• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Anàlisi “ex vivo” de mecanismes d’inducció d’apoptosi i resistència al tractament en gliomes malignes

Villalonga Planells, Ruth 14 September 2011 (has links)
El glioblastoma multiforme és una de les neoplàsies més agressives de l’adult, malgrat els esforços realitzats en millorar el seu tractament, la supervivència dels pacients continua sent dolenta. L’objectiu global d’aquesta tesi ha estat l’estudi dels mecanismes moleculars implicats en la inducció de mort, parada de cicle pels inhibidors de MDM2 i els inhibidors de survivina en el glioblastoma multiforme humà, a més ha permès l’establiment de cultius primaris de glioblastoma humà. L’efecte dels compostos s’ha estudiat ex vivo en els cultius primaris i línies cel•lulars de glioblastoma multiforme humà. Les Nutlines són antagonistes de MDM2 que actuen, amb una gran especificitat, desplaçant la unió de la proteïna p53 del seu inhibidor MDM2 a un rang de dosi nanomolar, el qual comporta l’estabilització de la molècula de p53 i la posterior activació de la seva via de senyalització. Els resultats del tractament de cultius primaris i línies cel•lulars de glioblastoma demostren que la Nultina-3a és capaç de induir parada de cicle cel•lular (p21), apoptosi (Noxa i Puma), a més de induir senescència (marcatge amb SA-βGal) en aquelles cèl•lules amb un p53 funcional. Per el contrari, les línies cel•lulars i cultius primaris amb un p53 no funcional, són resistents al tractament degut a l’incapacitat de aquestes cèl•lules per activar la via de p53. El pretractament amb Nutlina-3a sensibilitza la línia cel•lular U87-MG enfront la radioteràpia. Això suggereix que la utilització de inhibidors de MDM2 podria ser una nova estratègia terapèutica, ja sigui de forma individual o combinada amb radioteràpia en el tractament de pacients amb glioblastoma multiforme amb una proteïna p53 funcional. YM155 (1-(2-metoxietil)-2-metil-4,9-dioxo-3-(piracina-2 ymetil)-4,9-dihidro-1H-nafto[2,3-d ]bromuro de imidazolium), és una petita molècula inhibidora de la proteïna antiapoptòtica Survivina. YM155 va ser seleccionat mitjançant un cribratge d’alt rendiment com supressor específic de l'expressió de survivina per inhibició del seu promotor. La survivina es troba sobreexpressada en la majoria dels tumors. La survivina es troba altament expressada en gliomes a més està associada amb una menor supervivència i amb un augment de la recurrència tumoral. En aquest apartat de la tesi es va estudiar l’efecte de YM155 en línies cel•lulars i un cultiu primari de glioblastoma humà. Els resultats obtinguts mostren que el tractament amb YM155 provoca una disminució de la viabilitat cel•lular, així com inducció d’apoptosi, que s’acompanya d’una disminució dels nivells proteics de survivina en totes les línies cel•lulars de glioma avaluades. La incubació de les línies cel•lulars i del cultius primari mostra canvis en el patró de cicle cel•lular, provocant aturada tant en fase G0/G1 o en fase S depenent de la línia cel•lular avaluada. El pretractament amb YM155 abans de la radioteràpia indueix un augment en el nombre de focus de γ-H2AX. Els resultats de aquest apartat de la tesis suggereixen que la inhibició de la Survivina podria ser una nova eina terapèutica que permetria augmentar la sensibilitat a la radioteràpia en pacients amb glioblastoma multiforme. / Glioblastoma multiforme is the most common and aggressive primary brain tumor in adults, despite efforts to improve their treatment, patients survival remains poor. The purpose of this thesis is the study of molecular mechanism involved in the induction of apoptosis, cells cycle arrest as a consequence of the treatment with MDM2 and Survivin inhibitors in human glioblatoma multiforme. This effect has been studied ex vivo in glioma cell lines and primary cultured glioblastoma. Nutlins small-molecule antagonist of MDM2, have been developed to inhibit p53-MDM2 interaction and activate p53 signaling in cancer cells. Nutlin-3a can induce cell cycle arrest (p21), apoptosi (PUMA and Noxa) in those cells with a functional p53 protein. In addiction Nutlin can induce cellular senescence (SA-βGal). In primary cultures and cells lines with a mutated p53 protein, Nutlin-3a fails to induce apoptosis and cell cycle arrest. Moreover Nutlin-3a pre-treatment in U87 cells sensitizes to radiotherapy. YM155 is a small molecule inhibitor of antiapoptotic protein survivin. Survivin is overexpressed in glioma and is associated with decreased survival and increases tumor recurrence. YM155 treatment induces a decrease in cell viability, as well as an apoptosis induction. This is accompanied by a decreased in survivin protein levels in all glioma cell lines tested. Glioma cell line and primary culture incubation show changes in the cell cycle pattern, causing arrest either in G0/G1 or S depending of the cell line tested.
2

An approach for analyzing and classifying microarray data using gene co-expression networks cycles / Uma abordagem para analisar e classificar dados microarrays usando ciclos de redes de co-expressão gênica

Dillenburg, Fabiane Cristine January 2017 (has links)
Uma das principais áreas de pesquisa em Biologia de Sistemas refere-se à descoberta de redes biológicas a partir de conjuntos de dados de microarrays. Estas redes consistem de um grande número de genes cujos níveis de expressão afetam os outros genes de vários modos. Nesta tese, apresenta-se uma nova maneira de analisar os conjuntos de dados de microarrays, com base nos diferentes tipos de ciclos encontrados entre os genes das redes de co-expressão construídas com dados quantificados obtidos a partir dos microarrays. A entrada do método de análise é formada pelos dados brutos, um conjunto de genes de interesse (por exemplo, genes de uma via conhecida) e uma função (ativador ou inibidor) destes genes. A saída do método é um conjunto de ciclos. Um ciclo é um caminho fechado com todos os vértices (exceto o primeiro e o último) distintos. Graças à nova forma de encontrar relações entre os genes, é possível uma interpretação mais robusta das correlações dos genes, porque os ciclos estão associados a mecanismos de feedback, que são muito comuns em redes biológicas. A hipótese é que feedbacks negativos permitem encontrar relações entre os genes que podem ajudar a explicar a estabilidade do processo regulatório dentro da célula. Ciclos de feedback positivo, por outro lado, podem mostrar a quantidade de desequilíbrio de uma determinada célula em um determinado momento. A análise baseada em ciclos permite identificar a relação estequiométrica entre os genes da rede. Esta metodologia proporciona uma melhor compreensão da biologia do tumor. Portanto, as principais contribuições desta tese são: (i) um novo método de análise baseada em ciclos; (ii) um novo método de classificação; (iii) e, finalmente, aplicação dos métodos e a obtenção de resultados práticos. A metodologia proposta foi utilizada para analisar os genes de quatro redes fortemente relacionadas com o câncer - apoptose, glicólise, ciclo celular e NF B - em tecidos do tipo mais agressivo de tumor cerebral (Gliobastoma multiforme - GBM) e em tecidos cerebrais saudáveis. A maioria dos pacientes com GBM morrem em menos de um ano, essencialmente nenhum paciente tem sobrevivência a longo prazo, por isso estes tumores têm atraído atenção significativa. Os principais resultados nesta tese mostram que a relação estequiométrica entre genes envolvidos na apoptose, glicólise, ciclo celular e NF B está desequilibrada em amostras de GBM em comparação as amostras de controle. Este desequilíbrio pode ser medido e explicado pela identificação de um percentual maior de ciclos positivos nas redes das primeiras amostras. Esta conclusão ajuda a entender mais sobre a biologia deste tipo de tumor. O método de classificação baseado no ciclo proposto obteve as mesmas métricas de desempenho como uma rede neural, um método clássico de classificação. No entanto, o método proposto tem uma vantagem significativa em relação às redes neurais. O método de classificação proposto não só classifica as amostras, fornecendo diagnóstico, mas também explica porque as amostras foram classificadas de uma certa maneira em termos dos mecanismos de feedback que estão presentes/ausentes. Desta forma, o método fornece dicas para bioquímicos sobre possíveis experiências laboratoriais, bem como sobre potenciais genes alvo de terapias. / One of the main research areas in Systems Biology concerns the discovery of biological networks from microarray datasets. These networks consist of a great number of genes whose expression levels affect each other in various ways. We present a new way of analyzing microarray datasets, based on the different kind of cycles found among genes of the co-expression networks constructed using quantized data obtained from the microarrays. The input of the analysis method is formed by raw data, a set of interest genes (for example, genes from a known pathway) and a function (activator or inhibitor) of these genes. The output of the method is a set of cycles. A cycle is a closed walk, in which all vertices (except the first and last) are distinct. Thanks to the new way of finding relations among genes, a more robust interpretation of gene correlations is possible, because cycles are associated with feedback mechanisms that are very common in biological networks. Our hypothesis is that negative feedbacks allow finding relations among genes that may help explaining the stability of the regulatory process within the cell. Positive feedback cycles, on the other hand, may show the amount of imbalance of a certain cell in a given time. The cycle-based analysis allows identifying the stoichiometric relationship between the genes of the network. This methodology provides a better understanding of the biology of tumors. As a consequence, it may enable the development of more effective treatment therapies. Furthermore, cycles help differentiate, measure and explain the phenomena identified in healthy and diseased tissues. Cycles may also be used as a new method for classification of samples of a microarray (cancer diagnosis). Compared to other classification methods, cycle-based classification provides a richer explanation of the proposed classification, that can give hints on the possible therapies. Therefore, the main contributions of this thesis are: (i) a new cycle-based analysis method; (ii) a new microarray samples classification method; (iii) and, finally, application and achievement of practical results. We use the proposed methodology to analyze the genes of four networks closely related with cancer - apoptosis, glucolysis, cell cycle and NF B - in tissues of the most aggressive type of brain tumor (Gliobastoma multiforme – GBM) and in healthy tissues. Because most patients with GBMs die in less than a year, and essentially no patient has long-term survival, these tumors have drawn significant attention. Our main results show that the stoichiometric relationship between genes involved in apoptosis, glucolysis, cell cycle and NF B pathways is unbalanced in GBM samples versus control samples. This dysregulation can be measured and explained by the identification of a higher percentage of positive cycles in these networks. This conclusion helps to understand more about the biology of this tumor type. The proposed cycle-based classification method achieved the same performance metrics as a neural network, a classical classification method. However, our method has a significant advantage with respect to neural networks. The proposed classification method not only classifies samples, providing diagnosis, but also explains why samples were classified in a certain way in terms of the feedback mechanisms that are present/absent. This way, the method provides hints to biochemists about possible laboratory experiments, as well as on potential drug target genes.
3

An approach for analyzing and classifying microarray data using gene co-expression networks cycles / Uma abordagem para analisar e classificar dados microarrays usando ciclos de redes de co-expressão gênica

Dillenburg, Fabiane Cristine January 2017 (has links)
Uma das principais áreas de pesquisa em Biologia de Sistemas refere-se à descoberta de redes biológicas a partir de conjuntos de dados de microarrays. Estas redes consistem de um grande número de genes cujos níveis de expressão afetam os outros genes de vários modos. Nesta tese, apresenta-se uma nova maneira de analisar os conjuntos de dados de microarrays, com base nos diferentes tipos de ciclos encontrados entre os genes das redes de co-expressão construídas com dados quantificados obtidos a partir dos microarrays. A entrada do método de análise é formada pelos dados brutos, um conjunto de genes de interesse (por exemplo, genes de uma via conhecida) e uma função (ativador ou inibidor) destes genes. A saída do método é um conjunto de ciclos. Um ciclo é um caminho fechado com todos os vértices (exceto o primeiro e o último) distintos. Graças à nova forma de encontrar relações entre os genes, é possível uma interpretação mais robusta das correlações dos genes, porque os ciclos estão associados a mecanismos de feedback, que são muito comuns em redes biológicas. A hipótese é que feedbacks negativos permitem encontrar relações entre os genes que podem ajudar a explicar a estabilidade do processo regulatório dentro da célula. Ciclos de feedback positivo, por outro lado, podem mostrar a quantidade de desequilíbrio de uma determinada célula em um determinado momento. A análise baseada em ciclos permite identificar a relação estequiométrica entre os genes da rede. Esta metodologia proporciona uma melhor compreensão da biologia do tumor. Portanto, as principais contribuições desta tese são: (i) um novo método de análise baseada em ciclos; (ii) um novo método de classificação; (iii) e, finalmente, aplicação dos métodos e a obtenção de resultados práticos. A metodologia proposta foi utilizada para analisar os genes de quatro redes fortemente relacionadas com o câncer - apoptose, glicólise, ciclo celular e NF B - em tecidos do tipo mais agressivo de tumor cerebral (Gliobastoma multiforme - GBM) e em tecidos cerebrais saudáveis. A maioria dos pacientes com GBM morrem em menos de um ano, essencialmente nenhum paciente tem sobrevivência a longo prazo, por isso estes tumores têm atraído atenção significativa. Os principais resultados nesta tese mostram que a relação estequiométrica entre genes envolvidos na apoptose, glicólise, ciclo celular e NF B está desequilibrada em amostras de GBM em comparação as amostras de controle. Este desequilíbrio pode ser medido e explicado pela identificação de um percentual maior de ciclos positivos nas redes das primeiras amostras. Esta conclusão ajuda a entender mais sobre a biologia deste tipo de tumor. O método de classificação baseado no ciclo proposto obteve as mesmas métricas de desempenho como uma rede neural, um método clássico de classificação. No entanto, o método proposto tem uma vantagem significativa em relação às redes neurais. O método de classificação proposto não só classifica as amostras, fornecendo diagnóstico, mas também explica porque as amostras foram classificadas de uma certa maneira em termos dos mecanismos de feedback que estão presentes/ausentes. Desta forma, o método fornece dicas para bioquímicos sobre possíveis experiências laboratoriais, bem como sobre potenciais genes alvo de terapias. / One of the main research areas in Systems Biology concerns the discovery of biological networks from microarray datasets. These networks consist of a great number of genes whose expression levels affect each other in various ways. We present a new way of analyzing microarray datasets, based on the different kind of cycles found among genes of the co-expression networks constructed using quantized data obtained from the microarrays. The input of the analysis method is formed by raw data, a set of interest genes (for example, genes from a known pathway) and a function (activator or inhibitor) of these genes. The output of the method is a set of cycles. A cycle is a closed walk, in which all vertices (except the first and last) are distinct. Thanks to the new way of finding relations among genes, a more robust interpretation of gene correlations is possible, because cycles are associated with feedback mechanisms that are very common in biological networks. Our hypothesis is that negative feedbacks allow finding relations among genes that may help explaining the stability of the regulatory process within the cell. Positive feedback cycles, on the other hand, may show the amount of imbalance of a certain cell in a given time. The cycle-based analysis allows identifying the stoichiometric relationship between the genes of the network. This methodology provides a better understanding of the biology of tumors. As a consequence, it may enable the development of more effective treatment therapies. Furthermore, cycles help differentiate, measure and explain the phenomena identified in healthy and diseased tissues. Cycles may also be used as a new method for classification of samples of a microarray (cancer diagnosis). Compared to other classification methods, cycle-based classification provides a richer explanation of the proposed classification, that can give hints on the possible therapies. Therefore, the main contributions of this thesis are: (i) a new cycle-based analysis method; (ii) a new microarray samples classification method; (iii) and, finally, application and achievement of practical results. We use the proposed methodology to analyze the genes of four networks closely related with cancer - apoptosis, glucolysis, cell cycle and NF B - in tissues of the most aggressive type of brain tumor (Gliobastoma multiforme – GBM) and in healthy tissues. Because most patients with GBMs die in less than a year, and essentially no patient has long-term survival, these tumors have drawn significant attention. Our main results show that the stoichiometric relationship between genes involved in apoptosis, glucolysis, cell cycle and NF B pathways is unbalanced in GBM samples versus control samples. This dysregulation can be measured and explained by the identification of a higher percentage of positive cycles in these networks. This conclusion helps to understand more about the biology of this tumor type. The proposed cycle-based classification method achieved the same performance metrics as a neural network, a classical classification method. However, our method has a significant advantage with respect to neural networks. The proposed classification method not only classifies samples, providing diagnosis, but also explains why samples were classified in a certain way in terms of the feedback mechanisms that are present/absent. This way, the method provides hints to biochemists about possible laboratory experiments, as well as on potential drug target genes.
4

An approach for analyzing and classifying microarray data using gene co-expression networks cycles / Uma abordagem para analisar e classificar dados microarrays usando ciclos de redes de co-expressão gênica

Dillenburg, Fabiane Cristine January 2017 (has links)
Uma das principais áreas de pesquisa em Biologia de Sistemas refere-se à descoberta de redes biológicas a partir de conjuntos de dados de microarrays. Estas redes consistem de um grande número de genes cujos níveis de expressão afetam os outros genes de vários modos. Nesta tese, apresenta-se uma nova maneira de analisar os conjuntos de dados de microarrays, com base nos diferentes tipos de ciclos encontrados entre os genes das redes de co-expressão construídas com dados quantificados obtidos a partir dos microarrays. A entrada do método de análise é formada pelos dados brutos, um conjunto de genes de interesse (por exemplo, genes de uma via conhecida) e uma função (ativador ou inibidor) destes genes. A saída do método é um conjunto de ciclos. Um ciclo é um caminho fechado com todos os vértices (exceto o primeiro e o último) distintos. Graças à nova forma de encontrar relações entre os genes, é possível uma interpretação mais robusta das correlações dos genes, porque os ciclos estão associados a mecanismos de feedback, que são muito comuns em redes biológicas. A hipótese é que feedbacks negativos permitem encontrar relações entre os genes que podem ajudar a explicar a estabilidade do processo regulatório dentro da célula. Ciclos de feedback positivo, por outro lado, podem mostrar a quantidade de desequilíbrio de uma determinada célula em um determinado momento. A análise baseada em ciclos permite identificar a relação estequiométrica entre os genes da rede. Esta metodologia proporciona uma melhor compreensão da biologia do tumor. Portanto, as principais contribuições desta tese são: (i) um novo método de análise baseada em ciclos; (ii) um novo método de classificação; (iii) e, finalmente, aplicação dos métodos e a obtenção de resultados práticos. A metodologia proposta foi utilizada para analisar os genes de quatro redes fortemente relacionadas com o câncer - apoptose, glicólise, ciclo celular e NF B - em tecidos do tipo mais agressivo de tumor cerebral (Gliobastoma multiforme - GBM) e em tecidos cerebrais saudáveis. A maioria dos pacientes com GBM morrem em menos de um ano, essencialmente nenhum paciente tem sobrevivência a longo prazo, por isso estes tumores têm atraído atenção significativa. Os principais resultados nesta tese mostram que a relação estequiométrica entre genes envolvidos na apoptose, glicólise, ciclo celular e NF B está desequilibrada em amostras de GBM em comparação as amostras de controle. Este desequilíbrio pode ser medido e explicado pela identificação de um percentual maior de ciclos positivos nas redes das primeiras amostras. Esta conclusão ajuda a entender mais sobre a biologia deste tipo de tumor. O método de classificação baseado no ciclo proposto obteve as mesmas métricas de desempenho como uma rede neural, um método clássico de classificação. No entanto, o método proposto tem uma vantagem significativa em relação às redes neurais. O método de classificação proposto não só classifica as amostras, fornecendo diagnóstico, mas também explica porque as amostras foram classificadas de uma certa maneira em termos dos mecanismos de feedback que estão presentes/ausentes. Desta forma, o método fornece dicas para bioquímicos sobre possíveis experiências laboratoriais, bem como sobre potenciais genes alvo de terapias. / One of the main research areas in Systems Biology concerns the discovery of biological networks from microarray datasets. These networks consist of a great number of genes whose expression levels affect each other in various ways. We present a new way of analyzing microarray datasets, based on the different kind of cycles found among genes of the co-expression networks constructed using quantized data obtained from the microarrays. The input of the analysis method is formed by raw data, a set of interest genes (for example, genes from a known pathway) and a function (activator or inhibitor) of these genes. The output of the method is a set of cycles. A cycle is a closed walk, in which all vertices (except the first and last) are distinct. Thanks to the new way of finding relations among genes, a more robust interpretation of gene correlations is possible, because cycles are associated with feedback mechanisms that are very common in biological networks. Our hypothesis is that negative feedbacks allow finding relations among genes that may help explaining the stability of the regulatory process within the cell. Positive feedback cycles, on the other hand, may show the amount of imbalance of a certain cell in a given time. The cycle-based analysis allows identifying the stoichiometric relationship between the genes of the network. This methodology provides a better understanding of the biology of tumors. As a consequence, it may enable the development of more effective treatment therapies. Furthermore, cycles help differentiate, measure and explain the phenomena identified in healthy and diseased tissues. Cycles may also be used as a new method for classification of samples of a microarray (cancer diagnosis). Compared to other classification methods, cycle-based classification provides a richer explanation of the proposed classification, that can give hints on the possible therapies. Therefore, the main contributions of this thesis are: (i) a new cycle-based analysis method; (ii) a new microarray samples classification method; (iii) and, finally, application and achievement of practical results. We use the proposed methodology to analyze the genes of four networks closely related with cancer - apoptosis, glucolysis, cell cycle and NF B - in tissues of the most aggressive type of brain tumor (Gliobastoma multiforme – GBM) and in healthy tissues. Because most patients with GBMs die in less than a year, and essentially no patient has long-term survival, these tumors have drawn significant attention. Our main results show that the stoichiometric relationship between genes involved in apoptosis, glucolysis, cell cycle and NF B pathways is unbalanced in GBM samples versus control samples. This dysregulation can be measured and explained by the identification of a higher percentage of positive cycles in these networks. This conclusion helps to understand more about the biology of this tumor type. The proposed cycle-based classification method achieved the same performance metrics as a neural network, a classical classification method. However, our method has a significant advantage with respect to neural networks. The proposed classification method not only classifies samples, providing diagnosis, but also explains why samples were classified in a certain way in terms of the feedback mechanisms that are present/absent. This way, the method provides hints to biochemists about possible laboratory experiments, as well as on potential drug target genes.

Page generated in 0.0984 seconds