• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 57
  • 9
  • 8
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 99
  • 99
  • 22
  • 20
  • 19
  • 19
  • 13
  • 10
  • 10
  • 9
  • 9
  • 9
  • 9
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Utilização das funções de Green na solução de equação de difusão de neutrons em multigrupo para um reator refletido e com distribuição não uniforme de combustível. / Aplying Green\'s functions in the solution of the neutron diffusion equation for a reflected reactor and with non-uniform fuel distribution

Rinaldo Gregório Filho 20 December 1979 (has links)
Neste trabalho é desenvolvido um método, que utiliza funções de Green, para a solução analítica da equação de difusão de nêutrons em multigrupo, para um reator refletido, cujo fluxo tem dependência apenas radial e com distribuição de combustível não uniforme no cerne. As propriedades de moderação, difusão e absorção são consideradas diferentes no cerne e refletor. Uma distribuição de densidade de potência, que estabelece a condição de criticalidade do reator, é assumida a priori e determina a distribuição de combustível no cerne. Com auxílio das funções de Green e das condições de continuidade do fluxo e da densidade de corrente de nêutrons na interface cerne-refletor, a equação de difusão em multigrupo é transformada em um sistema de equações lineares, contendo como incógnitas os valores dos fluxos na interface entre as regiões. Resolvido esse sistema, obtém-se os valores dos fluxos na interface e, com eles, a distribuição de fluxo em cada região e para cada grupo. Como verificação do método proposto, é feita uma aplicação numérica, utilizando dois grupos de energia, para um reator TRIGA de 1MW. Nessa aplicação são calculadas, além das distribuições de fluxos para os dois grupos de energia, a distribuição de combustível no cerne, a massa crítica e a potência específica linear, para diferentes distribuições de densidade de potência. / In the present work a method is developed for applying Green\'s functions to obtain an analytical solution o£ the neutron diffusion equation to the case o£ a reflected reactor. The problem of a non-uniform fuel distribution in the core is treated. Multigroup theory is used and the neutron flux is assumed to have only radial dependence. Different values are employed to characterize the moderation, diffusion and absorption properties o£ the core and the reflector. A power density distribution which establishes the reactor critica1 condition \"a priori\" is assumed and is then used to calculate the fuel distribution. By using the Green\'s functions and the continuity relations (for neutron fluxes and neutron current densities) at the core-reflector interface, the multigroup diffusion equation is transformed into a system of linear equations. In this system o£ equations the unknowns are the neutron fluxes at the core- reflector interface. Once this system is solved and the interface fluxes are determined, it follows immediately that the neutron flux distribution in the core and in the reflector is determined. The method employed and proposed in the present study has been applied to the problem of calculating the neutron distribution in a 1MW TRIGA reactor, using two energy group. This numerical application, in addition to calculating the two-group flux distribution, the fuel distribution in the core, the critical mass and the linear specific power for different assumed power density distribution have been evaluated.
62

Numerical evaluation of acoustic Green's functions

Harwood, Adrian Roy George January 2014 (has links)
The reduction of noise generated by new and existing engineering products is of increasing importance commercially, socially and environmentally. Commercially, the noise emission of vehicles, such as cars and aircraft, may often be considered a selling point and the effects of noise pollution on human health and the environment has led to legislation restricting the noise emissions of many engineering products. Noise prediction schemes are important tools to help us understand and develop a means of controlling noise. Acoustic problems present numerous challenges to traditional CFD-type numerical methods rendering all but the most trivial problems unsuitable. Difficulties relate to the length scale discrepancies which arise due to the relatively tiny pressure and density fluctuations of an acoustic wave propagating over large distancesto the point of interest; the result being large computational domains to capture wave behaviour accurately between source and observer. Noise prediction may be performed using a hybrid Computational Aero-Acoustics (CAA) scheme, an approach to noise prediction which alleviates many issues associated with exclusively numerical or analytical approaches. Hybrid schemes often rely on knowledge of a Green’s function, representing the scattering of the geometry, to propagate source fluctuations to the far-field. Presently, these functions only exist in analytical form for relatively simple geometries. This research develops principles for the robust calculation of Green’s functions for general situations. In order to achieve this, three techniques to computeGreen’s functions for the Helmholtz equation within an extended class of 2D geometries are developed, evaluated and compared. Where appropriate, their extension to 3D is described. Guidance is provided on the selection of a suitable numerical method in practice given knowledge of the geometry of interest. Through inclusion of the numerical methods for the construction of Green’s functions presented here, the applicability of existing hybrid schemes will be significantly extended. Thus, it is expected that noise predictions may be performed on a more general range of geometries while exploiting the computational efficiency of hybrid prediction schemes.
63

Contributions mathématiques aux calculs de structures électroniques / Mathematical contributions to the calculations of electronic structures

Gontier, David 28 September 2015 (has links)
Cette thèse comprend trois sujets différents, tous en rapport à des problèmes de structures électroniques. Ces trois sujets sont présentés dans trois parties indépendantes.Cette thèse commence par une introduction générale présentant les problématiques et les principaux résultats.La première partie traite de la théorie de la fonctionnelle de la densité lorsqu'elle est appliquée aux modèles d'électrons avec spins polarisés. Cette partie est divisée en deux chapitres. Dans le premier de ces chapitres, nous introduisons la notion de N-représentabilité, et nous caractérisons les ensembles de matrices de densité de spin représentables. Dans le second chapitre, nous montrons comment traiter mathématiquement le terme de Zeeman qui apparaît dans les modèles comprenant une polarisation de spin. Le résultat d'existence qui est démontré dans (Anantharaman, Cancès 2009) pour des systèmes de Kohn-Sham sans polarisation de spin est étendu au cas des systèmes avec polarisation de spin.Dans la seconde partie, nous étudions l'approximation GW. Dans un premier temps, nous donnons une définition mathématique de la fonction de Green à un corps, et nous expliquons comment les énergies d'excitation des molécules peuvent être obtenues à partir de cette fonction de Green. La fonction de Green peut être numériquement approchée par la résolution des équations GW. Nous discutons du caractère bien posé de ces équations, et nous démontrons que les équations GW0 sont bien posées dans un régime perturbatif. Ce travail a été effectué en collaboration avec Eric Cancès et Gabriel Stoltz.Dans le troisième et dernière partie, nous analysons des méthodes numériques pour calculer les diagrammes de bandes de structures cristallines. Cette partie est divisée en deux chapitres. Dans le premier, nous nous intéressons à l'approximation de Hartree-Fock réduite (voir (Cances, Deleurence, Lewin 2008)). Nous prouvons que si le cristal est un insolant ou un semi-conducteur, alors les calculs réalisés dans des supercellules convergent exponentiellement vite vers la solution exacte lorsque la taille de la supercellule tend vers l'infini. Ce travail a été réalisé en collaboration avec Salma Lahbabi. Dans le dernier chapitre, nous présentons une nouvelle méthode numérique pour le calcul des diagrammes de bandes de cristaux (qui peuvent être aussi bien isolants que conducteurs). Cette méthode utilise la technique des bases réduites, et accélère les méthodes traditionnelles. Ce travail a été fait en collaboration avec Eric Cancès, Virginie Ehrlacher et Damiano Lombardi / This thesis contains three different topics, all related to electronic structure problems. These three topics are presented in three independent parts.This thesis begins with a general introduction presenting the problematics and main results.The first part is concerned with Density Functional Theory (DFT), for spin-polarized models. This part is divided in two chapters. In the first of these chapters, the notion of N-representability is introduced and the characterizations of the N-representable sets of spin-density 2X2 matrices are given. In the second chapter, we show how to mathematically treat the Zeeman term in spin-polarized DFT models. The existence of minimizers that was proved in (Anantharaman, Cancès 2009) for spin-unpolarized Kohn-Sham models within the local density approximation is extended to spin-polarized models.The second part of this thesis focuses on the GW approximation. We first give a mathematical definition of the one-body Green's function, and explain why methods based on Green's functions can be used to calculate electronic-excited energies of molecules. One way to compute an approximation of the Green's function is through the self-consistent GW equations. The well-posedness of these equations is discussed, and proved in the GW0 case in a perturbative regime. This is joint work with Eric Cancès and Gabriel Stoltz.In the third and final part, numerical methods to compute band-diagrams of crystalline structure are analyzed. This part is divided in two chapters.In the first one, we consider a perfect crystal in the reduced Hartree-Fock approximation (see (Cances, Deleurence, Lewin 2008)). We prove that, if the crystal is an insulator or a semi-conductor, then supercell calculations converge to the exact solution with an exponential rate of convergence with respect to the size of the supercell. This is joint work with Salma Lahbabi. In the last chapter, we provide a new numerical method to calculate the band diagram of a crystal (which can be either an insulator or a conductor). This method, based on reduced basis techniques, speeds up traditional calculations. This is joint work with Eric Cancès, Virginie Ehrlacher, and Damiano Lombardi
64

Impact of Disorder on Spin Dependent Transport Phenomena

Saidaoui, Hamed Ben Mohamed 03 July 2016 (has links)
The impact of the spin degree of freedom on the transport properties of electrons traveling through magnetic materials has been known since the pioneer work of Mott [1]. Since then it has been demonstrated that the spin angular momentum plays a key role in the scattering process of electrons in magnetic multilayers. This role has been emphasized by the discovery of the Giant Magnetoresistance in 1988 by Fert and Grunberg [2, 3]. Among the numerous applications and effects that emerged in mesoscopic devices two mechanisms have attracted our attention during the course of this thesis: the spin transfer torque and the spin Hall effects. The former consists in the transfer of the spin angular momentum from itinerant carriers to local magnetic moments [4]. This mechanism results in the current-driven magnetization switching and excitations, which has potential application in terms of magnetic data storage and non-volatile memories. The latter, spin Hall effect, is considered as well to be one of the most fascinating mechanisms in condensed matter physics due to its ability of generating non-equilibrium spin currents without the need for any magnetic materials. In fact the spin Hall effect relies only on the presence of the spin-orbit interaction in order to create an imbalance between the majority and minority spins. The objective of this thesis is to investigate the impact of disorder on spin dependent transport phenomena. To do so, we identified three classes of systems on which such disorder may have a dramatic influence: (i) antiferromagnetic materials, (ii) impurity-driven spin-orbit coupled systems and (iii) two dimensional semiconducting electron gases with Rashba spin-orbit coupling. Antiferromagnetic materials - We showed that in antiferromagnetic spin-valves, spin transfer torque is highly sensitive to disorder, which prevents its experimental observation. To solve this issue, we proposed to use either a tunnel barrier as a spacer or a local spin torque using spin-orbit coupling. In both cases, we demonstrated that the torque is much more robust against impurities, which opens appealing venues for its experimental observation. Extrinsic spin-orbit coupled systems - In disordered metals accommodating spin orbit coupled impurities, it is well-known that spin Hall effect emerges due to spin dependent Mott scattering. Following a recent prediction, we showed that another effect coexists: the spin swapping effect, that converts an incoming spin current into another spin current by "swapping" the momentum and spin directions. We showed that this effect can generate peculiar spin torque in ultrathin magnetic bilayers. Semiconductors spintronics - This last field of research has attracted a massive amount of hope in the past fifteen years, due to the ability of coherently manipulating the spin degree of freedom through interfacial, so-called Rashba, spin-orbit coupling. However, numerical simulations failed reproducing experimental results due to coherent interferences between the very large number of modes present in the system. We showed that spin-independent disorder can actually wash out these interferences and promote the conservation of the spin signal. In the course of this PhD, we showed that while disorder-induced dephasing is usually detrimental to the transmission of spin information, in selected situation, it can actually promote spin transport mechanisms and participate to the enhancement of the desired spintronics phenomenon.
65

Thermomechanical analysis of geothermal heat exchange systems

Wang, Tengxiang January 2023 (has links)
Heating and cooling needs have been highly demanded as the extreme weathers become increasingly frequent and global warming becomes well-founded. Because ground temperature keeps relatively constant at 20-30 feet below the surface, using the earth as a thermal mass for temperature conditioning and thermal management creates an energy-efficient and environmentally beneficial approach to surface heating and cooling, which has been used in self-heated pavement, greenhouse, and building integrated photovoltaic thermal systems. Inspired by the human body wherein a blood circulation system keeps skin nearly at a constant temperature under environmental changes, a thermal fluid circulation system is introduced to the geothermal well system. Through bi-directional heat exchange between surface space with the ground, heat harvested at high temperatures can be stored underground for utilization at low temperatures, so that the surface temperature variations can be significantly reduced for daily and yearly cycles minimizing the heating/cooling needs. Understanding the heat transfer under the ground and thermal stress of the heat exchange systems induced by the temperature changes is critical for system design, performance prediction and optimization, and system control and operation. This dissertation studies heat transfer and thermomechanical problems for different geothermal systems. The temperature field of the earth can be calculated given the heat source and ambient temperature. Due to nonuniform thermal expansion caused by temperature differences or material mismatches, thermal stress will be induced. Its interaction with surface mechanical load and displacement constraint will be investigated for the design and failure analysis of the fluid circulation and heat exchange system. In the theoretical study, the earth is approximated as a semi-infinite domain. Green's function technique has been used in the analysis of heat conduction, elastic, and thermoelastic problems respectively. The semi-infinite domain with a surface boundary condition can be considered a special case of two semi-infinite domains with a perfectly bonded interface, which forms an infinite bi-material domain. For a Dirichlet boundary value problem with a constant temperature or displacement, the top semi-infinite domain can be considered with infinitely large conductivity or stiffness, respectively; for a Neumann boundary value problem with zero flux or traction, the top semi-infinite domain can be considered with a zero conductivity or stiffness, respectively. The general Green's functions of an infinite bi-material domain can recover the classic solutions for Boussinesq's problem, Mindlin's problem, Kelvin's problem, etc. The three-dimensional (3D) problems can be used to recover the corresponding two-dimensional (2D) problems by an integral of Green's function in one dimension through the Hadamard regularization. Firstly, the heat transfer problem in an infinite bi-material is introduced and the Green's function is formulated for the temperature change caused by a point heat source in the material. It is used to simulate heat transfer for a spherical heat exchanger embedded underground in geothermal energy applications. The temperature field of the spherical inhomogeneity embedded in an infinite bi-material subjected to a uniform far-field steady-state or sinusoidal heat flux is determined by solving the boundary value problem. Eshelby’s equivalent inclusion method (EIM) is used to consider the mismatch of the thermal conductivities of the particle from the matrix, which is simulated by a prescribed temperature gradient. When the material of one semi-infinite domain exhibits zero or infinite thermal conductivity, the above solution can be used for a semi-infinite domain containing a heat source with heat insulation or constant temperature on the boundary, respectively. The analytical solution has been verified with the finite element method. The formulation is used to simulate a spherical heat source embedded in a semi-infinite domain. The method can be immediately applied to the design of geothermal energy systems for heat storage and harvesting. When the heat exchanger is a long horizontal pipe, a similar procedure can be conducted for the corresponding 2D problem. If the temperature exhibits a cyclic change, such as daily variation, the formulation is extended to the harmonic transient heat conduction problems. Secondly, a similar formulation has been introduced for the elastic problem of an infinite bi-material. The Green's function is formulated for the displacement caused by a point force in the bi-material. It is used to simulate the stress transfer for a spherical heat exchanger embedded underground in geothermal energy applications. The formulation of the heat transfer problem is extended to the corresponding elastic problem. How a surface mechanical load is transferred to the underground heat exchanger is illustrated. The interactions between a heat exchanger and the surface load are investigated. Finally, the thermoelastic problem of an infinite bi-material is introduced and the Green's function is formulated for the displacement field caused by a point heat source in the material. It can be straightforwardly used to derive the thermoelastic stress caused by a distributed heat source by volume integrals. However, when the thermal conductivity and elasticity of the heat exchanger are different from the earth in actual geothermal energy applications, the Green's function cannot be directly used. By analogy to Eshelby's equivalent inclusion method, a dual equivalent inclusion method (DEIM) is introduced to address the dual material mismatch in thermal and elastic properties. The fundamental solutions of a bi-material for thermal, elastic, and thermoelastic problems are versatile and recover the ones of the single material domain for both 2D and 3D problems. The equivalent inclusion method is successfully extended to the thermoelastic problems to simulate the material mismatch. The formulation can be used in designing a geothermal heat exchanger for heat storage and supply for energy-efficient buildings as well as other geothermal applications. Future work will extend the fundamental solutions to time-dependent thermomechanical load and investigate the daily and seasonal heat exchange with the ground using different configurations of the pipelines. The algorithms will be integrated into the inclusion-based boundary element method (iBEM) for geothermal system design and analysis.
66

Theoretical Modeling of Quantum Dot Infrared Photodetectors

Naser, Mohamed Abdelaziz Kotb 10 1900 (has links)
Quantum dot infrared photodetectors (QDIPs) have emerged as a promising technology in the mid- and far-infrared (3-25 μm) for medical and environmental sensing that have a lot of advantages over current technologies based on Mercury Cadmium Telluride (MCT) and quantum well (QW) infrared photodetectors (QWIPs). In addition to the uniform and stable surface growth of III/V semiconductors suitable for large area focal plane applications and thermal imaging, the three dimension confinement in QDs allow sensitivity to normal incidence, high responsivity, low darkcurrent and high operating temperature. The growth, processing and characterizations of these detectors are costly and take a lot of time. So, developing theoretical models based on the physical operating principals will be so useful in characterizing and optimizing the device performance. Theoretical models based on non-equilibrium Green's functions have been developed to electrically and optically characterize different structures of QDIPs. The advantage of the model over the previous developed classical and semiclassical models is that it fairly describes quantum transport phenomenon playing a significant role in the performance of such nano-devices and considers the microscopic device structure including the shape and size of QDs, heterostructure device structure and doping density. The model calculates the density of states from which all possible energy transitions can be obtained and hence obtains the operating wavelengths for intersubband transitions. The responsivity due to intersubband transitions is calculated and the effect of having different sizes and different height-to-diameter ratio QDs can be obtained for optimization. The dark and photocurrent are calculated from the quantum transport equation provided by the model and their characteristics at different design parameter are studied. All the model results show good agreement with the available experimental results. The detectivity has been calculated from the dark and photocurrent characteristics at different design parameters. The results shows a trade off between the responsivity and detectivity and what determines the best performance is how much the rate of increase of the photocurrent and dark current is affected by changing the design parameters. Theoretical modeling developed in the thesis give good description to the QDIP different characteristics that will help in getting good estimation to their physical performance and hence allow for successful device design with optimized performance and creating new devices, thus saving both time and money. / Thesis / Doctor of Philosophy (PhD)
67

High Order Implementation in Integral Equations

Marshall, Joshua P 09 August 2019 (has links)
The present work presents a number of contributions to the areas of numerical integration, singular integrals, and boundary element methods. The first contribution is an elemental distortion technique, based on the Duffy transformation, used to improve efficiency for the numerical integration of near hypersingular integrals. Results show that this method can reduce quadrature expense by up to 75 percent over the standard Duffy transformation. The second contribution is an improvement to integration of weakly singular integrals by using regularization to smooth weakly singular integrals. Errors show that the method may reduce errors by several orders of magnitude for the same quadrature order. The final work investigated the use of regularization applied to hypersingular integrals in the context of the boundary element method in three dimensions. This work showed that by using the simple solutions technique, the BEM is reduced to a weakly singular form which directly supports numerical integration. Results support that the method is more efficient than the state-of-the-art.
68

Accurate treatment of interface roughness in nanoscale double-gate metal oxide semiconductor field effect transistors using non-equilibrium green's functions

Fonseca, James Ernest January 2004 (has links)
No description available.
69

Quantum Walks and Structured Searches on Free Groups and Networks

Ratner, Michael January 2017 (has links)
Quantum walks have been utilized by many quantum algorithms which provide improved performance over their classical counterparts. Quantum search algorithms, the quantum analogues of spatial search algorithms, have been studied on a wide variety of structures. We study quantum walks and searches on the Cayley graphs of finitely-generated free groups. Return properties are analyzed via Green’s functions, and quantum searches are examined. Additionally, the stopping times and success rates of quantum searches on random networks are experimentally estimated. / Mathematics
70

Spectral properties of relativistic and non-relativistic Krönig- Penney Hamiltonians with short-range impurities

Fassari, Silvestro January 1989 (has links)
In this work, we investigate the spectrum of the non-relativistic Krönig-Penney Hamiltonian H<sub>α</sub>= -d²/dx² +αΣ<sub>m∈Z</sub>δ(-(2m+1)π) perturbed by a short-range potential λW and the spectrum of its relativistic counterpart obtained by replacing the Schrödinger Hamiltonian H<sub>α</sub> with its relativistic analogue H̅<sub>α</sub>. The interesting feature of both spectra is that they have gaps and that bound states may occur in such gaps as a consequence of the presence of the short-range potential representing the impurity. Such bound states, often called "impurity states" in the solid state physics literature. are important with regard to the conductivity properties of solids We show the existence of such bound states of H<sub>α</sub> + λW in each sufficiently remote gap of its essential spectrum if the integral of W is different from zero and the 1 + 𝛅-moment of W is finite for some 𝛅 > 0. Furthermore, if the potential has a constant sign we prove that there is only one bound state in each sufficiently remote gap. We shall see that in the relativistic case one may have more than one bound state in each remote gap under the same assumptions on W. Nevertheless, we shall see that such additional bound states cannot appear in the range of energies of solid state physics. / Ph. D.

Page generated in 0.1215 seconds