• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 5
  • 4
  • 3
  • 1
  • 1
  • Tagged with
  • 38
  • 38
  • 15
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Role of the mGRIP1 homologue DGrip in the Drosophila neuromuscular system / Rolle des mGRIP1-homologs, DGrip, in dem Neuromuskulaeren System der Fruchtfliege Drosophila melanogaster

Swan, Laura 21 April 2005 (has links)
No description available.
12

Expressão dos receptores metabotrópicos de glutamato no sistema visual de ratos e pintos após enucleação ocular. / Expression of metabotropic glutamate receptors in the rat and chick visual system after ocular enucleation.

Matos, Rhowena Jane Barbosa de 21 November 2007 (has links)
Os receptores glutamatérgicos metabotrópicos (mGluRs) estão envolvidos nos processos de plasticidade, neurodegeneração e neuroproteção. Avaliamos a expressão de mGluRs no sistema visual de ratos e pintos em diferentes tempos após enucleação ocular. Os animais foram avaliados pelo método de imuno-histoquímica, immunoblotting e RT-PCR, para detecção dos receptores mGluR1,2/3,5 e 7. Foi observado aumento da imunorreatividade (IR) de mGluR1, 5 e 7 no colículo superior, porém não foi observada diferença no núcleo geniculado lateral. Houve aumento na expressão protéica para mGluR1, 5 e 7 e aumento da expressão gênica para mGluR1,5 e 7; por outro lado, ocorreu uma diminuição de mGluR3. No TeO, foi observado aumento da IR para mGluR1 e 5 e diminuição para mGluR2/3. As análises de immunoblotting confirmaram o aumento observado de mGluR1 e diminuição de mGluR2/3. Os resultados indicam uma modulação diferencial na expressão gênica e protéica dos mGluRs, sugerindo a participação desses receptores em processos plásticos decorrentes de lesões no sistema visual adulto. / The metabotropic glutamate receptors (mGluRs) are involved in neuronal plasticity and neuroprotection. We analyzed the expression of mGluRs in the visual system of rats and chicks in several periods after ocular enucleation. The localization and expression of mGluR1, 5, 2/3 and 7 receptors were evaluated by standard immunoperoxidase, immunoblotting and real-time PCR protocols. The immunorreativity, protein and gene expression of mGluR1, 5 and 7 receptors in the superior colliculus showed an increase, whereas no changes were seen in the lateral geniculate nucleus. For mGluR3, gene expression was decreased. In the TeO, mGluR1 and 5 increased for all survival periods analyzed. Immunoblotting analyses confirmed the increases for mGluR1 and 5, decreases for mGluR2/3. These results indicate that the expression of mGluRs is regulated by the glutamatergic retinal input, and add data on a possible role of these receptors in neuroplasticity in adult animals.
13

Ras-dependent and Ras-independent effects of PI3K in Drosophila motor neurons

January 2012 (has links)
The lipid kinase PI3K plays key roles in cellular responses to activation of receptor tyrosine kinases or G protein coupled receptors such as the metabotropic glutamate receptor (mGluR). Activation of the PI3K catalytic subunit p110 occurs when the PI3K regulatory subunit p85 binds to phosphotyrosine residues present in upstream activating proteins. In addition, Ras is uniquely capable of activating PI3K in a p85-independent manner by binding to p110 at amino acids distinct from those recognized by p85. Because Ras, like p85, is activated by phosphotyrosines in upstream activators, it can be difficult to determine if particular PI3K-dependent processes require p85 or Ras. Here we ask if PI3K requires Ras activity for either of two different PI3K-regulated processes within Drosophila larval motor neurons. To address this question, we determined the effects on each process of transgenes and chromosomal mutations that decrease Ras activity, or mutations that eliminate the ability of PI3K to respond to activated Ras. We found that PI3K requires Ras activity to decrease motor neuron excitability, an effect mediated by ligand activation of the single Drosophila mGluR DmGIuRA. In contrast, the ability of PI3K to increase synaptic bouton number is Ras independent. These results suggest that distinct regulatory mechanisms underlie the effects of PI3K on distinct phenotypic outputs. We additionally found that the glutamate-activation of DmGIuRA initiates ERK signaling; however the signaling intermediates linking DmGIuRA to this kinase cascade are unknown.
14

Elektrophysiologische Untersuchung der synaptischen Übertragung und Kurzzeitplastizität an der neuromuskulären Synapse von Drosophila melanogaster / Electrophysiological analysis of synaptic transmission and short-term synaptic plasticity of the neuromuscular junction of Drosophila melanogaster

Frölich, Andreas Maximilian Janpeter 02 May 2011 (has links)
No description available.
15

Expressão dos receptores metabotrópicos de glutamato no sistema visual de ratos e pintos após enucleação ocular. / Expression of metabotropic glutamate receptors in the rat and chick visual system after ocular enucleation.

Rhowena Jane Barbosa de Matos 21 November 2007 (has links)
Os receptores glutamatérgicos metabotrópicos (mGluRs) estão envolvidos nos processos de plasticidade, neurodegeneração e neuroproteção. Avaliamos a expressão de mGluRs no sistema visual de ratos e pintos em diferentes tempos após enucleação ocular. Os animais foram avaliados pelo método de imuno-histoquímica, immunoblotting e RT-PCR, para detecção dos receptores mGluR1,2/3,5 e 7. Foi observado aumento da imunorreatividade (IR) de mGluR1, 5 e 7 no colículo superior, porém não foi observada diferença no núcleo geniculado lateral. Houve aumento na expressão protéica para mGluR1, 5 e 7 e aumento da expressão gênica para mGluR1,5 e 7; por outro lado, ocorreu uma diminuição de mGluR3. No TeO, foi observado aumento da IR para mGluR1 e 5 e diminuição para mGluR2/3. As análises de immunoblotting confirmaram o aumento observado de mGluR1 e diminuição de mGluR2/3. Os resultados indicam uma modulação diferencial na expressão gênica e protéica dos mGluRs, sugerindo a participação desses receptores em processos plásticos decorrentes de lesões no sistema visual adulto. / The metabotropic glutamate receptors (mGluRs) are involved in neuronal plasticity and neuroprotection. We analyzed the expression of mGluRs in the visual system of rats and chicks in several periods after ocular enucleation. The localization and expression of mGluR1, 5, 2/3 and 7 receptors were evaluated by standard immunoperoxidase, immunoblotting and real-time PCR protocols. The immunorreativity, protein and gene expression of mGluR1, 5 and 7 receptors in the superior colliculus showed an increase, whereas no changes were seen in the lateral geniculate nucleus. For mGluR3, gene expression was decreased. In the TeO, mGluR1 and 5 increased for all survival periods analyzed. Immunoblotting analyses confirmed the increases for mGluR1 and 5, decreases for mGluR2/3. These results indicate that the expression of mGluRs is regulated by the glutamatergic retinal input, and add data on a possible role of these receptors in neuroplasticity in adult animals.
16

A bioinformatics approach to the study of the transcriptional regulation of AMPA glutamate receptors (GRIAs) and genes whose expression are co-regulated with GRIAs

Chong, Allen K.S. January 2009 (has links)
Philosophiae Doctor - PhD / It was postulated that each gene has three main sets of transcriptional elements: one which is gene-specific, one which is family-specific, and a third which is tissue-specific.The starting hypothesis for this project had been: “Each family of genes has a distinct set of transcriptional elements that is unique onto this family”. The primary aim of this project was therefore the identification of the family-specific set of transcriptional elements within the AMPA receptor gene family. The question then is how does one measure or identify this uniqueness within the promoters of this family of genes. The answer seemed to lie in making an assessment of the promoters of this family of genes against a background of a comprehensive set of promoter sequences and in the process,to try to find the transcriptional elements that were present in the AMPA receptor gene promoters but were not so common in the general population of gene promoters.To achieve the primary aim of this project, it was essential that a comprehensive dataset of promoter sequences was available. There are ample data freely available through the web. However, it is often not available in a form that we might want it in. Another problem that one constantly encounters is the lack of general consensus among the research community in agreeing on a standard annotation. For example, a gene can sometimes be given 2 or 3 different names by different laboratories which have successfully cloned the same gene. This, in turn, hinders the data collection process. At the start of this project, there was an existing curated database of experimentally-verified eukaryotic promoter sequences called the Eukaryotic Promoter Database (EPD) and a software called Promoter Extraction from GenBank (PEG) which, as its name implies, extracts promoter sequences available through GenBank (Cavin Périer et al., 1998;Zhang & Zhang, 2001; Praz et al., 2002; Schmid et al., 2004). However, limitations existed in both these resources. For EPD, the number of curated promoter sequences available was low and also, the length of these promoter sequences was short. For PEG,the main limitation was that the extraction from GenBank would result in extraction of sequences of variable lengths.Therefore, the 5’-end Information Extraction (FIE)system was developed for the expressed purpose of collecting promoter sequences without the limitations of PEG. This software relies on the alignment of multiple mRNA/cDNA sequences that are representative of a gene on the human genomic sequence to determine the transcription start site (TSS) of the gene and thus, with this information, extract the promoter sequence for the gene from the available human genomic sequence. This was the first promoter extraction software to work on this principle (Chong et al., 2002). This method was later supported by experimental work carried out by Coleman and colleagues (2002). Using the FIE2 software (Chong et al.,2003), some 10,000-odd human promoter sequences was extracted, starting at 1500bp uptream and ending at 1000bp downstream of the 5’-most TSS.Following the collection of the human promoter sequences, the approach developed by Bajic et al. (2004) was applied to study the promoters of the AMPA receptor genes. This approach relies on both the MATCH program to map putative transcription factor binding sites (TFBSs) to the promoter sequences and a software developed by Bajic etal. (2004) that calculates to the density for each TFBS or composite element. Having calculated the densities for the TFBSs and composite elements for both the target promoters (in this case, the AMPA receptor gene promoters) and the background promoters (the 10,000-odd human promoters), the software then calculates the degree of over-representation of each TFBS and composite element in the target promoters(measured against the background promoters) and then ranks the “singles”, “pairs” and “triplets” in the order of their degree of over-representation. Using this method, I identified the top 3 ranked “single”, “pair” and “triplet” transcriptional elements found commonly within the AMPA receptor promoters. In addition, a conventional phylogenetic footprinting study was also carried out for the human, mouse and rat GRIA1 promoter to identify key transcriptional elements within this subunit’s promoter.While the approach developed by Bajic et al. (2004) identifies key family-specific transcriptional elements, the phylogenetic footprinting study helps identify key genespecific transcriptional elements. Thus, they complement one another.The approach developed by Bajic et al. (2004) yielded an interesting result. It was found that the combination of the top 3 ranked “single”, “pair” and “triplet” transcriptional elements found in the AMPA receptor promoters were also found in 47 other genes. It was postulated that these 47 genes might, in fact, be co-regulated / co-expressed with the GRIAs and thus, explaining the existence of a shared promoter profile with the GRIA promoters. In support of this hypothesis, supporting evidence was found in published literature that 7 of these 47 genes (VAMP4, Rab3B, FKBP8, 3-OST-3A, CLSTN3,SOCS1 and IκBβ) might indeed be involved in the expression and functioning of the AMPA receptors.
17

Analýza strukturních detailů NMDA receptoru / The analysis of structural details of the NMDA receptor

Radilová, Kateřina January 2018 (has links)
NMDA receptor is necessary for excitatory transmission in the central nervous system. Altered funtion of the NMDA receptors is associated with many neurodegenerative and neuropsychiatric diseases. All available crystal structures of the NMDAR meant great shift towards our understanding of details of the receptor and its function. Unfortunately, these up- to-date available structures present only certain functional states of receptors and also a few structural data are still missing. For complete comprehension of the process of activation and deactivation of NMDA receptors, we need to supplement the current information with more data. The aim of this thesis was to employ a combination of different approaches (computational modelling, cloning, biochemistry, protein expression and purification and mass spectrometry) to obtain new structural data, by which we would be able to fill in the gaps in current receptor models, especially at various functional states of the receptor. Key words: NMDA receptor, glutamate receptor, computational modelling, structure, cloning, protein expression
18

Modulation of mGlu5 Improves Sensorimotor Gating Deficits in Rats Neonatally Treated With Quinpirole Through Changes in Dopamine D2 Signaling

Brown, Russell W., Varnum, Christopher G., Wills, Liza J., Peeters, Loren D., Gass, Justin T. 01 December 2021 (has links)
This study analyzed whether the positive allosteric modulator of metabotropic glutamate receptor type 5 (mGlu5) 3-Cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl) benzamide (CDPPB) would alleviate deficits in prepulse inhibition (PPI) and affect dopamine (DA) D2 signaling in the dorsal striatum and prefrontal cortex (PFC) in the neonatal quinpirole (NQ) model of schizophrenia (SZ). Male and female Sprague-Dawley rats were neonatally treated with either saline (NS) or quinpirole HCL (1 mg/kg; NQ), a DAD2 receptor agonist, from postnatal days (P) 1–21. Rats were raised to P44 and behaviorally tested on PPI from P44-P48. Before each trial, rats were subcutaneous (sc) administered saline or CDPPB (10 mg/kg or 30 mg/kg). On P50, rats were given a spontaneous locomotor activity test after CDPPB or saline administration. On P51, the dorsal striatum and PFC were evaluated for both arrestin-2 (βA-2) and phospho-AKT protein levels. NQ-treated rats demonstrated a significant deficit in PPI, which was alleviated to control levels by the 30 mg/kg dose of CDPPB. There were no significant effects of CDPPB on locomotor activity. NQ treatment increased βA-2 and decreased phospho-AKT in both the dorsal striatum and PFC, consistent with an increase DAD2 signaling. The 30 mg/kg dose of CDPPB significantly reversed changes in βA-2 in the dorsal striatum and PFC and phospho-AKT in the PFC equivalent to controls. Both doses of CDPPB produced a decrease of phospho-AKT in the PFC compared to controls. This study revealed that a mGlu5 positive allosteric modulator was effective to alleviate PPI deficits and striatal DAD2 signaling in the NQ model of SZ.
19

Beyond AMPA and NMDA: Slow synaptic mGlu/TRPC currents : Implications for dendritic integration

Petersson, Marcus January 2010 (has links)
<p>In order to understand how the brain functions, under normal as well as pathological conditions, it is important to study the mechanisms underlying information integration. Depending on the nature of an input arriving at a synapse, different strategies may be used by the neuron to integrate and respond to the input. Naturally, if a short train of high-frequency synaptic input arrives, it may be beneficial for the neuron to be equipped with a fast mechanism that is highly sensitive to inputs on a short time scale. If, on the contrary, inputs arriving with low frequency are to be processed, it may be necessary for the neuron to possess slow mechanisms of integration. For example, in certain working memory tasks (e. g. delay-match-to-sample), sensory inputs may arrive separated by silent intervals in the range of seconds, and the subject should respond if the current input is identical to the preceeding input. It has been suggested that single neurons, due to intrinsic mechanisms outlasting the duration of input, may be able to perform such calculations. In this work, I have studied a mechanism thought to be particularly important in supporting the integration of low-frequency synaptic inputs. It is mediated by a cascade of events that starts with activation of group I metabotropic glutamate receptors (mGlu1/5), and ends with a membrane depolarization caused by a current that is mediated by canonical transient receptor potential (TRPC) ion channels. This current, denoted I<sub>TRPC</sub>, is the focus of this thesis.</p><p>A specific objective of this thesis is to study the role of I<sub>TRPC</sub> in the integration of synaptic inputs arriving at a low frequency, < 10 Hz. Our hypothesis is that, in contrast to the well-studied, rapidly decaying AMPA and NMDA currents, I<sub>TRPC</sub> is well-suited for supporting temporal summation of such synaptic input. The reason for choosing this range of frequencies is that neurons often communicate with signals (spikes) around 8 Hz, as shown by single-unit recordings in behaving animals. This is true for several regions of the brain, including the entorhinal cortex (EC) which is known to play a key role in producing working memory function and enabling long-term memory formation in the hippocampus.</p><p>Although there is strong evidence suggesting that I<sub>TRPC</sub> is important for neuronal communication, I have not encountered a systematic study of how this current contributes to synaptic integration. Since it is difficult to directly measure the electrical activity in dendritic branches using experimental techniques, I use computational modeling for this purpose. I implemented the components necessary for studying I<sub>TRPC</sub>, including a detailed model of extrasynaptic glutamate concentration, mGlu1/5 dynamics and the TRPC channel itself. I tuned the model to replicate electrophysiological in vitro data from pyramidal neurons of the rodent EC, provided by our experimental collaborator. Since we were interested in the role of I<sub>TRPC</sub> in temporal summation, a specific aim was to study how its decay time constant (τ<sub>decay</sub>) is affected by synaptic stimulus parameters.</p><p>The hypothesis described above is supported by our simulation results, as we show that synaptic inputs arriving at frequencies as low as 3 - 4 Hz can be effectively summed. We also show that τ<sub>decay</sub> increases with increasing stimulus duration and frequency, and that it is linearly dependent on the maximal glutamate concentration. Under some circumstances it was problematic to directly measure τ<sub>decay</sub>, and we then used a pair-pulse paradigm to get an indirect estimate of τ<sub>decay</sub>.</p><p>I am not aware of any computational model work taking into account the synaptically evoked I<sub>TRPC</sub> current, prior to the current study, and believe that it is the first of its kind. We suggest that I<sub>TRPC</sub> is important for slow synaptic integration, not only in the EC, but in several cortical and subcortical regions that contain mGlu1/5 and TRPC subunits, such as the prefrontal cortex. I will argue that this is further supported by studies using pharmacological blockers as well as studies on genetically modified animals.</p> / QC 20101005
20

Strukturní determinanty regulace povrchového transportu NMDA receptorů v savčích buňkách / Structural determinants of regulation of surface delivery of NMDA receptors in mammalian cells

Danačíková, Šárka January 2018 (has links)
N-methyl-D-aspartate (NMDA) receptors are ligand-gated ion channels activated by agonist glutamate and co-agonist glycine. They play a key role in mediating the fast excitatory synaptic neurotransmission in the mammalian central nervous system. To create a functional heterotetrameric receptor, the presence of two GluN1 subunits combined with GluN2 or GluN3 subunits is necessary. Previous studies confirmed the importance of M3 transmembrane helix and extracellularly localized cysteines in regulation of surface expression of functional NMDA receptors. The aim of my thesis is to elucidate an influence of clinically relevant mutations in M3 transmembrane helix and the role of all known cysteines that form disulphide bonds on surface delivery of NMDA receptor expressed in heterologous monkey kidney fibroblasts cell culture (COS-7). Using molecular biology methods, immunocytochemistry and microscopy I found that the clinically relevant mutations M641I and Y647S in GluN1 subunit and also the mutations of particular cysteines forming disulphide bonds caused substantial decrease of surface expression of NMDA receptors. Furthermore, I discovered that the effect of mutated GluN1 subunits on decrease of surface expression depends on the subunit composition. The contribution of my results lies in elucidating the...

Page generated in 0.0436 seconds