Spelling suggestions: "subject:"green must"" "subject:"green just""
11 |
Mineral Surface-Mediated Transformation of Insensitive Munition CompoundsKhatiwada, Raju, Khatiwada, Raju January 2016 (has links)
Abiotic transformation of compounds in the natural environment by metal oxides plays a significant a role in contaminant fate and behavior in soil. The ability of birnessite, ferrihydrite and green rust to abiotically transform insensitive munitions compounds (IMCs) parent (2,4 dinitroanisole [DNAN] and 3-nitro-1,2,4-triazol-5-one [NTO]), and daughter products (2-methoxy-5-nitro aniline [MENA], 2,4-diaminoanisole [DAAN]of DNAN; and 5-amino-1, 2, 4-triazol-3-one [ATO] of NTO) was studied in batch reactors under strictly controlled pH and ionic strength. The objectives of the study were to (i) assess the abiotic transformation potential of soluble DNAN, MENA, DAAN, NTO and ATO by birnessite, ferrihydrite and green rust, and (ii) identify inorganic reaction products. The study was carried out at metal oxide solid to IMC solution ratios (SSR) of 0.15, 1.5 and 15 g kg⁻¹ for birnessite and ferrihydrite and 10 g kg⁻¹ for green rust. Aqueous samples were collected at time intervals between 0 to 3 days after the reaction initiation and analyzed using HPLC with UV detection. Results indicated that DNAN was resistant to oxidation by birnessite and ferrihydrite at given solid to solution ratios. MENA was susceptible to rapid oxidation by birnessite (first order rate constant, 𝑘=1.36 h⁻¹ at 15 g kg⁻¹ SSR). The nitro groups from MENA largely mineralized to nitrite (NO₂⁻). In contrast, ferrihydrite did not oxidize MENA. DAAN was susceptible to oxidation by both birnessite and ferrihydrite, but about a six times higher oxidation rate was observed with birnessite (𝑘=1.18 h⁻¹) as compared to ferrihydrite (𝑘=0.22 h⁻¹) at an SSR of 1.5 g kg⁻¹. There was a complete loss of DAAN from solution after 5 min with birnessite at an SSR 15 g kg⁻¹ (𝑘≥90.5 h⁻¹). CO₂ evolution experiments indicate mineralization of 15 and 12 % of carbon associated with MENA and DAAN, respectively; under aerobic conditions with birnessite at an SSR of 15 g kg⁻¹. NTO was resistant to oxidation by birnessite and ferrihydrite at any SSR; however, there was slight initial loss from solution upon reaction with ferrihydrite at 0.15 and 1.5 g kg⁻¹ SSR and complete loss at 15 g kg⁻¹ SSR due to adsorption. ATO was susceptible to oxidation by birnessite and sorption by ferrihydrite. The first order rate constants (𝑘) for ATO with birnessite at 0.15 and 1.5 g kg⁻¹ SSR are 0.04 and 3.03 h⁻¹ respectively. There was complete loss of ATO from solution with birnessite at 15 g kg⁻¹ SSR (𝑘 ≥ 90.2 h⁻¹) within 5 min of reaction. Transformation products analysis revealed urea, CO₂ and N₂ as major reaction products with 44 % urea recovery and recovery of 51.5 % of ATO carbon as CO₂ and 47.8 % of ATO nitrogen as N₂ at 15 g kg⁻¹ SSR. The oxidation of ATO in the presence of birnessite was found to be independent of dissolved O₂. The results indicate that ATO, the major reductive (bio)transformation product of NTO, is readily oxidized by birnessite in soil. NTO was found strongly sorbed to ferrihydrite as compared to that of ATO. The results of the green rust experiment indicate rapid abiotic reduction of parent compounds NTO and DNAN to their reduced aminated daughter products. NTO was generally reductively transformed to 5-amino-1, 2, 4-triazol-3-one (ATO) within 10 min and completely reacted in 20 min. DNAN was rapidly transformed to its reduced daughter products MENA and 4-methoxy-5-nitroaniline (iMENA). The reduction occurred with a distinctive, staggered regioselectivity. Over the first 10 min, the para-nitro group of DNAN was selectively reduced, generating iMENA. Thereafter the ortho-nitro group was preferentially reduced, generating MENA. Both iMENA and MENA were subsequently transformed to the final reduction product DAAN within 1 day. X-ray absorption near edge spectroscopy data suggested oxidative transformation of green rust to lepidocrocite-like mineral forms, accounting for 94 % of the mineral products in the case of NTO reaction as compared to 62 % in the case of DNAN. The results taken as whole suggest that complete abiotic transformation of IMCs could be achieved by coupled stepwise green rust and birnessite treatments.
|
12 |
Effets de l'activité bactérienne réductrice du fer ferrique et des nitrates sur les transformations des produits de corrosion magnetite et sidérite de l'acier non allié / Effects of iron-reducing bacteria and nitrate-reducing bacteria on the transformations of iron corrosion products, magnetite and siderite, formed at the surface of non-alloy steelEtique, Marjorie 28 November 2014 (has links)
En France, il est envisagé de stocker en formation géologique profonde les déchets radioactifs vitrifiés à haute activité et vie longue dans un conteneur en acier inoxydable chemisé par un surconteneur en acier non allié. Les principaux produits de corrosion attendus à la surface de ce dernier, i.e. la sidérite (FeIICO3) et la magnétite (FeIIFeIII2O4), jouent un rôle protecteur contre la corrosion en tant que couche passivante. Ce travail de thèse visait à étudier l’influence des groupes métaboliques bactériens réducteurs du fer ferrique (IRB) et des nitrates (NRB) sur les transformations de ces produits de corrosion en anoxie. Des souches modèles de NRB (Klebsiella mobilis) et IRB (Shewanella putrefaciens) ont, dans un premier temps, été incubées en présence de suspension de sidérite ou de magnétite, afin d’exacerber les processus de transformation du fer du fait d’une surface spécifique élevée, puis dans un second temps, en présence de films électrogénérés de ces produits pour se rapprocher des conditions d’un acier non allié corrodé en anoxie. Ces souches bactériennes sont capables de transformer la sidérite et la magnétite par des processus microbiens directs ou indirects et de conduire à la formation de rouille verte carbonatée (FeII4FeIII2(OH)12CO3). Ce composé occupe une place centrale dans le cycle biogéochimique du fer en anoxie en tant que transitoire commun à plusieurs réactions microbiennes mobilisant le fer sous deux états d’oxydation différents FeII et FeIII. L’originalité de ce travail de thèse est donc de montrer que des métabolismes bactériens inaccoutumés tels que les NRB ou les IRB sont susceptibles de jouer un rôle dans les processus de biocorrosion / Radioactive waste is one of the major problems facing the nuclear industry. To circumvent this issue France plans to store vitrified high-level nuclear waste in a stainless steel container, placed into a non-alloy steel overpack, at a depth of 500m in an argillaceous formation. The main iron corrosion products formed at the surface of the non-alloy steel are siderite (FeIICO3) and magnetite (FeIIFeIII2O4). These compounds are formed in the anoxic conditions present in the nuclear waste repository and play a protective role against corrosion as a passive layer. This work aims to investigate the activity of nitrate-reducing bacteria (NRB, Klebsiella mobilis) and iron-reducing bacteria (IRB, Shewanella putrefaciens) during the transformation of siderite and magnetite, especially those involved in anoxic iron biogeochemical cycle. Klebsiella mobilis and Shewanella putrefaciens were first incubated with siderite or magnetite suspensions (high surface specific area) in order to exacerbate the microbial iron transformation, subsequently incubated with a magnetite/siderite film synthesized by anodic polarization at applied current density. The transformation of siderite and magnetite by direct or indirect microbial processes led to the formation of carbonated green rust (FeII4FeIII2(OH)12CO3). As a transient phase shared by several bacterial reactions involving FeII and FeIII, this compound is the cornerstone of the anoxic iron biogeochemical cycle. The novelty of this thesis is the consideration of bacterial metabolisms of NRB and IRB often overlooked in biocorrosion processes
|
13 |
Fracture occurrence and ground water pollution potential in Ohio's glacial and lacustrine deposits: a soils, geologic, and educational perspectiveWeatherington-Rice, Julie Bishop Paynter January 2003 (has links)
No description available.
|
14 |
Formation of mixed Fe"-Fe"' oxides and their reactivity to catalyze chemical oxidation : remediation of hydrocarbon contaminated soils / Formation des composés mixtes Fe"-Fe"' et réactivité catalytique pour l'oxydation chimique : remédiation des sols contaminés par les hydrocarburesUsman, Muhammad 17 November 2011 (has links)
Le thème principal de cette recherche est la remédiation des sols contaminés par des hydrocarbures en utilisant des traitements d'oxydation chimique à pH neutre. Les minéraux à base de fer sont susceptibles de catalyser cette réaction d'oxydation. L'étude concerne donc dans un premier temps la synthèse des minéraux réactifs contenant des espèces FeII et FeIII (la magnétite et la rouille verte) et, dans un second temps, leur utilisation pour catalyser l'oxydation chimique. Les procédés d'oxydation testés incluent l'oxydation de type « Fenton-like (FL) » et de type persulfate activé (AP). La formation de la magnétite et de la rouille verte a été étudiée par des transformations abiotiques de différents oxydes ferriques (ferrihydrite, goethite, hématite et lépidocrocite) mis en présence de cations FeII. La magnétite a été utilisée pour catalyser les oxydations (FL et AP) dans la dégradation des hydrocarbures aliphatiques et aromatiques polycycliques (HAP) à pH neutre. Une dégradation importante des hydrocarbures aliphatiques a été obtenue par ces deux oxydants, aussi bien pour des pétroles dégradés naturellement que pour un pétrole brut. L'oxydation catalysée par la magnétite a également été efficace pour la remédiation de deux sols contaminés par HAP provenant d'anciens sites de cokerie. Aucun sous-produit n'a été observé dans nos expériences d'oxydation. En revanche, une très faible dégradation des hydrocarbures a été observée lorsque les espèces FeII solubles ont été utilisées comme catalyseur. Des expériences d'oxydation ont également été réalisées en colonne. Ces études d'oxydation ont révélé l'importance du type de catalyseur utilisé pour l'oxydation, la disponibilité des HAP dans les sols et l'effet de la matrice du sol. Les résultats suggèrent que la magnétite peut être utilisée comme source de fer pour activer les deux oxydations par Fenton-like et persulfate à pH neutre. Ce travail a de fortes implications sur la remédiation par oxydation chimique in situ des sols pollués par des hydrocarbures / The main theme of this research is the use of reactive iron minerals in the remediation of hydrocarbon contaminated soils via chemical oxidation treatments at circumneutral pH. The contribution of this thesis is two-fold including the abiotic synthesis of mixed FeII-FeIII oxides considered as reactive iron minerals (magnetite and green rust) and their use to catalyze chemical oxidation. Oxidation methods tested in this study include Fenton-like (FL) and activated persulfate oxidation (AP). The formation of magnetite and green rust was studied by abiotic FeII-induced transformations of various ferric oxides like ferrihydrite, goethite, hematite and lepidocrocite. Then, the ability of magnetite was tested to catalyze chemical oxidation (FL and AP) for the degradation of aliphatic and polycyclic aromatic hydrocarbons (PAHs) at circumneutral pH. Significant degradation of oil hydrocarbons occurring in weathered as well as in crude oil was obtained by both oxidants. Magnetite catalyzed oxidation was also effective for remediation of two PAHs contaminated soils from ancient coking plant sites. No by-products were observed in all batch slurry oxidation systems. Very low hydrocarbon degradation was observed when soluble FeII was used as catalyst under the same experimental conditions. Magnetite also exhibited high reactivity to catalyze chemical oxidation in column experiments under flow through conditions. Oxidation studies revealed the importance of catalyst type for oxidation, PAHs availability in soils and the soil matrix effect. Results of this study suggest that magnetite can be used as iron source to activate both Fenton-like and persulfate oxidation at circumneutral pH. This study has important implications in the remediation of hydrocarbon polluted soils through in-situ chemical oxidation
|
15 |
Rôle de différents compartiments microbiens (biofilms, matières en suspension, sédiments de surface) et de leurs constituants (bactéries, polymères extracellulaires et biominéraux) sur la méthylation et la réduction de HgII / Role of different microbial compartments (biofilms, suspended matters, surface sediment) and some of them components (bacterial cells, extracellular polymeric substances and biominerals) on HgII methylation and reductionRemy, Paul-Philippe 01 July 2015 (has links)
La formation de méthylmercure, la forme la plus toxique du mercure, est due à l’activité bactérienne anaérobie. Afin de connaître la contribution des compartiments microbiens (biofilms, eaux brutes, sédiments) dans la méthylation du mercure, nous avons évalué les vitesses de méthylation d’échantillons de mares de région tempérée (Lorraine) et subarctique (Québec, Canada). Si les bactéries des biofilms ne semblent pas plus méthylantes que d’autres, le sédiment apparait comme le compartiment le plus méthylant en lien avec la concentration en nutriments ainsi qu’avec la température. Ainsi, les changements climatiques actuels, en augmentant la température de l’eau et en favorisant l’activité biologique, peuvent faire de ces mares des sites préférentiels de la méthylation du mercure en milieu subarctique. Enfin, l’activité des biofilms a mené à la formation de rouille verte, un minéral capable de réduire HgII en mercure élémentaire, concurrençant ainsi la méthylation bactérienne / Monomethylmercury formation, the neurotoxic form of mercury, is mainly linked to anaerobic microbial activity. In order to assess the relative contribution of several microbial compartments (biofilms, raw water and sediment) we evaluated methylation of samples from ponds of temperate area (Lorraine, France) and from subarctic ponds (Nunavik, Quebec). Biofilms were not found to specifically promote mercury methylation, whereas sediment emerges as the main compartment involved in mercury methylation. The formation of methylmercury is positively linked to the temperature and to nutrients. Thus, by increasing the open water period, the water temperature and of the microbial activity, current climate changes may turn these ponds in preferential location for mercury methylation in the subarctic ecosystem. Finally, the reactivity of green rust, a mineral which can be produced by bacterial activity of environmental biofilms, may compete with mercury methylation by reducing HgII into Hg0
|
Page generated in 0.0497 seconds