Spelling suggestions: "subject:"groundwater.the africa."" "subject:"groundwater.the affrica.""
41 |
An integrated approach to groundwater exploration using remotely sensed imagery and geophysical techniques: a case study in the Archean basement and Karoo sedimentary basins of Limpopo Province of South AfricaMagakane, Ronald 20 September 2019 (has links)
MESMEG / Department of Mining and Environmental Geology / Many recent studies have shown that some of the greatest water needs occur in areas underlain by crystalline rocks with complex hydrogeology. Crystalline basement rocks underlie over 60% of the South African surface, and the Limpopo Province of South Africa is no exception. Previous attempts to develop the lithologies of Limpopo for groundwater abstraction without the use of sound scientific methodologies resulted in low yielding boreholes and a higher rate of borehole failure. The complexity of the lithologies in the region necessitates the use of sound scientific methodologies for the delineation of promising groundwater potential zones. Therefore, the principal objective of the present study was to delineate groundwater potential zones through an integrated approach of remote sensing, geophysics, as well as the use of ancillary datasets.
The area of focus is located in the northeastern section of Limpopo province, covering an area of about 16 800km2. Geologically, it is underlain by three Lithostratigraphic domains comprised of Archean-aged basement rocks, Soutpansberg volcano-sedimentary succession and subsidiary basins of the main Karoo young sedimentary cover. In general, the groundwater potential of a region is a function of factors such as lithology, lineaments, slope, climate and land use/ land cover. Thus, the present study used parameters such as lineaments, lithologies, slope, and land use/ land cover to produce a groundwater potential zone map. The thematic layers were prepared from raw datasets, which include; LANDSAT 8 OLI, ASTER-DEM, aeromagnetic data, geological maps, and land use/land cover data, which were overlaid in a GIS environment.
The resultant groundwater map revealed the presence of five distinct classes of groundwater potential zones, which were categorised into excellent, good, moderate, low and very low. Interpretation of the results shows that the study area is dominated by areas that may be regarded as moderate water potential zones, covering about 52% of the total area. On the other hand, low and good groundwater potential zones occur in almost equal proportions of 19.52 % and 24 % respectively. The results obtained were validated using GRIP borehole dataset, and a number of follow-up geophysical surveys.
iii
Overlaying of the boreholes dataset on the map showed positive correlation between borehole yields groundwater potential zones. On the other hand, follow-up Vertical Electrical Sounding surveys revealed the presence of conductive layers in some selected target areas. The groundwater potential zone map and validation results provided a meaningful regional assessment of groundwater distribution in the study area. Thus, the results of this study can be used as a guideline for future groundwater exploration projects. / NRF
|
42 |
Hydrogeological characterisation and water supply potential of Lebalelo South, Limpopo Province of South AfricaRambuwani, Rudzani Vincent 08 1900 (has links)
MESHWR / Department of Hydrology and Water Resources / Lebalelo area of Sekhukhune district is one of many areas in South Africa experiencing portable water scarcity, especially during prolonged dry season. Due to the dominance of low yielding aquifers in South Africa, it is essential to manage groundwater resources in these low yielding aquifers. However, the management of low yielding aquifer is difficult in areas like Labelelo where the hydrogeological characteristics of the aquifers are understudied. This study investigated the hydrogeological characteristics of the aquifers in the area using combined geophysical method and analytical groundwater models. Four newly drilled borehole and five existing boreholes were used for this study. Geophysical survey was carried out using magnetic and electromagnetic methods. The magnetic survey was used to locate the position of magnetic bodies such as dolerite dykes and different lithologies with different magnetic properties. The electromagnetic survey however, was used to determine zones of high permeability associated with the intrusive bodies as well as high permeability zones in fault planes. Step test, constant discharge test and recovery tests were conducted on all the boreholes to stress the borehole. This was used to determine a suitable and sustainable pumping rate of the aquifer. Pumping test data from the pumping period and recovery was evaluated and interpreted using AQTESOLVE. Aquifer transmissivity, storativity, internal and external hydraulic boundaries were determined from the data. The transmissivity in the area ranges from 0.08 to 124.7 m2/day. The aquifer types in the area are double porosity aquifer, radial flow aquifer with single porosity. Inductive Coupled Plasma (ICP-MS) was used to measure heavy metals, trace metals and cations while Ion Chromatography (IC) was used to determine anions in groundwater of the study area. The groundwater in the area is dominated by calcium carbonate as a result of long residence time with dolomite. The hydrochemistry of the water indicates that the chemistry of the groundwater in the area is mainly controlled by rock-water interaction. / NRF
|
43 |
Removal of selected toxic elements by surface modified multi-walled carbon nanotubes from contaminated groundwater in Sekhukhune, LimpopoThobakgale, Ruth Dipuo January 2022 (has links)
Thesis (M.Sc.(Chemistry)) -- University of Limpopo, 2022 / Water contamination caused by toxic elements has serious human health and
ecological implications. The increasing quantity of toxic elements in surface and
groundwater is currently an area of greater concern, especially since many industries
are discharging their metal containing effluents into freshwater without any adequate
treatment. The mineral dissolution in mining regions is highly enhanced by mining and
smelting activities. The mine waste and drainage in areas surrounding mines have
high levels of toxic element contamination above the permissible limits. Contamination
of groundwater by toxic elements such as As, Fe, Mn, Al, Cr, Zn and Co due to
operational activities of surrounding mines in the Sekhukhune district was reported by
several researchers. Removal of toxic elements from contaminated water is a big
challenge. The affected communities need to attain a safe water supply source for
daily usage, hence there is an urgent need of technologies for the treatment of water
supplies contaminated with these toxic elements to ensure the safety of potable water.
The study was undertaken by modifying nitrogen-doped multi-walled carbon
nanotubes (N-MWCNTs) and investigating the removal of chromium, nickel and lead
from anthropogenic contaminated groundwater in the Sekhukhune area, in Limpopo.
The as-prepared N-MWCNTs functionalised with metal oxide, thiol and amino
functional groups are expected to increase the surface area of the nanocomposite,
which can facilitate high adsorption of contaminants from water samples. The
adsorption capabilities for the removal of these toxic elements by modified N MWCNTs nanocomposites were investigated in batch studies as a function of different
parameters. The parameters studied included pH, contact time, adsorbent dosage,
initial concentration, temperature, competing ions and reusability. The optimum
condition was then acquired for removal of selected toxic elements from real water
studies. The removal efficiencies of the as-prepared nanocomposites were pH
dependent and the optimal pH values for adsorption was 5.5, 1.5, 11 and 6 at optimum
contact time of 10, 80, 60 and 120 min and dosage of 0.30, 0.35, 0.05 and 0.6 g/L for
Cr(III), Cr(VI), Ni(II) and Pb(II), respectively.
The prepared nanocomposites were characterised using various techniques such as
Fourier transform infrared (FTIR) spectroscopy, powder X-ray diffraction (PXRD),
scanning electron microscopy (SEM), transmission electron microscopy (TEM),
Brunauer-Emmet-Teller (BET) and thermogravimetric analysis (TGA). The FTIR
analysis confirmed the presence of Fe3O4, -SH and -NH2 groups on the functionalised
MWCNTs. The PXRD analysis further supported that the synthesized nanocomposites
consisted of hexagonal graphite structure of MWCNTs. Furthermore, SEM and TEM
results showed that the introduced functional groups were uniformly attached on the
surface of the MWCNTs. The BET analysis indicated that the surface area of the
modified MWCNTs nanocomposites increased significantly as compared to the acid treated MWCNTs. In addition, TGA showed that the M-MWCNTs (M = modified)
nanocomposites possess high thermal stability. Raw N-MWCNTs showed higher
stability as compared to oxidised N-MWCNTs, which decomposes at lower
temperatures of 200 °C. No weight loss was observed below 800 °C for the hydrazine functionalised nanocomposites as compared to the triethylenetetramine (TETA)-
substituted nanocomposites, which showed weight loss at 300 °C.
Toxic elements in solutions before and after treatment were quantified using flame atomic absorption spectrometry (F-AAS). The adsorption isotherms of the as-prepared
nanocomposites for chromium, nickel and lead removal fitted both the Langmuir and
Freundlich model depending on the adsorbent used, which suggest that the adsorption
process met both monolayer and heterogeneous adsorption. Thermodynamic analysis
showed that the adsorption of Cr(III), Cr(VI), Ni(II) and Pb(II) ions are spontaneous
and endothermic. The as-prepared nanocomposites showed an outstanding
regeneration performance retaining over 50% toxic elements removal. Thus, the as prepared nanocomposites are promising for practical application in toxic element
treatment. Analysis of the collected river and borehole water in Sekhukhune indicated
that the concentration of total chromium, nickel and lead before treatment varied from
(0.207 to 0.286 mg/L), (0.226 to 0.380 mg/L) and (3.301 to 8.017 mg/L), respectively
which were above acceptable levels recommended by the South African National
Standards (SANS), United States Environmental Protection Agency (USEPA) and
World Health Organisation (WHO), i.e., 0.05 mg/L, 0.07 mg/L and 0.01 mg/L. After
treatment, the nanocomposites were able to remove 100% of the metal ions from the
water. TETA-functionalised nanocomposites showed greater removal efficiencies in
comparison to the hydrazine-functionalised nanocomposites for all the studies done. / Water Research Commission (WRC)
|
44 |
Remote sensing for assessing wetland-groundwater interaction in the Kogelberg Biosphere ReserveEngelbrecht, Jeanine 12 1900 (has links)
Thesis (MA)--Stellenbosch University, 2005. / ENGLISH ABSTRACT: The Table Mountain Group (TMG) Aquifer System is a regional fractured aquifer system
with a large potential as a source of future water supplies in the Western and Eastern Cape.
This system is currently under consideration for large-scale water abstraction. Many terrestrial
ecosystems, however, are dependent on these groundwater resources for survival.
Exploitation of ground water resources at a rate exceeding the rate of natural recharge would
result in a lowering of the water table and the drying up of seeps.
The main objective of this study was to determine if satellite remote sensing data can be used
for the detection of groundwater-dependent wetlands, and secondly, to use multi-temporal
imagery for estimating seasonal changes experienced in wetland communities in relation to
surrounding vegetation. The Kogelberg Biosphere Reserve, situated approximately 30km to
the east of Cape Point in the Western Cape, South Africa, was selected for investigation. To
accomplish the objectives, three Landsat 7 ETM+ images (path/row: 175/84) captured on 22
September 2001, 18 May 2002 and 23 September 2002 were acquired. Image fusion of the
multispectral bands (30m resolution) with the panchromatic band (15m resolution) provided
15m multispectral images for analysis purposes. Geometric correction, radiometric
normalisation and atmospheric corrections was performed in order to ensure pixel-level
comparability between images. Once comparability between images was guaranteed,
vegetation indices and tasselled cap components were derived to provide threshold values of
moisture stress indicators and productivity estimations of wetland communities in relation to
surrounding non-wetland communities. Additionally, change vector analysis on these
transformations provided the ability to detect and assess the seasonal changes experienced by
these communities during an annual cycle. The results of these transformations were
combined in a rule-based image classifier in order to assist in estimating the seasonal
dependency of observed wetland communities.
The ability to use Landsat 7 images and the abovementioned image processing procedures to
identify wetland communities with a high probability of groundwater interaction was
demonstrated with a high degree of accuracy (78%). It is recommended that future studies
concentrate on increasing classification accuracies, while focusing on incorporating these
techniques into a remote monitoring system for assessing the impacts of groundwater
extraction on the groundwater-dependent wetland communities. / AFRIKAANSE OPSOMMING: Die Tafelberg Groep (TBG) Akwifer is 'n regionale verskuiwingsakwifer sisteem met groot
potensiaal as toekomstige waterbron vir die Wes- en Oos-Kaap. Grootskaalse grondwateronttrekking
uit hierdie sisteem word tans ondersoek. Baie terrestriële ekosisteme is egter vir
oorlewing van grondwaterbronne afhanklik. Grondwaterontginning teen 'n tempo hoër as die
natuurlike aanvultempo sal die watertafel laat daal en syfersones laat opdroog.
Die hoofdoel van die studie was om te bepaal of satellietbeelde gebruik kan word om
grondwater-afhanklike vleilande waar te neem, en om 'n tydsreeks van beelde te gebruik om
die seisoenale verandering in vleilandgemeenskappe relatief tot omliggende plantegroei te
raam. Die Kogelberg Biosfeer Reservaat, ongeveer 30km oos van Kaappunt, is as
studiegebied geïdentifiseer. Drie Landsat 7 beelde (baan/ry: 175/84) van 22 September 2001,
18 Mei 2002 en 23 September 2002 is ontleed. Die Landsat 7 multispektrale bande (30m
resolusie) is met behulp van beeld-fusietegnieke met die panchromatiese band (15m resolusie)
gekombineer om multispektrale beelde te lewer met 15m grondresolusie. Geometriese
korreksie, radiometriese normalisering en atmosferiese korreksie is op elk van die beelde
toegepas om beeld-selvlak vergelykings tussen beelde 'n moontlikheid te maak. Met
beeldvergelykbaarheid verseker, is plantegroei-indekse en 'tassled cap' transformasies
gebruik om afsnywaardes vir vleiland-identifikasie te bereken. Verder is veranderingsvektoranalises
op die transformasies bereken om die seisoenale veranderinge oor die jaarsiklus in
vleilande te bepaal. Die resultate hiervan is vervat in 'n reël-gebaseerde beeldklassifiseerder
waarmee vleilande se seisoenale grondwater afhanklikheid geraam is.
Die vermoë om vleilande met 'n hol! waarskynlikheid van grondwater interaksie uit Landsat 7
beelde te identifiseer is met 'n hol! vlak van totale akkuraatheid (78%) gedemonstreer. Die
aanbeveling is dat toekomstige studies moet fokus op die verhoging van hierdie klassifikasie
akkuraathede. Die tegnieke moet toegespits word op die ontwikkeling van 'n
afstandswaarnemingstelsel om die
|
45 |
Fabrication of metal-oxide modified porous ceramic granules from aluminosilicate clay soils for defluoridation of groundwaterDenga, Masindi Esther 18 September 2017 (has links)
MENVSC / Department of Ecology and Resource Management / Some boreholes in South Africa which serve as a source of drinking water for rural communities are reported to have high fluoride concentration, much above the WHO guideline of 1.5 mg/L. This study aimed at activating aluminosilicate clay soil mechanochemically, modifying aluminosilicate clay soil with Al-oxide and fabricating porous ceramic granules using Al-oxide modified mechanochemically activated aluminosilicate clay soil/ mechanochemically activated clay soil/ corn starch and evaluating their performances in defluoridation of groundwater.
The raw clay materials were mechanochemically activated for 5, 10, 15 and 30 minutes for physicochemical transformation of the solid aggregate. The morphology of the samples showed the honeycomb structure. The surface area analyses of samples using Brunauer–Emmett–Teller (BET) gave the highest surface area of 50.5228 m2/g at 30 min activation time. Hence, the optimum activation time was 30 min. The Fourier Transform Infrared (FT-IR) analysis showed increase in the absorbance of FT-IR by Si-O-H groups at 510 cm-1 with increasing milling time. This is evidence that more surface Si-O-H groups were available at higher particle surface area that would be necessary to interact with fluoride. X-ray diffraction (XRD) analyses revealed that, at 30 minutes milling time, the peak broadening is intensified whereas the reflection peak intensities decreased. The X-ray fluorescence spectrometry (XRF) results for 30 minutes milling time showed that silica and alumina were the highest components in the clay soil.
Using the activated clay in batch defluoridation of fluoride-spiked water, a maximum fluoride removal of 41% was achieved at a pHe of 2.41. The initial fluoride concentration was 9 mg/L while the sorbent dosage was 0.6 g/100 mL and the contact time being 30 minutes. The adsorption data fitted to both Langmuir and Freundlich isotherms. The adsorption data fitted only the pseudo-second-order kinetic, showing chemisorption.
Optimization of Al3+ concentration for modification was carried out by modifying the mechanochemical activated aluminosilicate clay soil with different concentrations of Al3+ from which the optimum modification was achieved with 1.5 M. Characterisation studies on the Al-oxide modified mechanochemically activated aluminosilicate clay soil by SEM, BET, FT-IR, XRD and XRF, analyses were carried out to determine the resultant changes in physicochemical properties of the adsorbent owing to modification. The SEM image of Al-oxide modified mechanochemically activated clay soil showed many small pores and honey-comb structure on the surface of different images. The BET surface area and the BDH adsorption cumulative area of the Al-oxide modified mechanochemically activated
v
aluminosilicate clay soil were more than double those for the raw clay soil. There was also an increase in pore volume of the Al-oxide modified mechanochemically activated aluminosilicate clay soil. The FT-IR spectra showed that there was increase in the absorbance by the Si-OH, H-O-H, Al-O-H and Si-O-Al. The equilibrium pH of solution was higher than the point-of-zero charge (pHpzc) implying that fluoride removal occurred at solution pH > pHpzc where the net surface charge of the mechanochemically activated clay aluminosilicate soil was negative.The efficiency of 1.5 M Al-oxide modified aluminosilicate clay soil to remove fluoride from water was studied and found to be 96.5 % at pHe 6.86, contact time of 30 minutes and dosage of 0.3 g/100 mL for 10 mg/L fluoride solution at 200 rpm shaking speed. The result shows that Al-oxide modified mechanochemically activated aluminosilicate clay soil is effective for defluoridation. The adsorption data fitted to both Langmuir and Freundlich isotherms. The adsorption data fitted only the pseudo-second-order kinetic, showing chemisorption. Al-oxide modified mechanochemically activated aluminosilicate clay soil was tested for fluoride removal on field water and the percentage fluoride removal was 96.5 % at the dosage of 0.6 g/100 mL with the pHe of 6.48.
The optimum Al-oxide modified mechanochemically activated aluminosilicate clay soil/ mechanochemically activated clay soil/ corn starch mixing ratio for fabrication of porous ceramic granules was determined by varying ratios and temperature. The optimum ratio found was 20:5:1.The porous ceramic granules were characterised using SEM, BET, FT-IR, XRD and XRF. SEM analysis showed that the porous ceramic granules have the porous structure of the organic foam template. The porous ceramic granule showed an increase in pore surface area and volume as compared to mechanochemically activated aluminosilicate clay soil. The FT-IR showed the presence of a strong broad bending and stretching vibrations band at about 993 cm-1 which shows the presence of Si–O–Si bonds. Mineralogical characterisation showed the presence of quartz, albite, horneblende and microcline as the main minerals of the calcined porous ceramic granules. The major oxides of the porous ceramic granules as shown by XRF analysis were SiO2, Al2O3, MnO and Na2O. The porous ceramic granules reduced the concentrations of fluoride in the water from 10 to 3.31 mg/L. The optimum adsorption capacity was 0.6648 mg/g at a pHe of 6.32 and the percentage fluoride removal was 66.9 % at an adsorbent dosage of 1.0063 g/100 mL and a temperature of 600 ⁰C. The porous ceramic granules were tested for fluoride removal on field water and the percentage fluoride removal was 45.4 % at the dosage of 1.0009 g/100 mL with the pHe of 7.87.
Mechanochemically activated aluminosilicate clay soil showed higher adsorption capacity at acidic pH, therefore it is recommended that future work should focus on improving their adsorption capacity at wider range of pH. The porous ceramic granules can also be evaluated in column dynamic flow experiments.
|
46 |
Synthesis and potential application of Fe3+/Mn2+ bimetal and hexadecyltrimethylammonium bromide (HDTMA-Br) modified clayey soils for arsenic removal in groundwaterMudzielwana, Rabelani 16 May 2019 (has links)
PhD (Environmental Sciences) / Department of Ecology and Resource Management / The presence of arsenic in groundwater has drawn worldwide attention from researchers and public
health officials due to its effects on human health such as, cancer, skin thickening, neurological
disorders, muscular weakness, loss of appetite and nausea. World Health Organisation (WHO) has
set the limit of 10 μg/L for arsenic in drinking water in trying to reduce the effects of arsenic. This
was further adopted by South African National Standard (SANS). The present study aims at
evaluating arsenic concentration in selected groundwater sources around Greater Giyani
Municipality in Limpopo Province and further synthesize clay based adsorbents for arsenic
removal using Fe3+ and Mn2+ oxides and hexadecylammonium bromide (HDTMA-Br) cationic
surfactant as modifying agents.
The first section of the work presented the hydrogeochemical characteristics of groundwater in the
Greater Giyani Municipality. The results showed that the pH of the samples ranges from neutral
to weakly alkaline. The dominance of major anionic and cationic species was found to be in the
order: HCO3
->Cl->SO4
2->NO3
- and Na+>Mg2+>Ca2+>K+>Si4+, respectively. Hydrogeochemical
facies identified in the study area include CaHCO3 (90%) and mixed CaNaHCO3 (10%) which
shows the dominance of water-rock interaction. About 60% of the tested samples contains arsenic
concentration above 10 μg/L as recommended by SANS and WHO. Concentration of arsenic was
found to be ranging between 0.1 to 172.53 μg/L with the average of 32.21 μg/L.
In the second part of this work, arsenic removal efficiency of locally available smectite rich and
kaolin clay was evaluated. Results showed that the percentage As(V) removal by kaolin clay was
optimum at pH 2 while the percentage As(III) removal was greater than 60% at pH 2 to 12. For
smectite rich clay soils, the percentage of As(III) and As(V) removal was found to be optimum at
pH between 6 and 8. The adsorption isotherm data for As(III) and As(V) removal by both clays
fitted better to Freundlich isotherm. Adsorption of both species of arsenic onto the clay mineral
occurred via electrostatic attraction and ion exchange mechanisms. Both clay soils could be
regenerated twice using Na2CO3 as a regenerant. Kaolin clay showed a better performance and was
selected for further modification.
In the third section of this work, Fe-Mn bimetal oxide modified kaolin clay was successfully
synthesized by precipitating Fe3+ and Mn2+ metal oxides to the interlayer surface of kaolin clay.
Modification of kaolin clay increased the surface area from 19.2 m2/g to 29.8 m2/g and further
v
decreased the pore diameter from 9.54 to 8.5 nm. The adsorption data fitted to the pseudo second
order of reaction kinetics indicating that adsorption of As(III) and As(V) occurred via
chemisorption. The adsorption isotherm data was described by Langmuir isotherm models
showing a maximum As(III) and As(V) adsorption capacities of 2.16 and 1.56 mg/g, respectively
at a temperature of 289 K. Synthesized adsorbent was successfully reused for 6 adsorptiondesorption
cycles using K2SO4 as a regenerant. Column experiments showed that maximum
breakthrough volume of ≈2 L could be treated after 6 hours using 5 g adsorbent dosage.
Furthermore, the concentration of Fe and Mn were within the WHO permissible limit.
In the fourth part of the work kaolin clay was functionalized with hexadecyltrimethylamonium
bromide (HDTMA-Br) cationic surfactant and its application in arsenic removal from groundwater
was investigated. The results revealed that adsorption of As(III) and As(V) is optimum at pH range
4-8. The maximum As(III) and As(V) adsorption capacities were found 2.33 and 2.88 mg/g,
respectively after 60 min contact time. Pseudo first order model of reaction kinetics described the
adsorption data for As(V) better while pseudo second order model described As(III) adsorption
data. The adsorption isotherm data for As(III) and As(V) fitted well to Langmuir model indicating
that adsorption of both species occurred on a mono-layered surface. Adsorption thermodynamics
model revealed that adsorption of As(III) and As(V) was spontaneous and exothermic. The
As(III)/As(V) adsorption mechanism was ascribed to electrostatic attraction and ion exchange.
The regeneration study showed that synthesized adsorbent can be used for up to 5 times.
In the firth part of the work inorgano-organo modified kaolin clay was successfully synthesized
through intercalation of Fe3+ and Mn2+ metal oxides and HDTMA-Br surfactant onto the
interlayers of the clay mineral. The batch experiments showed that As(III) removal was optimum
at pH range of 4-6, while the As(V) removal was optimum at pH range 4-8. The adsorption data
for both species of arsenic showed a better fit to pseudo second order of reaction kinetics which
suggest that the dominant mechanism of adsorption was chemisorption. The isotherm studies
showed better fit to Langmuir isotherm model as compared to Freundlich model. The maximum
adsorption capacity As(III) and As(V) at room temperature as determined by Langmuir model
were found to be 7.99 mg/g and 7.32 mg/g, respectively. The thermodynamic studies for sorption
of As(III) and As(V) showed negative value of ΔGᴼ and ΔHᴼ indicating that adsorption process
occurred spontaneously and is exothermic in nature. The regeneration study showed that the
vi
inorgano-organo modified kaolin clay can be reused for up 7 adsorption-regeneration cycles using
0.01 M HCl as a regenerant. Thomas kinetic model and Yoon-Nelson model showed that the rate
of adsorption increases with increasing flow rate and initial concentration and decreases with
increasing of the bed mass.
In conclusions, adsorbents synthesized from this work showed a better performance as compared
to other adsorbents available in the literature. Among the synthesized adsorbents, inorgano-organo
modified clay showed highest adsorption capacity as compared to surfactant functionalized and
Fe-Mn bimetal oxides modified kaolin clay. However, all adsorbents were recommended for use
in arsenic remediation from groundwater. The following recommendations were made following
the findings from this study: 1) routine monitoring of arsenic in groundwater of Greater Giyani
Municipality, 2) evaluating the possible link between arsenic exposure and arsenic related diseases
within Giyani in order to find the extent of the problem in order to establish the population at risk,
3) The toxicity assessment for HDTMA-Br modified kaolin clay should be carried out, 4) Materials
developed in the present study should be modeled and tested at the point of use for arsenic removal,
and lastly, 5) this study further encourage the development of other arsenic removal materials that
can be used at household level. / NRF
|
47 |
Determination of the mineral composition of water and soil samples from Tshipise thermal spring, Mphephu thermal spring and Siloam borehole using inductively coupled plasma mass spectrometry and x-ray fluorescence spectrometryDube - Johnstone, Nhlalo Michael 17 May 2019 (has links)
MSc (Chemistry / Department of Chemistry / In this study, three sampling sites (Tshipise thermal spring, Mphephu thermal spring
and Siloam borehole) in Limpopo Province South Africa were considered for an
investigation into the mineral composition of their water and soil samples. Tshipise
and Mphephu thermal springs are well developed and located within tourist resorts.
On the other hand, Siloam is a borehole on the grounds of a private household. The
water is used for various domestic purposes such as laundry, general cleaning of the
household and bathing. Water and soil samples from the three sites were collected
once per week every week in February 2018. The sampling bottles were spiked with
1M HNO3 before sampling to keep any metal ions present in the water samples in
solution. The soil and water samples were analysed for their chemical composition
using X-ray fluorescence (XRF) and inductively coupled plasma mass spectrometry
(ICP-MS) respectively. XRF analysis of the soil samples found many major oxides of
which SiO2 made up 63.67%, 85.37% and 46.28% by mass of Tshipise, Mphephu
and Siloam soil samples respectively. XRF analysis also showed the presence of
dangerous levels of heavy metals such as As, Tl, Pb and V. The analysis of the
water samples by ICP-MS found that Tshipise, Mphephu and Siloam mineral water
were soft, soft-moderately hard and soft-hard respectively with regards to the water
hardness scale according to the United States Geological Survey (USGS) and the
Water Quality Association (WQA). Analysis of water samples also found the
presence of As, Cd, Cr and V. Arsenic was found to occur at concentrations above
the Maximum Allowable Concentration (MAC) set by the World Health Organisation
(WHO) (10 μg L-1) for Tshipise, Mphephu and Siloam mineral water (13.63 μg L-1,
15.83 μg L-1 and 20.97 μg L-1 respectively). Water temperatures for the three sites
ranged from 38°C (Siloam borehole) to 64°C (Tshipise thermal spring). The pH
values were 7.25 (Siloam borehole), 7.40 (Mphephu thermal spring) and 8.67
(Tshipise thermal spring). Due to the presence of As, Tl, Pb, V, Cd and Cr, the
mineral water from all three thermal springs is unsafe to consume as it would lead to
serious negative health effects some of which are outlined in this study. / NRF
|
48 |
Clay polymer nanocomposites as fluoride adsorbent in groundwaterNengudza, Thendo Dennis 18 May 2019 (has links)
MENVSC / Department of Ecology and Resource Management / Fluoride is one of the anionic contaminants which is found in excess in groundwater because
of geochemical reaction or anthropogenic activities such as the disposal of industrial
wastewaters. Among various methods used for defluoridation of water such as precipitation,
ion-exchange processes, membrane processes, the adsorptions process is widely used. It offers
satisfactory results and seems to be a more attractive method for the removal of fluoride in
terms of cost, simplicity of design and operation.
In this work, the preparation of clay polymer nanocomposites (CPNCs) used in defluoridation
began by modifying the original natural Mukondeni clay to render the layered silicate miscible
with the chosen polymer, microcrystalline cellulose. Clay polymer nanocomposites (CPNCs)
were synthesized using the melt intercalation method. Mukondeni black clay with
microcrystalline cellulose as polymers was melt mixed at 220 °C for 10 minutes in an extruder
for exfoliation of the resulting composite. Physicochemical characteristics and mineralogical
characteristics of the CPNC was determined using XRD, XRF, BET, FTIR and SEM. Batch
adsorption experiments were conducted to determine the efficiency of CPNCs in defluoridation
of groundwater. The pH, EC, TDS and fluoride concentration of field water was determined
using the CRISON MM40 multimeter probe and the Orion versastar fluoride selective
electrode for fluoride concentration.
Elemental analysis revealed that CPNC 1:1 is mainly characterized of cellulose, Quartz and
Albatite as the major minerals with traces of Montmorillonite, Ednite and Magnesium as minor
minerals constituting CPNC 1:1. The structure of 1:4 CPNC was partially crystalline and
partially amorphous showing increased cellulose quantity (1:4 clay to cellulose) as compared
1:1 CPNC, 1:2 CPNC and 1:3 CPNC.
Maximum adsorption of fluoride was attained in 10 minutes using 0.5g of 1:4 CPNC removed
22.3% of fluoride. The initial fluoride concentration for the collected field groundwater was
5.4 mg/L, EC 436 μS/cm, and TDS 282 mg/L. The regeneration potential of CPNCs was
evaluated through 3 successive adsorption desorption cycles. Fluoride removal decreased after
the first cycle for all ratios of CPNCs, a continued decreased can be observed following the
second cycle. CPNC 1:2 decreased from 9.32 % at the 1st cycle to 2.84 % and 0.56 % on the
2nd and 3rd cycle respectively. CPNC 1:4 decreased from 8.22 % at the 1st cycle to 4.80 % and
0.72 % on the 2nd and 3rd cycle respectively. The fluoride-rich Siloam groundwater had a
slightly alkaline pH of 9.6.
iv
The low adsorptive characteristic displayed by all 4 CPNCs can be deduced from the BET
analysis that revealed low surface area, pore volume, and pore size, it is evident from the BET
analysis that less fluoride will be absorb as adsorption sites will be limited.
Based on the findings of this study, recommendations are designing of correct preparation
techniques to obtain nanocomposites with desirable properties, polymer melting points and
evaporation point of the binder should be taken into consideration. / NRF
|
49 |
Isotopic signatures and trace metals in geothermal springs and their environmental media within SoutpansbergDurowoju, Olatunde Samod 20 September 2019 (has links)
PhDENV / Department of Hydrology and Water Resources / Geothermal springs are natural geological phenomena that occur throughout the world. South Africa is endowed with several springs of this nature. Thirty-one percent of all geothermal springs in the country are found in Limpopo province. The springs are classified according to the residing mountain: Soutpansberg, Waterberg and Drakensberg. This study focused on the geothermal springs within the Soutpansberg region; that is, Mphephu, Siloam, Sagole and Tshipise. The study was aimed at elucidating on the isotopic signatures and trace metals concentrations from the geothermal springs to their environmental media in Soutpansberg region. This study also assessed the interconnectivity of the isotopic signatures within the ecosystem and evaluated the potential human health risks associated with trace metals from geothermal springs and surrounding soils in the study areas.
Geothermal springs and boreholes were sampled for a period of twelve months (May 2016 – May, 2017) to accommodate two major seasons in the study areas. The surrounding soils were sampled vertically from a depth of 10 cm to 50 cm for trace metals and isotopic compositions. Three different plants were sampled at each of the study sites, namely, Amarula tree, Guava tree and Mango tree at Siloam; Acacia tree, Fig tree and Amarula tree at Mphephu; Amarula tree, Lowveld mangosteen and Leadwood tree at Sagole; Sausage tree, Amarula tree and Acacia tree at Tshipise. To achieve the objectives, the physicochemical, geochemical and isotopic compositions of the geothermal springs, boreholes, soils and vegetation were analysed using ion chromatography (IC) (Dionex Model DX 500), inductively coupled plasma-mass spectrometer (ICP-MS), HTP-Elemental analyzer, Liquid water isotope analyzer (LWIA-45-EP) and Liquid scintillation analyzer. The temperature, electrical conductivity (EC), pH and total dissolved solid (TDS) of the geothermal springs and boreholes samples were measeured in situ and in the laboratory. Trace metals analysed in geothermal springs, boreholes, soil and vegetation include Beryllium (Be), Chromium (Cr), Manganese (Mn), Cobalt (Co), Nickel (Ni), Copper (Cu), Arsenic (As), Selenium (Se), Cadmium (Cd), Antimony (Sb), Barium (Ba), Vanadium (V), Zinc (Zn), and Mercury (Hg).
vii | Isotopic signatures and trace metals in geothermal springs and their environmental media within Soutpansberg
Results obtained from this study in the studied geothermal springs and boreholes were classified according to their temperature as hot and scalding; except for tepid boreholes. This study has provided comprehensive physicochemical, geochemical and isotopic compositions of the geothermal springs within the Soutpansberg region (Siloam, Mphephu, Sagole and Tshipise). The local meteoric line (δD = 7.56δ18O + 10.64) was generated from rainwater in Vhembe district. This is a crucial component for depicting the source and flow path of the geothermal springs/boreholes; and could be used for future isotopic hydrological studies within the locality. Rain formation processes within Soutpansberg occurred under isotopic equilibrium conditions with minor evaporation effect during rainfall. The δD and δ18O values of the geothermal spring water/boreholes confirm that the waters are of meteoric origin, which implies that rainfall is the fundamental component of these groundwaters because they were derived from the infiltration of rainwater, with significant contribution of another type of water in the deeper part of the aquifer. Na-Cl and Na-HCO3 were established as the water types, which are typical of marine and deep groundwaters which are influenced by the ion - exchange process. The reservoir/aquifer temperature of these springs ranges between 95 – 185°C (Na-K geothermometer), which implies most of the waters are mature water (not native). Hence, geothermal springs water is a mixture of the rainwater and salt water.
Radiocarbon values of the geothermal springs ranged from 2700 to 7350 BP, this implies that they are submodern and a mixture of submodern and modern waters. Tritium relative age also corroborates with radiocarbon age, that is the groundwaters were recharged before and after 1952. This gives an indication that the rainfall contributes to the geothermal springs recharge. Various radiocarbon correction models were employed and constrained by tritium relative age. Ingerson and Pearson, Eichinger and Fontes and Garnier correction models have been shown to be the most appropriate models for radiocarbon correction of groundwater in this semi-arid region. Although, geothermal springs water and boreholes are not fit for drinking due to high fluoride content, they could be used for the following: domestic uses (drinking exclusive) due to its softness, direct heating in refrigeration, green-housing, spa, therapeutic uses, aquaculture, sericulture, concrete curing, coal washing and power generation. In contrast with mentioned uses,
viii | Isotopic signatures and trace metals in geothermal springs and their environmental media within Soutpansberg
the studied geothermal springs are currently used for domestic purposes (drinking inclusive), limited irrigation and spa (swimming and relaxation).
This is an eco-hydrological study that shows the interconnectivity of isotopic signatures among water (rainwater, geothermal springs and boreholes), soils and vegetation. The soil-water reflects the rainwater/geothermal springs water in isotopic composition, which is more depleted as a result of isotopic fractionation in soil. δD values of soil-water increase, whereas δ13C values in soil-water decrease with the soil depth at all sites. Two equations connecting δD and δ13C in soil-water were deduced per season for soil-water; δ13C = 0.0812δD - 10.657 in winter; δ13C = -0.0278δD - 21.945 for summer. δ13C in soil-water is induced by Crassulacean Acid Metabolism (CAM) (mixture of C3 and C4 photosynthetic cycles) with a stronger C4 trend, which corroborates with δ13C of the geothermal springs. From literature, Amarula and Acacia trees have been documented for isotopic compositions, while this study has given additional information on other plants including Lowveld, Leadwood, Sausage, Fig, Guava and Mango trees. These plants are categorised as C3, C4 and CAM plants. C3 plants include Amarula, Lowveld and Leadwood trees; C4 plants include Acacia and Sausage trees; and CAM plants include Fig, Guava and Mango trees. This study shows that with CAM soils, there is a possibility of having either C3, C4 or CAM vegetation. This finding has shown that the δD and δ13C isotopes in water, soil and vegetation are interrelated, which has been statistically justified.
This study has shown the potential human health risks associated with trace metals concentrations from geothermal springs and their surrounding soils. From the geothermal spring’s water, it was found that As, Cr and Cd were the highest contributors to the cancer risk with children having a higher risk than adults. Whereas in soils, it was found that Cr, As and Co were the highest contributors to the cancer risk in the studied communities. Therefore, the cancer risk is high in the general population; that is 1 in 72-162 individuals in children and 1 in 7-107 individuals for adults. The ingestion route seems to be the major contributor to excess lifetime cancer risk followed by the dermal pathway. Therefore, proper monitoring and control measures to protect human health, particularly in children, should be implemented for safety. The study also explored the use of surrounding trees
ix | Isotopic signatures and trace metals in geothermal springs and their environmental media within Soutpansberg
for phytoremediation and found their uptake capacity to be high, thus, they could be used as bio-indicators to assess the level of contamination of trace metals in the soil.
In conclusion, this study has eludicated on the isotopic signatures and trace metals concentrations from the geothermal springs and their surrounding soils and vegetation within Soutpansberg. This study has contributed towards the advancement and enhancement of the existing knowledge of the geothermal systems, such that water resource management could be applied successfully in the respective areas with similar characteristics for the benefit of the local communities and society at large. Hence, this study recommends that proper monitoring and control measures need to be put in place to protect human health, especially in children. / NRF
|
Page generated in 0.0744 seconds