• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 27
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 99
  • 99
  • 99
  • 38
  • 23
  • 21
  • 21
  • 18
  • 14
  • 14
  • 13
  • 12
  • 11
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Vliv palce nohy na stabilitu stoje a chůze / The influence of hallux on stand and gait stability

Hlinková, Zuzana January 2008 (has links)
The diploma thesis "Vliv palce nohy na stabilitu stoje a chůze" is focused on the function of hallux at stance and through the gait cycle and particularly to halluxes influence on stability of the stated motor stereotypes. The theoretical part summarizes the knowledge gained through literature research on anatomy and kinesiology of hallux. It also contains analysis of gait cycle and muscle coordination through it with emphasis upon activity of foot and function of hallux muscles. The practical part attempts to objectivize changes in stability and changes of loading of foot with instrumental examination. Force plate Balance Master® and GaitPlatform FDM were used for the measurements. On the force plate the parametres of movement of the centre of mass (COM, COG) and maintenance of stability while standing were compared. GaitPlatform® was used for measurement of ground reaction forces while standing and walking. Powered by TCPDF (www.tcpdf.org)
92

Influência da neuropatia diabética no comportamento de respostas biomecânicas e sensoriais no andar em esteira rolante / Influence of the diabetic neuropathy on the behavior of biomechanical and sensorial responses in treadmill gait

Isabel de Camargo Neves Sacco 28 August 2001 (has links)
A investigação de parâmetros biomecânicos no movimento humano tem trazido importantes discussões sobre a função do sistema músculo-esquelético e o controle deste movimento. O andar humano é um dos comportamentos motores mais investigados pela biomecânica e seus aspectos mecânicos contribuem de forma a caracterizar, identificar e intervir em situações patológicas. A investigação de parâmetros dinâmicos, cinemáticos e eletromiográficos na marcha patológica pode beneficiar de forma significativa a compreensão dos mecanismos de controle do andar e as alterações compensatórias geradas, assim como contribuir nas intervenções terapêuticas e preventivas em sujeitos portadores de alguma doença que acometa o sistema músculo-esquelético. No presente estudo, buscou-se descrever e interpretar, sob a perspectiva da biomecânica, o andar em cadência auto-selecionada de sujeitos diabéticos neuropatas em esteira rolante, considerando os parâmetros dinâmicos, temporais, espaciais e eletromiográficos durante a fase de apoio. Investigou-se também aspectos sensoriais plantares e motores a fim de caracterizar os sujeitos neuropatas e controles estudados. Valores da sensibilidade somatossensorial e limiares de tolerância à dor nos sujeitos diabéticos neuropatas apresentaram significativamente maiores em relação ao grupo de sujeitos controle estudado, valores considerados fora do padrão de normalidade esperado. A cadência autoselecionada e a velocidade obtida na esteira rolante foram significativamente menores durante o andar dos neuropatas em relação aos sujeitos controle. Os tempos de apoio simples, duplo, comprimento da passada e do passo durante a marcha nos sujeitos diabéticos neuropatas apresentaram-se significativamente maiores em relação ao grupo controle. Foram observados menores picos de força vertical nos sujeitos neuropatas e menores deflexões da força vertical, conseqüências secundárias da estratégia de redução da velocidade do andar em neuropatas que buscam um padrão mais conservativo e estável do seu andar. As respostas eletromiográficas dos músculos da perna e coxa apresentaram-se com menores magnitudes e com picos de ativação atrasados em relação ao padrão normal de recrutamento, especialmente o m. tibial anterior bilateralmente nos neuropatas. Interpreta-se tal fato como uma provável alteração no mecanismo de controle central e/ou periférico da marcha em sujeitos diabéticos neuropatas decorrente dos déficits sensoriais periféricos e motores conseqüentes da doença investigada. O mecanismo de redução de choques na marcha apresentou-se de forma ineficiente em função das respostas atrasadas eletromiográficas tanto de m. vasto lateral, quanto de m. tibial anterior. Conclui-se que a neuropatia diabética periférica acomete não só respostas somatossensoriais e motoras periféricas mas também mecanismos intrínsecos de controle modificando a eficiência do tornozelo em seu papel na marcha, comprometendo desta forma alguns dos principais requisitos para o andar que são a progressão e o equilíbrio / Biomechanical investigation of the human movement has been bringing important discussions about the musculoskeletal system functions and the control of movement. The human walking is one of the most studied motor behaviors and its mechanical aspects contribute to characterize, identify, and intervene in pathological conditions. Dynamic, kinematic, and electromyographic analyses of pathological gait can significantly help the comprehension of the control mechanism of gait and its compensatory alterations. These analyses can also contribute to therapeutic and preventive interventions in patients whose walking behavior is altered due to some disease that accomplish the neuromotor system. In the present study, we described and interpreted self-cadence walking in a treadmill of neuropathic diabetic subjects under biomechanical considerations, such as dynamic, temporal, spatial, and electromyographic analysis during stance phase. We also studied sensorial and motor aspects in order to characterize the neuropathic and control subjects. The somatossensorial responses and pain tolerance threshold in the neuropathic subjects were significantly higher and considered away from the normal patterns. The self-cadence and the treadmill velocity were significantly lower in neuropathic gait. Single and double stance time, stride and step length were significantly higher during neuropathic gait. The neuropathic subjects showed lower vertical force peaks and lower deflections of vertical force and those findings were secondary consequences of the conservative strategy of lowering the gait velocity adopted by the neuropathic in order to reach a more stable locomotor pattern. The electromyographic responses of the thigh and leg muscles in neuropathic subjects showed lower magnitudes and were delayed comparing to the normal recruitment pattern, specially the anterior tibialis muscle right and left. These findings lead us to conclude that probably central and/or peripheral control mechanisms of the gait of neuropathic diabetic patients are altered due to somatossensorial and motor deficits. The mechanism of load reduction during walking was considered inefficient because of the activation delay of the lateral vastus and anterior tibialis muscles. We conclude that the peripheral diabetic neuropathy damages not only somatossensorial and motor sources but also intrinsic mechanisms of motor control leading to alterations in the ankle efficiency in gait. This resulting distal inefficiency compromises some of the principal requirements to gait, which are progression and balance
93

Ground Reaction Force Prediction during Weighted Leg Press and Weighted Squat in a Flywheel Exercise Device / Estimering av markreaktionskraften vid viktad benpress och viktad knäböj i ett svänghjulsbaserat träningsredskap

Munkhammar, Tobias January 2017 (has links)
When performing a biomechanical analysis of human movement, knowledge about the ground reaction force (GRF) is necessary to compute forces and moments within joints. This is important when analysing a movement and its effect on the human body. To obtain knowledge about the GRF, the gold standard is to use force plates which directly measure all three components of the GRF (mediolateral, anteroposterior and normal). However, force plates are heavy, clunky and expensive, setting constraints on possible experimental setups, which make it desirable to exclude them and instead use a predictive method to obtain the full GRF. Several predictive methods exist. The node model is a GRF predictive method included in a musculoskeletal modeling software. The tool use motion capture and virtual actuators to predict all three GRF components. However, this model has not yet been validated during weighted leg press and weighted squat. Furthermore, the normal component of the GRF can be measured continuously during the activity with pressure sensitive insoles (PSIs), which might provide better accuracy of the GRF prediction. The objectives of this thesis were to investigate whether force plates can be exluded during weighted leg press and weighted squat and to investigate whether PSIs can improve the GRF prediction. To investigate this, the node model and a developed shear model was validated. The shear model computes the two shear GRF components based on data from PSIs, an external load acting upon the body and data from a motion capture system. Both the node model and the shear model were analysed with two test subjects performing two successive repetitions of both weighted squat and weighted leg press in a flywheel exercise device. During the leg press exercise, the node model had a mean coeffcient of correlation (Pearson's) ranging from 0.70 to 0.98 for all three directions with a mean root mean square error ranging between 8 % to 20 % of the test person's body weight. The developed shear model had a coeffcient of correlation (Pearson's) between 0.64 to 0.99 and a mean root mean square error between 3 % and 21 % of the test person's body weight. This indicates that it is possible to exclude force plates and instead predict the GRF during weighted leg press. During squat, neither the node model nor the shear model provided accurate results regarding the mediolateral and anteroposterior components of the GRF, suggesting that force plates can not yet be excluded to obtain the full GRF during weighted squat. The results of the normal component during leg press was somewhat improved with the shear model compared to the node model, indicating that using PSIs can improve the results to some extent.
94

Efficacy of a 6-week Neuromuscular Training Program for Improving Postural Control in Figure Skaters

Saunders, Nathan William 20 July 2011 (has links)
No description available.
95

Effects of Jump Training on Bone Mineral Density in Young Adult Females

Zagdsuren, Battogtokh 01 May 2014 (has links)
Physical activity is critical to bone health. However, not all physical activity has optimum effect on bone health and metabolism. The purpose of this study was to determine the effects of a short term progressive jumping protocol on bone mineral density in college age Asian females. Sixteen participants aged18-28 years enrolled in the study. Participants were assigned to exercise (n=9) and control (n=8) groups. The exercise group completed a two-legged depth jump from an approximate 20cm stepbench followed immediately by a maximum vertical jump using arm swings for five days per week for two weeks. Each depth jump and vertical jump was performed ten times during each session. The exercise intervention progressed from one session per day to three sessions per day in ten days. The bone mineral density (BMD) by dualenergy x-ray absorptiometry (DXA), ground reaction force (GRF), bone specific physical activity questionnaire (BPAQ), and dietary log were administered to the participants pre- and post-intervention. The data were analysed using a dependent t-test and one-way repeated measures. There were no significant changes noted in BMD value in the study. The past BPAQ showed significant correlation to BMD change of left hip (p<0.01) in exercise group. The vertical GRF showed significant increase (p<0.05) in exercise group. It can be concluded from the study that intensity of the progressive jumping was intense enough to stimulate some changes in the bone metabolism.
96

Human locomotion analysis, classification and modeling of normal and pathological vertical ground reaction force signals in elderly / Analyse, classification et modélisation de la locomotion humaine : application a des signaux GRF sur une population âgée

Alkhatib, Rami 12 July 2016 (has links)
La marche est définie par des séquences de gestes cycliques et répétées. Il a été déjà montré que la vitesse et la variabilité de ces séquences peuvent révéler des aptitudes ou des défaillances motrices. L’originalité de ce travail est alors d’analyser et de caractériser les foulées de sujets âgés à partir des signaux de pression issus de semelles instrumentées lors de la marche, au moyen d’outils de traitement du signal. Une étude préliminaire, sur les signaux de pression générés lors de la marche, nous a permis de mettre en évidence le caractère cyclo-stationnaire de ces signaux. Ces paramètres sont testées sur une population de 47 sujets. Tout d'abord, nous avons commencé par un prétraitement des signaux et nous avons montré dans la première de cette thèse que le filtrage peut éliminer une partie vitale du signal. C’est pourquoi un filtre adaptatif basé sur la décomposition en mode empirique a été conçu. Les points de retournement ont été filtrés ensuite en utilisant une technique temps-fréquence appelée «synochronosqueezing». Nous avons également montré que le contenu des signaux de force de marche est fortement affecté par des paramètres inquantifiables tels que les tâches cognitives qui les rendent difficiles à normaliser. C’est pourquoi les paramètres extraits de nos signaux sont tous dérivées par une comparaison inter-sujet. Par exemple, nous avons assimilé la différence dans la répartition de poids entre les pieds. Il est également recommandé dans ce travail de choisir le centre des capteurs plutôt que de compter sur la somme des forces issues du réseau de capteurs pour la classification. Ensuite, on a montré que l’hypothèse de la marche équilibrée et déséquilibrée peut améliorer les résultats de la classification. Le potentiel de cette hypothèse est montré à l'aide de la répartition du poids ainsi que le produit de l'âge × vitesse dans le premier classificateur et la corrélation dans le second classificateur. Une simulation de la série temporelle de VGRF basé sur une version modifiée du modèle de Markov non stationnaire, du premier ordre est ensuite dérivée. Ce modèle prédit les allures chez les sujets normaux et suffisamment pour les allures des sujets de Parkinson. On a trouvé que les trois modes: temps, fréquence et espace sont très utiles pour l’analyse des signaux de force, c’est pourquoi l’analyse de facteurs parallèles est introduite comme étant une méthode de tenseur qui peut être utilisée dans le futur / Walking is defined as sequences of repetitive cyclic gestures. It was already shown that the speed and the variability of these sequences can reveal abilities or motorskill failures. The originality of this work is to analyze and characterize the steps of elderly persons by using pressure signals. In a preliminary study, we showed that pressure signals are characterized by cyclostationarity. In this study, we intend to exploit the nonstationarity of the signals in a search for new indicators that can help in gait signal classification between normal and Parkinson subjects in the elderly population. These parameters are tested on a population of 47 subjects. First, we started with preprocessing the vertical ground reaction force (VGRF) signals and showed in this first part of the thesis that filtering can remove a vital part of the signal. That is why an adaptive filter based on empirical mode decomposition (EMD) was built. Turning points are filtered using synochronosqueezing of time-frequency representations of the signal. We also showed that the content of gait force signals is highly affected by unquantifiable parameter such as cognitive tasks which make them hard to be normalized. That is why features being extracted are derived from inter-subject comparison. For example we equated the difference in the load distribution between feet. It is also recommended in this work to choose the mid-sensor rather than relying on summation of forces from array of sensors for classification purposes. A hypothesis of balanced and unbalanced gait is verified to be potential in improving the classification accuracy. The power of this hypothesis is shown by using the load distribution and Age×Speed in the first classifier and the correlation in the second classifier. A time series simulation of VGRF based on a modified version of nonstationary- Markov model of first order is derived. This model successfully predict gaits in normal subjects and fairly did in Parkinson’s gait. We found out that the three modes: time, frequency and space are helpful in analyzing force signals that is why parallel factor analysis is introduced as a tensor method to be used in a future work
97

Predicting ground reaction forces of human gait using a simple bipedal spring-mass model

Mauersberger, Michael, Hähnel, Falk, Wolf, Klaus, Markmiller, Johannes F. C., Knorr, Alexander, Krumm, Dominik, Odenwald, Stephan 22 May 2024 (has links)
Aircraft design must be lightweight and cost-efficient on the condition of aircraft certification. In addition to standard load cases, human-induced loads can occur in the aircraft interior. These are crucial for optimal design but difficult to estimate. In this study, a simple bipedal spring-mass model with roller feet predicted human-induced loads caused by human gait for use within an end-to-end design process. The prediction needed no further experimental data. Gait movement and ground reaction force (GRF) were simulated by means of two parameter constraints with easily estimable input variables (gait speed, body mass, body height). To calibrate and validate the prediction model, experiments were conducted in which 12 test persons walked in an aircraft mock-up under different conditions. Additional statistical regression models helped to compensate for bipedal model limitations. Direct regression models predicted single GRF parameters as a reference without a bipedal model. The parameter constraint with equal gait speed in experiment and simulation yielded good estimates of force maxima (error 5.3%), while equal initial GRF gave a more reliable prediction. Both parameter constraints predicted contact time very well (error 0.9%). Predictions with the bipedal model including full GRF curves were overall as reliable as the reference.
98

Classificação de dados cinéticos da inicialização da marcha utilizando redes neurais artificiais e máquinas de vetores de suporte

Takáo, Thales Baliero 01 July 2015 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2016-05-20T12:55:18Z No. of bitstreams: 2 Dissertação - Thales Baliero Takáo - 2015.pdf: 2798998 bytes, checksum: f90a7c928230875abd5873753316f766 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2016-05-20T12:56:48Z (GMT) No. of bitstreams: 2 Dissertação - Thales Baliero Takáo - 2015.pdf: 2798998 bytes, checksum: f90a7c928230875abd5873753316f766 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2016-05-20T12:56:48Z (GMT). No. of bitstreams: 2 Dissertação - Thales Baliero Takáo - 2015.pdf: 2798998 bytes, checksum: f90a7c928230875abd5873753316f766 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2015-07-01 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The aim of this work was to assess the performance of computational methods to classify ground reaction force (GRF) to identify on which surface was done the gait initiation. Twenty-five subjects were evaluated while performing the gait initiation task in two experimental conditions barefoot on hard surface and barefoot on soft surface (foam). The center of pressure (COP) variables were calculate from the GRF and the principal component analysis was used to retain the main features of medial-lateral, anterior-posterior and vertical force components. The principal components representing each force component were retained using the broken stick test. Then the support vector machines and multilayer neural networks ware trained with Backpropagation and Levenberg-Marquartd algorithm to perform the GRF classification . The evaluation of classifier models was done based on area under ROC curve and accuracy criteria. The Bootstrap cross-validation have produced area under ROC curve a and accuracy criteria using 500 samples database. The support vector machine with linear kernel and margin parameter equal 100 produced the best result using medial-lateral force as input. It registered area under ROC curve and accuracy with 0.7712 and 0.7974. Those results showed significance difference from the vertical and anterior-posterior force. Then we may conclude that the choice of GRF component and the classifier model directly influences the performance of the classification. / O objetivo deste trabalho foi avaliar o desempenho de ferramentas de inteligência computacional para a classificação da força de reação do solo (FRS) identificando em que tipo de superfície foi realizada a inicialização da marcha. A base de dados foi composta pela força de reação do solo de 25 indivíduos, adquiridas por duas plataformas de força, durante a inicialização da marcha sobre uma superfície macia (SM - colchão), e depois sobre uma superfície dura (SD). A partir da FRS foram calculadas as variáveis que descrevem o comportamento do centro de pressão (COP) e também foram extraídas as características relevantes das forças mediolateral (Fx), anteroposterior (Fy) e vertical (Fz) por meio da análise de componentes principais (ACP). A seleção das componentes principais que descrevem cada uma das forças foi feita por meio do teste broken stick . Em seguida, máquinas de vetores de suporte (MVS) e redes neurais artificiais multicamada (MLP) foram treinadas com o algoritmo Backpropagation e de Levenberg-Marquartd (LMA) para realizar a classificação da FRS. Para a avaliação dos modelos implementados a partir das ferramentas de inteligência computacional foram utilizados os índices de acurácia (ACC) e área abaixo da curva ROC (AUC). Estes índices foram obtidos na validação cruzada utilizando a técnicas bootstrap com 500 bases de dados de amostras. O melhor resultado foi obtido para a máquina de vetor de suporte com kernel linear com parâmetro de margem igual a 100 utilizando a Fx como entrada para classificação das amostras. Os índices AUC e ACC foram 0.7712 e 0.7974, respectivamente. Estes resultados apresentaram diferença estatística em relação aos modelos que utilizaram as componentes principais da Fy e Fz, permitindo concluir que a escolha da componente da FRS assim como o modelo a ser implementado influencia diretamente no desempenho dos índices que avaliam a classificação.
99

Design, Development and Validation of Fiber Bragg Grating Sensor Based Devices for Detecting Certain Healthcare Parameters

Chethana, K January 2016 (has links) (PDF)
Several sensor technologies have been developed and experimented over the last few decades to cater various needs of medical diagnostics. Among these, fiber optic sensors, in particular, Fiber Bragg Grating (FBG) based sensors have attracted considerable attention due to their inherent advantages such electrical passiveness, immunity to Electro Magnetic Interference (EMI), chemical inertness, etc. The present research work focuses on design, development and validation of FBG sensor based devices for measurement of certain healthcare parameters in the context of foot function/gait cycle, cardiac and breathing activity, nostril dominance, hand grip/wrist angle force function, etc. The experimental work presented here emphasizes on the effectiveness and competitiveness of the FBG devices developed, in comparison with standard tools such as Accelerometer, Load cell, Electronic Stethoscope, Electromyogram and Dynamometer. In the field of human balance, stability and geriatrics, two independent FBG devices namely, Fiber Bragg Grating based Stability Assessment Device (FBGSAD) and Optical Sensor Ground Reaction Force measurement Platform (OSGRFP) have been designed, developed and experimented for postural stability assessment and gait analysis respectively. The result of these studies have significant implications in understanding of the mechanism of plantar strain distribution, identifying issues in gait cycles, detecting foot function discrepancies, identifying individuals who are susceptible to falls and to qualify subjects for balance and stability. In the field of ergonomic assessment, Fiber Braggs Grating based Hand Grip Device (FBGHGD) is designed and developed for the measurement of hand grip force which helps in the understanding of several important biomechanical aspects such as neuromuscular system function, overall upper-limb strength, vertebral fracture, skeletal muscle function, prediction of disability, incapacity, mortality and bone mass density (forearm, skeletal sites, spine, hip etc.). Further as an extension of this work, the FBGHGD is used for measurement of force generated by the wrist in different positions of the flexion and extension which relates to the wrist muscle activity and its enactment. In the field of cardiac activity monitoring, a novel, in-vivo, non-invasive and portable device named Fiber Bragg Grating based Heart Beat Device (FBGHBD) is developed for the simultaneous measurement of respiratory and cardiac activities. The work involves designing FBGHBD, validating its performance against traditional diagnostic systems like electronic stethoscope, exploration of its clinical relevance and the usage of FBGHBD in studies involving normal persons and patients with myocardial infarction. The unique design of FBGHBD provides critical information such as nascent morphology of cardiac and breathing activity, heart rate variability, heart beat rhythm, etc., which can assist in early clinical diagnosis of many conditions associated to heart and lung malfunctioning. Further, the scope of this work extends towards evaluating several signal processing algorithms and demonstrating a suitable signal processing architecture for real-time extraction of heart beat and respiratory rates along with its nascent morphologies for critical health care application. In the area of breath monitoring, a Nostril Pressure and Temperature Device (NPTD) is designed and developed which aims at simultaneous, accurate and real-time measurement of nostril air flow pressure and temperature to aid in clinical diagnosis of nasal dysfunction and associated nose disorders. The results of NPTD can offer certain vital features like breathing pattern, respiratory rate, changes in individual nostril temperature/pressure, nostrils dominance, body core temperature etc., which can assist in early clinical diagnosis of breathing problems associated with heart, brain and lung malfunctioning. Since the research work in this thesis involve experiments engaging human subjects, necessary approvals from the ethical committee is obtained before the experiments and required ethical procedures are followed during all the experimental trials.

Page generated in 0.0949 seconds