• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 3
  • Tagged with
  • 11
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

La tour de Teichmüller--Grothendieck

ZOONEKYND, Vincent 22 June 2001 (has links) (PDF)
Nous commençons par développer la notion de groupe fondamental d'un champ algébrique, à l'aide de sa catégorie de revêtements étales. Cette définition coïncide avec celle, en termes de schémas simpliciaux, de T. Oda. Nous montrons aussi qu'elle permet de retrouver le groupe fondamental profini de l'orbifold analytique associé puis établissons une suite exacte reliant groupe fondamental géométrique et algébrique d'un champ algébrique sur un corps. Dans un deuxième chapitre, après avoir défini les notions d'espace tangent et de diviseur à croisements normaux dans le cadre des champs algébriques, nous généralisons celle de point base tangentiel, bien connue pour les schémas de carcatéristique nulle, aux champs algébriques en caractéristique quelconque. Dans un troisième chapitre, nous montrons que les strates ouvertes de la stratification de l'espace de modules de courbes stables de genre $g$ à $n$ points marqués peuvent se décrire à l'aide des espaces de modules de courbes lisses de dimension inférieure. Nous expliquons aussi comment un graphe en rubans permet de décrire un point-base tangenciel sur ces espaces de modules. Dans un dernier chapitre, nous détaillons certains liens entre la tour des groupoïdes fondamentaux des espaces de modules de courbes lisses relatifs aux points-bases tangenciels précédemment construits et le groupoïde de Lyubashenko, en y construisant certains chemins (torsion, tressage) et en établissant certaines relations entre ces chemins. Dans deux appendices, nous détaillons les notions de champ algébrique et de 2-catégorie.
2

Plateaux d'idempotents dans un monoïde‎ : partie génératrice et associativité dans un groupoïde

El-Kari, Yacoub 21 October 1972 (has links) (PDF)
.
3

Catégories enrichies faibles

Pellissier, Regis 27 June 2002 (has links) (PDF)
Cette thèse est consacrée à la démonstration d'un théorème montrant l'existence d'une structure de catégorie de modèles fermée concernant les catégories faiblement enrichies. Il faut au préalable définir les notions de catégories faiblement enrichies et d'équivalence de catégories faiblement enrichies de telle manière que ces notions recouvrent diverses notions déjà existantes de catégories faibles d'ordre supérieur telles les catégories de Segal, les n-catégories de Tamsamani et les n-catégories strictes. Afin de démontrer notre théorème, nous devons mettre au point une théorie de plans d'addition de cellules sur le modèle de l'argument du petit objet à la Quillen. Nous terminons ce travail en montrant que notre théorème recouvre le cas des catégories de Segal. Ce dernier résultat nécessite de montrer une adjonction "groupoïde fondamental-réalisation géométrique" entre les groupoïdes de Segal et les espaces topologiques.
4

Indices analytiques à support compact pour des groupoïdes de Lie

Carrillo Rouse, Paulo 12 December 2007 (has links) (PDF)
Pour un groupoïde de Lie, on construit un morphisme d'indice analytique à valeurs dans un certain quotient de la K-théorie de l'algèbre de convolution de fonctions lisses à support compact. La construction est aboutie grâce à l'introduction d'une algèbre de déformation de fonctions lisses sur le groupoïde tangent. Ceci permet en particulier de montrer une version plus primitive du théorème de l'indice longitudinal de Connes-Skandalis for Foliations, c'est à dire, un théorème de l'indice qui prend ses valeurs dans un groupe qui peut être accouplé avec des cocycles cycliques. Une autre application est la suivante: soit D un G-opérateur pseudodifférential eliiptique avec indice ind(D)€K_0(A) (où A est l'algèbre de convolution), alors l'accouplement de ind(D) avec un coycle cyclique borné ne dépend que de la classe du symbole principal de D. Ce résultat est général pour des goupoïdes étale.
5

Quelques applications des symétries en géométrie différentielle et systèmes dynamiques

Dragulete, Oana 05 September 2007 (has links) (PDF)
Mes recherches se situent à l'interface de la géométrie Riemannienne et des géométries de contact et symplectique et portent sur la construction des métriques Kähler ou Sasakie-Einstein, sur l'étude des systèmes Hamiltonians conformes, la géométrie des fibrés cosphériques et les groupoïdes de Lie propres. Le thème principal de cette thèse est l'étude des applications des symétries Lie en géométrie différentielle et systèmes dynamiques. Le premier chapitre de cette thèse étudie la réduction singulière des symétries du fibré cosphérique, les propriétés conservatives des systèmes de contact et leurs réduction. Le fibré cosphérique d'une variété différentiable $M$ (dénoté par $S^*(M)$) est le quotient de son fibré cotangent sans la section nulle par rapport à l'action par multiplication de $\RR^+$ qui couvre l'identité sur $M$. C'est une variété de contact qui détient en géométrie de contact la position analogue du fibré cotangent en géométrie symplectique. En utilisant une métrique Riemannienne sur $M$, on peut identifier $S^*(M)$ avec son fibré tangent unitaire et son champ de Reeb avec le champ géodésique de $M$. Si $M$ est munie de l'action propre d'un groupe de Lie $G$, le relèvement de cette action à $S^*(M)$ respecte la structure de contact et admet une application moment équivariante $J$. Nous étudions les propriétés topologiques et géométriques de l'espace réduit à moment zéro de $S^*(M)$, i.e. $\left(S^*(M)\right)_0 :=J^{-1}(0)/G$. Ainsi, nous généralisons les résultats de \cite{dragulete--ornea--ratiu} au cas singulier. Appliquant la théorie générale de réduction de contact, théorie dévéloppée par Lerman et Willett dans \cite{lerman--willett} et \cite{willett}, on obtient des espaces qui perdent toute information sur la structure interne du fibré cosphérique. En plus, la projection du fibré cosphérique sur sa base descend à une surjection continue de $\left(S^*(M)\right)_0$ à $M/G$, mais qui n'est pas un morphisme d'espaces stratifiés si on munit l'espace réduit avec sa stratification de contact et l'espace de base avec la stratification standarde de type orbitale définie par l'action du groupe de Lie. Compte tenu des théorèmes de réduction du fibré cotangent (cas régulier et singulier) et du fibré cosphérique ( cas régulier), on s'attend à ce que les strates de contact aient une structure fibrée additionnelle. Pour résoudre ces problèmes, nous introduisons une nouvelle stratification de $\left(S^*(M)\right)_0$, nommée la \emph{stratification C-L} (les deux majuscules symbolisent la nature coisotrope ou Legendréenne de leurs strates). Elle est compatible avec la stratification de contact de $\left(S^*(M)\right)_0$ et la stratification de type orbital de $M/G$. Aussi, elle est plus fine que la stratification de contact et rend la projection de $\left(S^*(M)\right)_0$ sur $M/G$ un morphism d'espaces stratifiés. Chaque strate C-L est un fibré sur une strate de type orbital de $M/G$ et elle peut être vue comme une union de strates C-L, une d'entre elles étant ouverte et dense dans la strate de contact correspondante et difféomorphe à un fibré cosphérique. Ainsi, nous avons identifié les strates maximales munies de structure de fibrés cosférique. Les autres strates sont des sous-variétés coisotropes ou Legendre dans les composantes de contact qui les contiennent. Par conséquant nous faison une analyse géométrique et topologique complète de l'espace réduit. Nous analysons aussi le comportement de la projection sur $\left(S^*(M)\right)_0$ du flot de Reeb (flot géodésique). L'ensemble de champs de vecteurs de contact (les analogues des champs de vecteurs Hamiltonians en géométrie symplectique) forment le "groupe de Lie" de l'algèbre des transformations de contact. Dans le premier chapitre nous présentons aussi la réduction des systèmes de contact (qui, localement, sont en correspondence bijective avec les équations non-autonomes de Hamilton-Jacobi) et les systèmes Hamiltonians dépendants de temps. Dans le deuxième chapitre nous étudions les propriétés géométriques des quotients de variétés Sasaki et Kähler. Nous construisons une procédure de réduction pour les variétés symplectiques et Kähler (munies de symétries générées par un groupe de Lie) qui utilise les préimages rayon de l'application moment. Précisémmant, au lieu de considérer comme dans la réduction de Marsden-Weinstein (ponctuelle) la préimage d'une valeur moment $\mu$, nous utilisons la préimage de $\RR^+\mu$, le rayon positif de $\mu$. Nous avons trois motivations pour développer cette construction. Une est géométrique: la construction des espaces réduits de variétés Kähler correspondant á un moment non nulle qui soient canoniques dans le sense que la structure Kähler réduite est la projection de la structure Kähler initiale. La réduction ponctuelle (Marsden-Weinstein) donnée par $M_\mu:=J^{-1}(\mu)/G_\mu$ où $\mu$ est une valeur de l'application moment $J$ et $G_\mu$ est le sous-groupe d'isotropie de $\mu$ par rapport à l'action coadjointe de $G$ n'est pas toujours bien définie dans le cas Kähler (si $G\neq G_\mu$). Le problème est causé par le fait que la structure complexe de $M$ ne préserve pas la distribution horizontale de la submersion Riemannienne qui projète $J^{-1}(\mu)$ sur $M_\mu$. La solution proposée dans la litterature utilise l'espace réduit à moment zéro de la difference symplectique de $M$ avec l'orbite coadjointe de $\mu$ munie d'une forme Kähler-Einstein unique (construite par exemple dans \cite{besse}, Chapitre $8$) et différente de la forme de Kostant-Kirillov-Souriau. L'unicité de la forme sur l'orbite coadjointe garantit un espace réduit bien défini. Par contre, ne plus utiliser la forme de Kostant-Kirillov-Souriau entraîne le fait que l'espace réduit n'est plus canonique. L'espace réduit rayon que nous construisons est canonique et peut être défini pour tout moment. Il est le quotient de $J^{-1}(\RR^+\mu)$ par rapport à un certain sous-groupe normal de $G_\mu$. La deuxième raison est une application à l'étude des systèmes Hamiltonians conformes (voir \cite{mclachlan--perlmutter}). Ce sont des systèmes mécaniques non-autonomes, avec friction dont les courves intégrales préservent, dans le cas des symétries, les préimages rayons de l'application moment. Nous extendons la notion de champ Hamiltonian conforme, en montrant qu'on peut ainsi inclure dans cet étude de nouveaux systèmes mécaniques. également, nous présentons la réduction de systèmes Hamiltonians conformes. La troisième raison consiste à trouver des conditions necéssaires et suffisantes pour que les espaces réduits (rayons) des variétés Kähler (Sasakian)-Einstein soient aussi Kähler (Sasakian)-Einstein. Nous nous occupons de cela dans le deuxième chapitre de la thèse, dans \cite{dragulete--ornea} et dans \cite{dragulete--doi} où nous utilisons des techniques de A. Futaki. Ainsi, nous pouvons construire de nouvelles structures de Sasaki-Einstein. Comme exemples de réductions rayon symplectic (Kähler) et contact (Sasaki) nous traitons le cas des fibrés cotangent et cosphérique. Nous montrons qu'ils sont des espaces universels pour la réduction rayon. Des exemples d'actions toriques sur des sphères sont aussi décrits. Le troisième chapitre de cette thèse traite l'étude de l'espace des orbites d'un groupoïde propre. Dans \cite{weinstein--unu}, \cite{weinstein--doi} A. Weinstein a partiellement résolu le problème de la linéarisation des groupoïdes propres. En \cite{zung}, N. T. Zung l'a achevé en démontrant un théorème de type Bochner pour les groupoïdes propres. Nous prouvons un théorème de stratification de l'espace d'orbites d'un groupoïde propre en utilisant des idées de la théorie des foliations et le théorème de "slice" (linéarisation) de Weinstein et Zung. Nous montrons explicitement que le feuilletage orbital d'un groupoïde propre est un feuilletage Riemannien singulier dans le sense de Molino. Pour cela nous avons deux motivations. D'un côté nous voulons montrer qu'il y ait une équivalence entre groupoïdes propres et "orbispaces" (des espaces qui sont localement des quotiens par rapport à l'action d'un groupe de Lie compact) et d'un autre nous voulons étudier la réduction des actions infinitésimales (actions d'algèbres de Lie) qui ne sont pas intégrables à l'action d'un groupe de Lie. Ces actions et leur intégrabilité ont été étudiées, entre autres, par Palais (\cite{palais}), Michor, Alekseevsky.
6

Propriétés algébriques d'une algèbre de convolution

Magnifo Kahou, Florence Laure January 2009 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.
7

Weak enriched categories - Catégories enrichies faibles.

Pellissier, Regis 27 June 2002 (has links) (PDF)
This thesis is devoted to the proof of a theorem showing the existence of a closed model category structure for weakly enriched categories. It requires first of all the definitions of weakly enriched categories and equivalences of weakly enriched categories such that these definitions recover some existing notions of higher order weak categories, for example Segal categories, Tamsamani n-categories and strict n-categories. In order to prove our theorem, we elaborate a theory of plans for cell addition following the approach of the small object argument <i>à la</i> Quillen. We conclude this work with the proof that our theorem recovers the case of Segal categories. This last result requires a fundamental groupoid-geometric realization adjunction between Segal groupoids and topological spaces.
8

Propriétés algébriques d'une algèbre de convolution

Magnifo Kahou, Florence Laure January 2009 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
9

Contributions à la géométrie algébrique imparfaite en caractéristique positive / Contributions to imperfect algebraic geometry in positive characteristic

Huang, Yuliang 18 September 2019 (has links)
Ce travail de thèse, composé de quatre parties, est consacré à l’étude de la géométrie algébrique en caractéristiques mixte et positive. Dans la première partie, motivés par une théorie conjecturale de la ramification pour les torseurs inséparables, nous étudions les modèles maximaux des torseurs sur un corps local, qui sont une généralisation des anneaux des entiers dans la théorie classique de la ramification. Nous prouvons la maximalité et la fonctorialité des modèles maximaux et nous les calculons explicitement pour les schémas en groupes finis plats d'ordre p. La deuxième partie est un travail en commun avec Giulio Orecchia et Matthieu Romagny. Nous étudions la perfection des algèbres et la coperfection des espaces et champs algébriques. Nous prouvons que l’espace des composantes connexes fournit la coperfection d’un espace algébrique et il représente la colimite du système de Frobenius relatifs. Dans le cas des champs algébriques, nous construisons le pro-groupoïde fondamental étale, nous prouvons qu'il fournit la coperfection, et il représente la colimite du système de Frobenius relatifs dans le cas de Deligne-Mumford. Dans la troisième partie, nous prouvons quelques résultats de platitude et de représentabilité des espaces de modules de torseurs sous certains schémas en groupes, qui découlent naturellement de l’espace de modules propre des p-revêtements galoisiens. Nous discutons également de la relation avec les jacobiennes généralisées des courbes ouvertes. Dans la dernière partie, nous nous intéressons à un nouveau type de géométrie analytique non-archimédienne, avec des valuations à valeurs dans des monoïdes commutatifs totalement ordonnés. Nous étudions quelques exemples de schémas et d’espaces adiques. / This thesis work, consisting of four parts, is devoted to the study of algebraic geometry in mixed and positive characteristics. In the first part, motivated by a conjectural ramification theory for inseparable torsors, we study the maximal model of a torsor over a local field, which is a generalization of integer rings in classical ramification theory. We prove the maximality and functoriality of maximal models, and calculate them explicitly for some finite flat group schemes of order p. The second part is a joint work with Giulio Orecchia and Matthieu Romagny. We study perfection of algebras and coperfection of algebraic spaces and stacks. We prove that the space of connected components provides the coperfection of an algebraic space, and it represents the colimit of relative Frobenii. In the case of algebraic stacks, we construct the étale fundamental pro-groupoid, and prove that it provides the coperfection, and it represents the colimit of relative Frobenii in Deligne-Mumford case. In the third part, we prove some results on flatness and representability of moduli spaces of torsors under certain group schemes, which naturally arise from the proper moduli space of Galois p-covers (stable p-torsors). We also discuss the relation with generalized Jacobians of open curves. In the last part, we are interested in a new kind of nonarchimedean analytic geometry, with valuations on totally ordered commutative monoids. We study some examples from schemes and adic spaces.
10

Algèbres de Clifford conformes et orbites de points de vue d'images / Conformal Clifford algebras and image viewpoints orbit

El Mir, Ghina 09 July 2014 (has links)
L'objectif de ce travail est de décrire des modélisations des points de vue et des changements de points de vue d'images d'un objet planaire dans les algèbres de Clifford conformes. Nous généralisons le modèle conforme de l'espace euclidien à travers une famille à deux paramètres d'horosphère, chacune d'entre elles étant plongée dans un espace vectoriel réel de dimension 4 muni d'une métrique équivalente à la métrique de Minkowski. Nous décrivons par la suite deux approches pour mettre en œuvre ces modèles conformes généralisés pour les représentations d'images. L'idée de base est d'encoder les distorsions perspectives de l'objet causées par la variation du paramètre de latitude de la caméra au travers des paramètres d'une horosphère. La première approche consiste à considérer les horosphères de l'espace de Minkowski de dimension 4 pour encoder les points de vue. Les changements de points de vue sont alors linéarisés à travers un groupe de transformations linéaires et conformes de cet espace. Cette approche est ensuite généralisée en décrivant les points de vue à travers les objets d'un groupoïde dont les morphismes sont des diagrammes commutatifs qui représentent les changements de points de vue. Ainsi, une image conforme est décrite par une application définie sur une horosphère à deux paramètres. L'action du groupoïde sur l'ensemble des images conformes nous conduit à associer à tout objet planaire l'orbite de toutes ses images conformes obtenues à partir de tous les points de vue. / Our purpose in this work is to introduce representations of image viewpoints and viewpoint changes of a planar object in conformal Clifford algebras. Our important preliminary contribution is a generalization of the conformal model of the Euclidean space through a two-parameter family of horospheres. Each one of these is embedded into a real vector space of dimension 4 equipped with a metric equivalent to the Minkowski metric. We describe two approaches that make use of these generalized conformal models for image representations. These are based on modelings of perspective distortions of the object caused by a variation of the latitude angle of the camera. First, we model the image viewpoints by the horospheres of the Minkowski space of dimension 4. In this setting, the viewpoint changes are linearized through a group of linear conformal transformations of this space. This approach is generalized by describing the viewpoints through the objects of a groupoid whose morphisms are commutative diagrams that model the viewpoint changes. A conformal image is then described as a map defined on a horosphere. The action of the groupoid on the set of conformal images leads us to associate with every planar object the orbit of its conformal images from all viewpoints.

Page generated in 0.0301 seconds