncertainties using a Monte Carlo based approach. Our results are consistent with prior reconstructions of the last 2000 years and now allow for a full Holocene temperature perspective for evaluation with present and future climate change. / Graduation date: 2011 / Access restricted to the OSU Community, at author's request, from May 5, 2011 - May 5, 2012
167

Drumlins : are they stratified glacial features by size and lithology?

Follis, Michael 03 June 2011 (has links)
Moon Island, one of 180 drumlins in the Boston, Massachusetts area, is composed of a compact, clayey till with the southeastern slope of the drumlin forming a cliff caused by marine erosion. Samples of pebbles from the cliff-face and drumlin surface show horizontal stratification of till units that are differentiated by pebble size. The stratification is interpreted as evidence that the drumlin was formed in two stages: (1) one or more ice advances or surges which deposited the size-distinctive till layers. Stratigraphic variation of pebble lithologies in the till indicates that the till layers were probably deposited by at least two different ice lobes, and (2) an ice advance which carved the drumlin form without distorting or reshaping the horizontal till layers.Ball State UniversityMuncie, IN 47306
168

Biogeochemistry and hydrology of three alpine proglacial environments resulting from glacier retreat

Bruckner, Monica Zanzola. January 2008 (has links) (PDF)
Thesis (MS)--Montana State University--Bozeman, 2008. / Typescript. Chairperson, Graduate Committee: Mark L. Skidmore. Includes bibliographical references.
169

Geomorphic hazards associated with glacial change, Aoraki/Mount Cook region, Southern Alps, New Zealand : a thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Geography in the University of Canterbury /

Allen, Simon K. January 2009 (has links)
Thesis (Ph. D.)--University of Canterbury, 2009. / Typescript (photocopy). Includes bibliographical references. Also available via the World Wide Web.
170

Improved Glacial Isostatic Adjustment Models for Northern Canada

Simon, Karen 23 December 2014 (has links)
In northern Canada, the glacial isostatic adjustment (GIA) response of the Earth to the former Pleistocene Laurentide and Innuitian ice sheets contributes significantly to the Earth's past and ongoing sea-level change and land deformation. In this dissertation, measurements of Holocene sea-level change and observations of GPS-measured vertical crustal uplift rates are employed as constraints in numerical GIA models that examine the thickness and volume history of the former ice sheets in northern North America. The study is divided into two main sections; the first provides new measurements of Holocene sea-level change collected west of Hudson Bay, while the second presents a GIA modelling analysis for the entire study area of northern Canada. Radiocarbon dating of post-glacial deposits collected in an area just west of central Hudson Bay provides several new constraints on regional Holocene sea-level change. The field collection area is near a former load centre of the Laurentide Ice Sheet (LIS), and the sea-level measurements suggest that following deglaciation, regional sea level fell rapidly from a high-stand of nearly 170 m elevation just after 8000 cal yr BP to 60 m elevation by 5200 cal yr BP. Sea level subsequently fell at a decreased rate (approximately 30 m since 3000 cal yr BP). The fit of GIA model predictions to relative sea-level (RSL) data and present-day GPS-measured vertical land motion rates from throughout the study area constrains the peak thickness of the LIS to be 3.4-3.6 km west of Hudson Bay, and up to 4 km east of Hudson Bay. The ice model thicknesses inferred for these two regions represent, respectively, a 30% decrease and an average 20-25% increase to the load thickness relative to the ICE-5G reconstruction (Peltier 2004), generally consistent with other studies focussing on space geodetic measurements of vertical crustal motion. Around Baffin Island, the fit of GIA model predictions to RSL data indicate peak regional ice thicknesses of 1.2-1.3 km, a modest reduction compared to ICE-5G. A new reconstruction of the Innuitian Ice Sheet (IIS), which covered the Queen Elizabeth Islands at LGM, incorporates the current glacial-geological constraints on its spatial extent and timing history. The new IIS reconstruction provides RSL predictions that are more consistent with regional observations of post-glacial sea-level change than ICE-5G. The results suggest that the peak thickness of the IIS was 1600 m, approximately 400 m thicker than the minimum peak thickness indicated by glacial geology studies, but between 1000-1500 m thinner than the peak thicknesses used in previous regional ice sheet reconstructions. On Baffin Island and in the Queen Elizabeth Islands, however, the modelled elastic crustal response of the Earth to present-day ice mass changes is large. Accounting for this effect improves the agreement between GPS measurements of vertical crustal motion and the GIA model predictions. However, improvements such as the inclusion of spatially non-uniform mass loss and a sensitivity analysis that examines uncertainties of this effect should be incorporated into the modelling of present-day changes to glaciers and ice caps. / Graduate

Page generated in 0.0282 seconds