Spelling suggestions: "subject:"glycolipids."" "subject:"glycolipides.""
51 |
Análise da composição lipídica de seis espécies de peixes amazônicosBarbosa, Banny Silva 30 January 2013 (has links)
Made available in DSpace on 2015-04-22T22:01:58Z (GMT). No. of bitstreams: 1
Banny Silva Barbosa.pdf: 3257736 bytes, checksum: aa77c1eca753a92a01d30a721f2da598 (MD5)
Previous issue date: 2013-01-30 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Seeing the importance of fish for amazonian people, it potential in the market, it nutritive value, and information shortages relative to the lipid composition of amazonian fish, it was aimed to determinate the lipid composition attendant in dorsal muscle of six amazonia fish species, jaraqui, curimatã, pacu, sardinha, pescada and surubim, through fatty acids analyses constituent of their diferent classes of lipids and attendant steroids in their unsaponifiable lipids. This study involved the development and methodology application for extraction of total lipids, separation of lipid class, extraction of unsaponifiable lipids, derivatization of fatty acids and steroids, analyses of gas chromotagraphy with detector of flames ionization and with mass spectrometry for quantitative and qualitative evaluation of steroids and fatty acids of lipids in class. And also approached the determination of lipids nutritional quality through atherogenicity, thrombogenicity index and quantity of hypercholesterolemic fatty acids. The results indicated the fish in study have interesting lipids, having bigger quantity of total lipids the fishes curimatã and pacu, with bigger participation of neutral lipids, and cholesterol as majority steroid for all fishes. The unsaturated fatty acids, essentials for human health, it was found in bigger quantity in fishes sardinha and pacu in phospholipids class and in pescada (whitefish), curimatã, jaraqui and surubim in neutral lipids class. Besides pacu fish has shown bigger quantity of omega 3 and 6 fatty acids, the fish pescada (whitefish) highlighted for nutritional quality. / Considerando a importância do pescado para o povo amazônico, o seu potencial no mercado, a sua valorização nutritiva, e à escassez de informações referentes à composição lipídica dos peixes amazônicos objetivou-se determinar a composição lipídica presente no músculo dorsal de seis espécies de peixes amazônicos, jaraqui, curimatã, pacu, sardinha, pescada e surubim, através das análises dos ácidos graxos constituintes de suas diferentes classes de lipídeos e dos esteróides presentes em seus lipídeos insaponificáveis. O estudo envolveu o desenvolvimento e a aplicação de metodologias para extração dos lipídeos totais, separação de classes de lipídeos, extração de lipídeos insaponificáveis, derivatização de ácidos graxos e esteróides, análises por cromatografia gasosa com detector de ionização de chamas e com espectrometria de massas para avaliação quanti e qualitativa de esteróides e de ácidos graxos dos lipídeos em classes. E ainda abordou a determinação da qualidade nutricional dos lipídeos através dos índices de aterogenecidade, de trombogenecidade e pela quantidade de ácidos graxos hipocolesterolêmicos. Os resultados indicaram que os peixes em estudo contêm lipídeos interessantes, possuindo maior quantidade de lipídeos totais os peixes curimatã e pacu, com maior participação dos lipídeos neutros, e colesterol como esteróide marjoritário para todos os peixes. Os ácidos graxos insaturados, essenciais para a saúde humana, foi encontrado em maior quantidade nos peixes sardinha e pacu na classe dos fosfolipídeos e nos peixes peixes curimatã, pescada, jaraqui e surubim na classe dos lipídeos neutros. Apesar de o peixe pacu ter mostrado maior quantidade de ácidos graxos de ômega 3 e 6 o peixe pescada se destacou pela qualidade nutricional.
|
52 |
Towards fully Synthetic Intranasal Peptide-based Vaccines against Group A Streptococcal infectionsAbu-Baker Mustafa Abdel-Aal El-Sayed Unknown Date (has links)
Vaccination comes second in importance after introduction of clean water as a public health intervention which has largely contributed in the reduction of deaths from infectious diseases. Success in the development of a group A streptococcal (GAS) vaccine is expected to save 517 000 deaths per annum according to a recent independent review commissioned by the world health organization (WHO) and would offer an ideal means to prevent rheumatic heart disease (responsible for the greatest health burden) and other GAS-associated diseases which affect the health of 600 million. Traditional vaccine approaches (killed or live attenuated) have demonstrated great success against many bacterial and viral infectious diseases, crowned by the global eradication of smallpox announce by the WHO in 1980 and near-to-be announced eradication of polio viral disease. However, application of traditional techniques in many cases such as HIV/AIDS, malaria, GAS and Mycobacteria tuberculosis, has not shown the same success. Risk associated with the use of live–attenuated pathogens, such as recurrence of virulence (e.g. HIV), development of autoimmune diseases (e.g. GAS), and difficulties of manufacture hindered the use of such approaches. Other vaccine approaches such as subunit vaccines (recombinant proteins) and carrier conjugated vaccine are also hindered by the lack of suitable adjuvants, carriers and delivery systems. The current thesis focused on the design, synthesis and evaluation of novel adjuvants and vaccine delivery systems against GAS. The first chapter reviews recent approaches in the field of GAS vaccine design and new findings in immunology which represent the basis of our novel strategies. The second chapter describes the design, synthesis and evaluation of a novel library of lipopeptides as self-adjuvanting GAS vaccine candidates, composed of: (i) a universal helper T-cell epitope (P25), (ii) a target GAS B-cell epitope (J14), and (iii) a lipid moiety. Systemic J14-specific IgG antibodies were detected following subcutaneous immunization of BALB/c (H-2d) mice with each construct without the need for an additional adjuvant. The effect of changing the order of P25, J14, and lipid moiety attachment, or incorporation of P25 and J14 into a lipid-core peptide system (LCP) on antibody titers was assessed. The point of lipid moiety attachment had the greatest influence on systemic J14-specific IgG antibody titers. Overall, the best vaccines featured a C-terminal lipid moiety, conjugated through a lysine residue to P25 at the N-terminus, and J14 on the lysine side-chain. Mucosal surface of the nasal-oral route is a primary site of GAS infections. An ideal GAS vaccine would have to elicit both mucosal as well as systemic immune responses and hence would not only prevent the development of GAS-associated diseases but also would prevent primary GAS infections. Therefore, the nasal route is considered a highly promising route of vaccine administration to provide local as well as systemic immune responses against pathogens that utilize mucosal surface as site of infection. The third chapter includes immunological assessment of the lipopeptide vaccine library described in the second chapter following intranasal immunization of B10BR (H-2k) mice. The whole library was first investigated in a small scale experiment (5 mice per group) to select promising candidates which demonstrate the best local and systemic J14-specific antibodies. Four selected lipopeptides were further investigated in a larger scale experiment (15 mice per group) followed by intranasal challenge of vaccinated mice with a virulent GAS M1 strain. The best local and systemic immune responses were demonstrated by a lipopeptide featuring a lipid moiety consisting of two 16 carbon chains incorporated at the C-terminus of the lipopeptide. However, this candidate did not achieve protection against bacterial challenge. The best protection (100%) was shown by a lipopeptide candidate featuring a C-terminal J14, conjugated through a lysine residue to P25 at the N-terminus, and a lipid moiety on the lysine side-chain. A possible explanation for these results was investigated where antibodies elicited by the former candidate was found to better recognize the minimal B-cell epitope in the native p145 sequence of the M protein. Circular dichroism study of lipopeptides used in the previous experiment demonstrated that the former candidate features α-helical conformation which is required to produce protective J14-specific antibodies. Further studies are needed to explain structural features required to achieve both α-helicity and strong mucosal immune responses shown by the previously mentioned two lipopeptides. Signaling through toll-like receptors expressed by immune cells was recently shown to result in a robust immune response and was investigated as a possible mode of action for our novel lipopeptides. The fourth chapter introduces our lipopeptide vaccine approach as novel synthetic ligands targeting TLR2. A lipid moiety consisting of two alkyl chains of 16 carbons was found to achieve optimal TLR2 signaling regardless of the position of lipid attachment. Carbohydrates as polyhydroxy compounds provide an easily accessible class of compounds to design scaffolds (carriers) to attach lipids and peptide epitopes in different number and stereochemical positions which makes glycolipopeptides an attractive target for adjuvant research and structure-adjuvanticity relationships studies. The Fifth chapter reports immunological assessment of two series of glycolipopeptides as GAS vaccine candidates and novel vaccine delivery systems. The first series: lipid carbohydrate core peptide system (LCCP); represents a modification of the classical LCP system where polylysine dendrimer is replaced by different monosccharides as carriers for peptide antigens. LCCP analogues induced proper humoral immune responses against incorporated epitopes comparable to the LCP delivery system and as strong as the immune response elicited by CFA mixtures. Moreover, LCCP delivery system has been proved to be tolerant to the use of different epitopes as well as changing carbohydrate cores. Design of novel carbohydrate cores with different orthogonal protecting groups is needed to explore the potential advantage of various stereochemical arrangements provided by monosaccharides. The second series of glycolipopeptides incorporates various glycolipid moieties (self-adjuvanting activity) covalently coupled to the N-terminus of J8 (a model epitope). The new glycolipopeptide vaccine candidates (containing only one copy of J8) bear comparison with an LCP analogue (containing four copies of J8) which would improve the ease of synthesis, purification and cost of vaccine production. The slight difference in immunogenicity among these glycolipopeptides was difficult to be explained due to intervening effects of both the number and orientation of lipids on immunological activity. Further investigation is needed to determine the contribution of each factor.
|
53 |
Towards fully Synthetic Intranasal Peptide-based Vaccines against Group A Streptococcal infectionsAbu-Baker Mustafa Abdel-Aal El-Sayed Unknown Date (has links)
Vaccination comes second in importance after introduction of clean water as a public health intervention which has largely contributed in the reduction of deaths from infectious diseases. Success in the development of a group A streptococcal (GAS) vaccine is expected to save 517 000 deaths per annum according to a recent independent review commissioned by the world health organization (WHO) and would offer an ideal means to prevent rheumatic heart disease (responsible for the greatest health burden) and other GAS-associated diseases which affect the health of 600 million. Traditional vaccine approaches (killed or live attenuated) have demonstrated great success against many bacterial and viral infectious diseases, crowned by the global eradication of smallpox announce by the WHO in 1980 and near-to-be announced eradication of polio viral disease. However, application of traditional techniques in many cases such as HIV/AIDS, malaria, GAS and Mycobacteria tuberculosis, has not shown the same success. Risk associated with the use of live–attenuated pathogens, such as recurrence of virulence (e.g. HIV), development of autoimmune diseases (e.g. GAS), and difficulties of manufacture hindered the use of such approaches. Other vaccine approaches such as subunit vaccines (recombinant proteins) and carrier conjugated vaccine are also hindered by the lack of suitable adjuvants, carriers and delivery systems. The current thesis focused on the design, synthesis and evaluation of novel adjuvants and vaccine delivery systems against GAS. The first chapter reviews recent approaches in the field of GAS vaccine design and new findings in immunology which represent the basis of our novel strategies. The second chapter describes the design, synthesis and evaluation of a novel library of lipopeptides as self-adjuvanting GAS vaccine candidates, composed of: (i) a universal helper T-cell epitope (P25), (ii) a target GAS B-cell epitope (J14), and (iii) a lipid moiety. Systemic J14-specific IgG antibodies were detected following subcutaneous immunization of BALB/c (H-2d) mice with each construct without the need for an additional adjuvant. The effect of changing the order of P25, J14, and lipid moiety attachment, or incorporation of P25 and J14 into a lipid-core peptide system (LCP) on antibody titers was assessed. The point of lipid moiety attachment had the greatest influence on systemic J14-specific IgG antibody titers. Overall, the best vaccines featured a C-terminal lipid moiety, conjugated through a lysine residue to P25 at the N-terminus, and J14 on the lysine side-chain. Mucosal surface of the nasal-oral route is a primary site of GAS infections. An ideal GAS vaccine would have to elicit both mucosal as well as systemic immune responses and hence would not only prevent the development of GAS-associated diseases but also would prevent primary GAS infections. Therefore, the nasal route is considered a highly promising route of vaccine administration to provide local as well as systemic immune responses against pathogens that utilize mucosal surface as site of infection. The third chapter includes immunological assessment of the lipopeptide vaccine library described in the second chapter following intranasal immunization of B10BR (H-2k) mice. The whole library was first investigated in a small scale experiment (5 mice per group) to select promising candidates which demonstrate the best local and systemic J14-specific antibodies. Four selected lipopeptides were further investigated in a larger scale experiment (15 mice per group) followed by intranasal challenge of vaccinated mice with a virulent GAS M1 strain. The best local and systemic immune responses were demonstrated by a lipopeptide featuring a lipid moiety consisting of two 16 carbon chains incorporated at the C-terminus of the lipopeptide. However, this candidate did not achieve protection against bacterial challenge. The best protection (100%) was shown by a lipopeptide candidate featuring a C-terminal J14, conjugated through a lysine residue to P25 at the N-terminus, and a lipid moiety on the lysine side-chain. A possible explanation for these results was investigated where antibodies elicited by the former candidate was found to better recognize the minimal B-cell epitope in the native p145 sequence of the M protein. Circular dichroism study of lipopeptides used in the previous experiment demonstrated that the former candidate features α-helical conformation which is required to produce protective J14-specific antibodies. Further studies are needed to explain structural features required to achieve both α-helicity and strong mucosal immune responses shown by the previously mentioned two lipopeptides. Signaling through toll-like receptors expressed by immune cells was recently shown to result in a robust immune response and was investigated as a possible mode of action for our novel lipopeptides. The fourth chapter introduces our lipopeptide vaccine approach as novel synthetic ligands targeting TLR2. A lipid moiety consisting of two alkyl chains of 16 carbons was found to achieve optimal TLR2 signaling regardless of the position of lipid attachment. Carbohydrates as polyhydroxy compounds provide an easily accessible class of compounds to design scaffolds (carriers) to attach lipids and peptide epitopes in different number and stereochemical positions which makes glycolipopeptides an attractive target for adjuvant research and structure-adjuvanticity relationships studies. The Fifth chapter reports immunological assessment of two series of glycolipopeptides as GAS vaccine candidates and novel vaccine delivery systems. The first series: lipid carbohydrate core peptide system (LCCP); represents a modification of the classical LCP system where polylysine dendrimer is replaced by different monosccharides as carriers for peptide antigens. LCCP analogues induced proper humoral immune responses against incorporated epitopes comparable to the LCP delivery system and as strong as the immune response elicited by CFA mixtures. Moreover, LCCP delivery system has been proved to be tolerant to the use of different epitopes as well as changing carbohydrate cores. Design of novel carbohydrate cores with different orthogonal protecting groups is needed to explore the potential advantage of various stereochemical arrangements provided by monosaccharides. The second series of glycolipopeptides incorporates various glycolipid moieties (self-adjuvanting activity) covalently coupled to the N-terminus of J8 (a model epitope). The new glycolipopeptide vaccine candidates (containing only one copy of J8) bear comparison with an LCP analogue (containing four copies of J8) which would improve the ease of synthesis, purification and cost of vaccine production. The slight difference in immunogenicity among these glycolipopeptides was difficult to be explained due to intervening effects of both the number and orientation of lipids on immunological activity. Further investigation is needed to determine the contribution of each factor.
|
54 |
Structure and dynamics of artificial lipid membranes containing the glycosphingolipid Gb3Schütte, Ole Mathis 16 July 2015 (has links)
No description available.
|
55 |
Conception de nouveaux monomères glycolipidiques par voie chimio-enzymatique pour la synthèse de polymères amphiphiles et leur auto-assemblage dans l’eau : vers des applications de vectorisation / Chemo-enzymatic synthesis of new glycolipidic monomers for the conception of amphiphilic polymers and their self-assembly in water : toward vectorization applicationsArcens, Dounia 08 December 2017 (has links)
Ces travaux de thèse portent sur la conception par voie chimio-enzymatique de polymères amphiphiles issus de glycolipides, capables de s’auto-assembler en phase aqueuse et susceptibles de répondre à des applications de vectorisation de principes actifs. Après une étude préalable des paramètres influents lors de la synthèse enzymatique, huit monomères glycolipidiques porteurs de fonctions esters vinyliques,méthacrylate ou [alpha]-méthylstyrène ont été synthétisés à partir de dérivés d’huile de ricin et de glucose. Les monomères porteurs d’une fonction ester vinylique comme groupement polymérisable ont été copolymérisés en présence d’acétate de vinyle mais les copolymères ainsi formés n’ont pas montré de capacité à s’autoassembler. Les monomères fonctionnalisés par un groupement méthacrylate, ont été copolymérisés en présence de méthacrylate de méthyle ; trois gammes de copolymères ont ainsi été synthétisées par polymérisation radicalaire, les deux premières selon un mécanisme non contrôlé en présence d’un agent de transfert thiolé ou pas et la troisième selon la méthodologie RAFT. Dans tous les cas, des nanoparticules bien définies et stables pendant plusieurs mois ont été obtenues par auto-assemblage de ces trois gammes de copolymères en phase aqueuse. Le Rouge de Nil a été piégé au sein de ces nanoparticules puis relargué par ajout de chlorure de sodium, laissant entrevoir des applications de stabilisation et de vectorisation de principes actifs pour ces nouveaux copolymères. / The aim of this thesis was the conception of amphiphilic polymers able to self-assembly in water forpotential drug delivery applications, from glycolipidic monomers synthesized by a chemo-enzymatic pathway.After a preliminary study of the influent parameters on glycolipid synthesis via enzymatic catalysis, eightmonomers bearing either vinyl ester, methacrylate or a-methylstyrene groups have been synthesized fromglucose and castor oil derivatives. The vinyl ester-bearing monomers have been copolymerized with vinylacetate. Unfortunately, the resulting copolymers did not show interesting self-assembly properties in water.Three families of copolymers were synthesized from the methacrylate-bearing monomers and methylmethacrylate, either by free radical polymerization in the presence or not of a transfer agent or by reversibleaddition-fragmentation polymerization (RAFT). Well-defined and stablenanoparticles were obtained from allthose copolymers. Nile Red was successfully trapped into those nanoparticles and released by adding sodiumchloride, allowing perspectives as potential drug delivery applications for those new copolymers.
|
56 |
INVESTIGATION OF MULTIPLE CHARGING PHENOMENON AND GAS-PHASE ION/ION REACTIONS FOR BIOLOGICAL/SYNTHETIC POLYMERS AND GLYCOLIPIDSHsi-Chun Chao (12224828) 20 April 2022 (has links)
<p> Mass
spectrometry (MS) is one of the most commonly used analytical techniques in
bioanalytical analysis, allowing scientists to characterize molecules with very
diverse chemical features. The advance in ionization strategies significantly
improves the potential in using MS for that purpose, especially electrospray
ionization (ESI) can generate ions directly from solution in ambient
conditions, showing high flexibility in coupling with other techniques.
Moreover, a hallmark of the ESI of large polymeric molecules is also its
tendency to generate a distribution of charge states based on their chemical
characteristics, allowing us to exploit the multiple charging phenomenon in
various applications. </p>
<p>This dissertation introduces the
relationships between ESI and multiple charging phenomena with different proposed
ionization models, and how condensed-phase and gas-phase approaches affect the
multiple charging phenomenon. Moreover, multiply charged ions permit gas-phase
ion/ion reactions to occur without neutralizing the ions. Therefore, various
ion/ion reactions can be utilized for distinct analytical purposes.
Objectively, this dissertation focuses on the investigation of the multiple
charging phenomenon from ESI-MS, and the applications from taking the multiply
charged ions to perform gas-phase ion chemistry in order to a) manipulate the
charges of the targeted ions; b) invert the polarity of the targeted ions; c)
and characterization of the ions from the gas-phase ion/ion reactions.</p>
<p> The first work demonstrates how multiple
components (i.e., complicated mixtures) lead to a highly congested spectrum of
ions with overlapped m/z values, resulting from the multiple charging
phenomenon after the ESI process. Utilizing ionic reactions can de-congest the
spectra via manipulating the charges of the ions to separate the overlapped
signals. A universal spectral pattern in the ESI mass spectra is observed while
analyzing multiply-charged homopolymers. Various parameters, such as the
charges of the ions, widths of polymer distributions, monomer mass, and
cationizing agent masses, are investigated to show how they can affect the
appearance of the unique patterns, which condense the information of the
overall distribution of the homopolymers. Combined with gas-phase charge
reduction (i.e., proton transfer reaction), we can characterize the size
distribution of polydisperse homopolymer samples.</p>
<p>Second, a novel type charge
inversion ion/ion reaction summarizing the conversion of multiply charged
protein ions to their opposite polarity and still holds multiple charges is
reported. The reaction occurs via a single ion/ion collision with highly
charged reagent ions, which we usually obtain from biological relevant
polymers. Hyaluronic acid (HAs) anions and polyethylenimine (PEI) cations are
used as the charge inversion reagents to react with protein ions. Remarkably,
inversion of high absolute charge (up to 41) from the reaction is demonstrated.
All mechanisms for ion/ion charge inversion involve low-energy ions proceeding
via the formation of a long-lived complex. Factors that underlie the charge
inversion of protein ions to the opposite polarity with high charge states in
reaction with those reagent ions are hypothesized to include: (i) the
relatively high charge densities of the HA anions and PEI cations that
facilitate the extraction/donation of multiple protons from/to the protein
leading to multiply charged protein anions/cations, (ii) the relatively high
sum of absolute charges of the reactants that leads to high initial energies in
the ion/ion complex, and (iii) the relatively high charge of the ion/ion
complex following the multiple proton transfers that tends to destabilize the
complex.</p>
<p>Third, shotgun MS strategies
coupled with different gas-phase ion chemistry and tandem MS to analyze
glycolipids are demonstrated. Glycolipids contain both carbohydrates and lipids
structure components that it is incredibly challenging to analyze with MS.
Isomeric cerebrosides (n-HexCer) and glycosphingosines (n-HexSph), which hold
isomerisms in diastereomeric sugar head groups (glucose and galactose),
anomeric glycosidic linkages (alpha- or beta-), and isomeric amide-bonded
monounsaturated fatty acyl chain (double bond location) are successfully
differentiated by dissociating gas-phase ion/ion reaction products, the
charge-inverted complex cations. Both relative and absolute quantification of
the isomers is also achieved, and analytical performances are evaluated in
terms of accuracy, precision, and inter-day precision, allowing us to perform
mixture analysis. Porcine brains were used to demonstrate the ability to
profile and quantify those isomers from biological extracts. Moreover, a
parallel workflow is also proposed for gangliosides, which have more
complicated structures among their glycan moiety. Metal cation transfer, proton
transfer, and charge inversion reactions are utilized to manipulate the ion
types to provide better structural information. The proposed workflow allows us
to clean up the mass spectra by neutralizing interfering isobaric ions,
differentiate isomeric gangliosides, and perform relative quantitation when the
standards are available. The workflow also is used to obtain gangliosides
profiles from biological matrices. Overall, work in this dissertation takes
advantage of the multiple charging phenomenon and couples with gas-phase
ion/ion reactions to achieve various analyses among a wide range of
biological-related samples.</p>
|
57 |
Phospholipid membranes in biosensor applications : Stability, activity and kinetics of reconstituted proteins and glycolipids in supported membranesGustafson, Inga January 2004 (has links)
<p>In this study the formation of supported membranes onto planar solid supports has been investigated. The stability and activity of reconstituted membrane receptors has been studied. The potential use of such preparations in biosensor applications is discussed.</p><p>The lipid films were made by the Langmuir Blodgett and by the liposome fusion techniques. These supported films were characterised by ellipsometry, atomic force microscopy, surface plasmon resonance (SPR) and resonant mirror techniques. The thickness of the films was in agreement with that of a cell membrane. The kinetics of formation of the lipid films was studied and discussed.</p><p>The proteins, bacteriorhodopsin, cytochrome oxidase, acetylcholinesterase and the nicotinic acetylcholine receptor were reconstituted into the supported membrane. The subsequent analysis showed that the proteins were individually distributed and that the activity was retained, in some cases for several weeks after immobilisation.</p><p>The glycolipids, GM1, GM2, GD1b, asialo-GM1, globotriaosylceramide, lactosylceramide and galactosylceramide, were also reconstituted into the supported membranes. Their specific interaction with the toxin ricin or with its B-chain was examined using SPR. The affinity of intact toxin and of its B-chain differed markedly and was pH dependent. The carbohydrate chain length and charge density of the glycolipids also influenced the affinity.</p>
|
58 |
Phospholipid membranes in biosensor applications : Stability, activity and kinetics of reconstituted proteins and glycolipids in supported membranesGustafson, Inga January 2004 (has links)
In this study the formation of supported membranes onto planar solid supports has been investigated. The stability and activity of reconstituted membrane receptors has been studied. The potential use of such preparations in biosensor applications is discussed. The lipid films were made by the Langmuir Blodgett and by the liposome fusion techniques. These supported films were characterised by ellipsometry, atomic force microscopy, surface plasmon resonance (SPR) and resonant mirror techniques. The thickness of the films was in agreement with that of a cell membrane. The kinetics of formation of the lipid films was studied and discussed. The proteins, bacteriorhodopsin, cytochrome oxidase, acetylcholinesterase and the nicotinic acetylcholine receptor were reconstituted into the supported membrane. The subsequent analysis showed that the proteins were individually distributed and that the activity was retained, in some cases for several weeks after immobilisation. The glycolipids, GM1, GM2, GD1b, asialo-GM1, globotriaosylceramide, lactosylceramide and galactosylceramide, were also reconstituted into the supported membranes. Their specific interaction with the toxin ricin or with its B-chain was examined using SPR. The affinity of intact toxin and of its B-chain differed markedly and was pH dependent. The carbohydrate chain length and charge density of the glycolipids also influenced the affinity.
|
59 |
Molecular Characterization c-di-GMP Signalling In Mycobacterium SmegmatisBharati, Binod Kumar 07 1900 (has links) (PDF)
Bacterial stationary phase is an interesting biological system to study, as the organism undergoes several metabolic changes during this period and new molecules are generated to support its survival. The stationary phase of mycobacteria has been extensively studied since the discovery of Mycobacterium tuberculosis, the causative agent of tuberculosis. The stationary phase of mycobacteria adds further complication as many antibacterial drugs become less effective. The M. tuberculosis infects the alveolar macrophages and dendritic cells or monocytes recruited from peripheral blood. Macrophages are supposed to provide an initial barrier against the bacterial infection, but fails. Mycobacteria have evolved several strategies to survive and set up an initial residence within these cells and grow actively inside the host. The host immune system tries to limit the bacterial growth and confines the organism to a latent state in which the organism can persist indefinitely, known as granuloma stage. During latency or granuloma stage mycobacteria can retain the ability to resume the growth in the future. Mycobacteria must adapt to a highly dynamic and challenging environment because the interior environment of granuloma is devoid of or in low level of oxygen, depleted nutrient, high carbon dioxide, and possess increased levels of aliphatic organic acids and hydrolytic enzymes. The survival of a bacterium in less nutrient supply or in depleted oxygen is important for its long-¬term persistence inside the host under harsh environmental conditions.
Mycobacterium smegmatis is the closest non-¬pathogenic homologue of
M. tuberculosis, and has been used widely as a model system to study gene regulation under such conditions. In these harsh environmental conditions bacteria need to sense the external environment to modulate their gene expression. More importantly, each individual cell should communicate with its neighbours, and the response takes place in a concerted manner, which is termed as quorum sensing. Thus, the quorum sensing is a cell-¬cell signaling process that allow the bacteria to monitor the presence of other bacteria in their surroundings by producing and responding to small signaling molecules, which are known as autoinducers. It is a density dependent phenomenon and regulates the expression of the genes in response to fluctuation in cell¬-population density. A minimum threshold level of autoinducers is necessary to detect the signal and respond to it. Quorum sensing enables bacteria to behave like multicellular organisms and controls group activities like biofilm formation, sporulation, bioluminescence, virulence, and pigment production, etc (Bassler, 1999; Camilli & Bassler, 2006; Fuqua et al., 1996; Miller & Bassler, 2001).
In Gram-¬negative bacteria, small-¬molecules, which are known as autoinducers are produced. They are acyl homoserine lactones (AHLs), which are derived from S¬adenosyl methionine (SAM) and particular fatty acyl carrier protein by LuxI¬type AHL synthases (Fuqua et al., 1996). In Gram-¬positive bacteria small peptides autoinducers, 5¬12 amino acids long, play an active role in communication. These oligopeptides are post--translationally modified by the incorporation of lactone and thiolactone rings, lanthionines and isoprenyl groups. These oligopeptide autoinducers are detected by membrane-¬bound two-¬component signaling proteins, and signal transduction occurs by a phosphorylation cascade (Camilli & Bassler, 2006; More et al., 1996; Novick, 2003; Zhang et al., 2002). In bacteria, the cyclic adenosine monophosphate (cAMP), and guanosine pentaphosphate and/or tetraphosphate ((p)ppGpp) are well known second messengers, which play important role in relaying extracellular information, but recently cyclic diguanosine monophosphate (c-¬di¬-GMP) is being studied most comprehensively as a nucleotide-¬based second messenger. C-¬di¬-GMP was first discovered in Gluconacetobacter xylinus as a positive allosteric regulator of cellulose synthase (Ross et al., 1987; Tal et al., 1998; Weinhouse et al., 1997). The in vivo level of c-¬di-¬GMP in bacterial cell is maintained by the balance between diguanylate cyclase and phosphodiesterase activities. The GGDEF and EAL amino acids sequence are the signature motif for GGDEF and EAL domain protein within its active site, respectively. The GGDEF domain protein is involved in synthesis of c-¬di-¬GMP and the EAL domain protein is involved in the hydrolysis of c-¬di-¬GMP, and the majority of these proteins contain additional signal input domains (Paul et al., 2004; Ross et al., 1987; Ryjenkov et al., 2005; Tal et al., 1998).
M. smegmatis has a single bi-¬functional protein having both the domains, GGDEF and EAL, for the diguanylate cyclase (DGC) and phosphodiesterase (PDE¬A) activities. In addition to GGDEF and EAL domain, one sensory domain, GAF, is also there at the N-terminal of MSMEG_2196 in M. smegmatis. In the present investigation, studies have been carried out to understand the regulation of c-¬di-¬GMP in M. smegmatis at protein and gene level. The entire study on mycobacterial MSMEG_2196 (msdgc¬1) can be broadly divided into five parts; the first part will cover the identification and biochemical characterization of MSDGC¬1 protein, responsible for the regulation of in vivo c-¬di-¬GMP concentration in M. smegmatis, and the presence of GGDEF¬EAL domain containing proteins in various mycobacterial species. The second part will cover the structure function relationship as a function of substrate, GTP and product, c-¬di-GMP, molecule using fluorescence spectroscopy as a tool, and the mutational and structural studies, which leads to the identification of a novel structural motif. The third part will cover the characterization of msdgc¬1 gene knockout and complementation studies in great detail. The fourth part will comprise in vivo and in vitro promoter characterization and regulation of the msdgc¬1 gene under nutritional starvation. The last chapter will cover the characterization of novel synthetic glycolipids, which are working as a growth and biofilm inhibitors in mycobacteria, and can be used as a new drug candidates.
Chapter 1 outlines the signal transduction and quorum sensing mechanism, and small molecule signaling modules in brief. The importance of the study started with a brief introduction about the historical aspect of tuberculosis, the current scenario of the treatment of tuberculosis. The urgent need for new drug targets and drugs will be discussed. The important role of the novel second messenger, c-¬di¬-GMP has been explained in greater details in both Gram-¬positive and Gram-¬negative bacteria, and the information available on the different cellular targets has been documented.
Chapter 2 describes the identification and biochemical characterization of
M. smegmatis MSMEG_2196 protein. The domain architecture and individual domain role have been studied. The MSMEG_2196 proteins consist of three domains, GAF, GGDEF and EAL in tandem, and individual role of each domain has been studied. The diguanylate cyclases containing GGDEF and phosphodiesterases containing EAL domains have been identified as the enzymes involved in the regulation of in vivo cellular concentration of c-¬di-¬GMP. GAF domain has been identified as a metal binding domain in other bacteria and may be playing a role in the regulation of synthesis and hydrolysis activities of c-¬di¬-GMP. The identification, cloning expression and purification of MSMEG_2196 and MSMEG_2774 have been discussed. We have reported that mycobacterial MSDGC¬1 protein has dual activity, which means that it can synthesize and hydrolyse c¬-di-¬GMP; and also full-¬length protein is necessary for its either of the activities. The synthesis and hydrolysis products, c-¬di-¬GMP and pGpG, of MSDGC¬1 protein have been identified and characterized using radiolabelled alpha [α¬32P]GTP and Matrix Assisted Laser Desorption/Ionization mass spectrometry (MALDI). The effects of temperature and pH on the activities of MSDGC¬1 have been studied. The circular dichroism studies show that the MSDGC¬1 protein is predominantly α¬helical in nature, and secondary structure does not alter upon GTP binding. The kinetic parameters for MSDGC¬1 protein have been calculated as a function of substrate, GTP. The protein, MSDGC¬1, exist as a monomer and a dimer in solution. The MSDGC¬1 protein has four cysteines, and we have shown here using mass spectrometric analysis that none of the cysteines is involved in the disulphide linkage.
Chapter 3 deals with the structure-¬function relationship as a function of GTP and c¬-di-GMP molecules using fluorescence spectroscopy as a tool. In order to do so we have generated several cysteine mutants using site directed mutagenesis, and protein was labelled with thiol-¬specific fluorophores. The labelled protein was checked for its DGC and PDE¬A activities and specificity of labelling was confirmed using MALDI and radiometric analysis. The Fluorescence Resonance Energy Transfer (FRET) has been carried out to observe domain-¬domain interaction as a function of GTP and c¬-di-¬GMP. The bioinformatics, structural, and mutational analysis suggest that cysteine at 579 position is important for DGC and PDE¬A activities, and may be involved in the formation of a novel structural motif, GCXXXQGF, which is necessary for synthesis and degradation of c-¬di-¬GMP.
Chapter 4 describes the construction of a deletion mutation of MSMEG_2196 gene in M. smegmatis. The strategy for the construction of the knockout strain has been shown and confirmation of the knockout event has been carried out using PCR and Southern hybridization. The effect of deletion of msdgc¬1 has been studied in great detail, and it was noticed that biofilm formation is not affected, but long-¬term survival is significantly compromised. It is hypothesized here that c-¬di¬-GMP is involved in the regulation of cell population density in mycobacteria. We have successfully detected the c-¬di¬-GMP in the total nucleotide extract using HLPC coupled with MALDI, and we have shown here that level of c-¬di-¬GMP increases many fold in the stationary phase of growth under nutritional starvation.
Chapter 5 deals with the identification and characterization of the promoter element of msdgc¬1 in M. smegmatis. The study was undertaken to understand the mechanism of regulation at promoter level. We have observed here that msdgc¬1 promoter is starvation induced, and expression of msdgc¬1 increases many fold in the stationary phase under nutritional starvation. We have also tried to establish the link between the ppGpp and c-di¬-GMP signalling, and possible role of c-¬di-¬GMP in the regulation of cell population density have been discussed. Further, the +1 transcription start site has been identified using primer extension method. The putative ¬10 hexamer region for the RNA polymerase binding has been identified and confirmed using site-¬directed mutagenesis. It was found to be TCGATA, which is 14 bp upstream from the +1 transcription start site. The msdgc-1 promoter is specific for mycobacteria and does not function in E. coli. Moreover, we have identified the sigma factors, which regulate the msdgc¬1 promoter in growth phase dependent manner.
Chapter 6 begins with the screening of synthetic glycolipids as a novel drug candidate. The different glycolipids have been tested for their effect on growth, biofilm formation, and sliding motility of M. smegmatis, and we have screened few of them, which were found to be effective in inhibiting the microbial growth, biofilm formation, and sliding motility.
Chapter 7 summarizes the work presented in this thesis.
Appendix: The protein sequences of MSDGC¬1 and MSDGC¬2, and the multiple sequence alignments of MSDGC¬1 protein have been documented. The FORTRAN program, which was used to calculate spectral overlap integral J, and the diagrams of the plasmids used in this study have been provided.
|
60 |
(p)ppGpp and Stress Response : Decoding the Key Pathways by Small Molecule Analogues Biophysical Methods and Mass SpectrometrySyal, Kirtimaan January 2015 (has links) (PDF)
Under hostile conditions, bacteria elicit stress response. Such stress response is regulated by a secondary messenger called (p)ppGpp. (p)ppGpp is involved in wide range of functions such as GTP homeostasis, biofilm formation and cell growth. Its regulation and mode of action is not well understood. This work has been initiated with an aim to gain insights into the molecular basis of stress response. (p)ppGpp was discovered on the chromatogram of cell extract from starved E. coli cells. (p)ppGpp is synthesized and hydrolyzed by Rel/SpoT in Gram negative bacteria (such as E. coli), and by bifunctional enzyme called Rel in Gram positive bacteria (such as Mycobacteria).
The obvious question that comes in our mind is how bifunctional Rel enzyme decides on synthesis or hydrolysis in Gram positive bacteria such as Mycobacterium? In our laboratory, it has been shown that N-terminal domain of Rel shows unregulated (p)ppGpp synthesis implying regulatory role of C-terminal domain. Also, concurrent increase in anisotropy of Rel C-terminal domain with the increase in concentration of pppGpp has been observed indicating the binding of pppGpp to the C-terminal domain. We performed Isothermal Calorimetry experiment to confirm that pppGpp binds with C-terminal domain of Rel enzyme. For identification of the binding region, small molecule analogue 8-azido-pppGpp has been synthesized. This analogue is UV-crosslinked with C-terminal domain of Rel and specificity of the interaction has been determined by gel based crosslinking experiments. Crosslinked protein has been subjected to the ingel¬trypsin digestion and analyzed by mass spectrometry. We identified two crosslinked peptides in the mass spectra of trypsin digest in case of the crosslinked protein where identity of the parent peptide is confirmed by MS-MS analysis. Site directed mutagenesis has been carried out based on the conservation of residues in the crosslinked peptides. Isothermal Calorimetry analysis has been done where Rel C-terminal domain mutants are titrated with pppGpp in order to detect any defect in binding due to the mutations. Mutations leading to the reduced binding affinity of pppGpp to Rel C-terminal domain have been introduced in the full length Rel protein and activity assays are carried out so as to evaluate the effects of mutations on synthesis and hydrolysis activity. In mutants, synthesis activity is found to be increased with the concomitant reduction in hydrolysis activity. This indicates the feedback loop where pppGpp binds to Rel C-terminal domain to regulate it own synthesis and hydrolysis.
In E. coli, pppGpp binds to RNA polymerase and modulates the transcription. The region where it binds is controversial. In addition, whether ppGpp and pppGpp have different binding site on RNA polymerase is not known. The latter question becomes important in the light of evidence where differential regulation of transcription by ppGpp and pppGpp have been indicated. We found that ppGpp and pppGpp have an overlapping binding site on RNA polymerase. The 8-azido-ppGpp has been mapped on β and β’ subunits whereas binding site of 8-azido-pppGpp has been located on the β’ subunit. We observed that the 8-azido¬pppGpp labels RNA polymerase more efficiently than ppGpp. pppGpp can compete out ppGpp as illustrated by DRaCALA assay and gel based crosslinking experiment. However, the RNAP from B. subtilis does not bind to (p)ppGpp.
(p)ppGpp is ubiquitous in bacteria but absent in mammals. Thus, blocking (p)ppGpp synthesis would impede the survival of bacteria without having any effect on humans. Recently, Relacin compound has been synthesized by another group in order to inhibit (p)ppGpp synthesis. The limitations of this compound are the requirement of high concentration (5mM) for inhibition and low permeability across the membrane. Taking hints from the latter compound, we acetylated the
nd 2’, 3’ and 5’ position of ribose ring and benzoylated the 2position of guanine moiety in guanosine molecule. We observed significant inhibition of in vitro pppGpp synthesis and biofilm formation. More studies will be conducted in near future to test these compounds for their plausible functions.
In collaboration with Prof. Jayaraman (Organic Chemistry, IISc), many artificial glycolipids are synthesized and tested for biological function. We observed that synthetic glycolipids exhibit a profound effect as inhibitors of the key mycobacterial functions. These analogs impede biofilm formation and can plausibly affect long term survival. Glycolipid analogs can compete with natural glycolipids, thus may help in understanding their functions. Our past and recent studies have showed that the synthetic glycolipids act as inhibitors of mycobacterial growth, sliding motility and biofilm formation. The major lacuna of these glycolipid inhibitors is the requirement of high concentration. Their inhibitions at nanomolar concentrations remain to be achieved. Issues surrounding the thick, waxy mycobacterial cell wall structures will continue to be the focus in manifold approaches to mitigate detrimental effects of mycobacterial pathogens.
In chapter 1, introduction to the research work has been written and role of (p)ppGpp and its functions have been discussed. In chapter 2, novel binding site of pppGpp on Rel C-terminal domain and its regulatory role have been discussed. In chapter 3, differential binding of ppGpp and pppGpp to RNA polymerase has been discussed. In chapter 4, studies on natural and synthetic analogues of pppGpp have been presented. In chapter 5, synthetic glycolipids studies have been described. Chapter 6 summarizes all the chapters.
|
Page generated in 0.0387 seconds