• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 38
  • 18
  • 10
  • 6
  • 4
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 87
  • 27
  • 20
  • 18
  • 17
  • 16
  • 14
  • 10
  • 10
  • 9
  • 9
  • 9
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Shear Strength Prediction Methods for Grouted Masonry Shear Walls

Dillon, Patrick 01 March 2015 (has links) (PDF)
The research in this dissertation is divided between three different approaches for predicting the shear strength of reinforcement masonry shear walls. Each approach provides increasing accuracy and precision in predicting the shear strength of masonry walls. The three approaches were developed or validated using data from 353 wall tests that have been conducted over the past half century. The data were collected, scrutinized, and synthesized using principles of meta-analysis. Predictions made with current Masonry Standards Joint Committee (MSJC) shear strength equation are unconservative and show a higher degree of variation for partially-grouted walls. The first approach modifies the existing MSJC equation to account for the differences in nominal strength and uncertainty between fully- and partially-grouted walls. The second approach develops a new shear strength equation developed to perform equally well for both fully- and partially-grouted walls to replace and improve upon the current MSJC equation. The third approach develops a methodology for creating strut-and-tie models to analyze or design masonry shear walls. It was discovered that strut-and-tie modeling theory provides the best description of masonry shear wall strength and performance. The masonry strength itself provides the greatest contribution to the overall shear capacity of the wall and can be represented as diagonal compression struts traveling from the top of the wall to the compression toe. The shear strength of masonry wall is inversely related to the shear span ratio of the wall. Axial load contributes to shear strength, but to a lesser degree than what has been previously believed. The prevailing theory about the contribution of horizontal shear reinforcement was shown to not be correct and the contribution is much smaller than was originally assumed by researchers. Horizontal shear reinforcement principally acts by resisting diagonal tensile forces in the masonry and by helping to redistribute stresses in a cracked masonry panel. Vertical reinforcement was shown to have an effect on shear strength by precluding overturning of the masonry panel and by providing vertical anchorages to the diagonal struts.
22

Analysis of rock grouting with variable injection pressure / Analys av injektering av berg med variabelt insprutningstryck

Lian, Zhuohang January 2022 (has links)
Rock grouting is an effective technique frequently used in rock engineering to reduce  groundwater ingress and increase the stability of surrounding rock mass. The real time grouting control (RTGC) is one of widely used  analytical models to predict the grouting process. In previous research, this method was discussed under constant pressure condition. However, in practice, the injection is not always constant. The effect of variable injection pressure was not fully discussed. In this study,  a 2D radial single-phase flow model is applied to describe the rock grouting process. The model  is solved using numerical integration to incorporate variable injection pressure. The sensitivity of the model is reviewed afterward. In this paper, the dynamic grouting technique is analyzed using the new model. Field data from three rock engineering projects are compared with the model prediction to assess the performance of the model. The results from  the traditional  RTGC  method  are  compared with the model prediction.  The results show that  modeling prediction using variable injection  pressure condition significantly differs from that using constant injection pressure.  Moreover, time-variable model which is an extended version of the traditional RTGC theory shows a slightly better prediction when compared with recorded data and RTGC result. It also can be concluded that dynamic grouting could improve grouting performance from an analytical perspective. In the end, this research would result in an effective tool for further study in this field. / Berginjektering är en effektiv teknik som ofta används inom bergteknik för att minska grundvatteninträngning och öka stabiliteten hos omgivande bergmassa. The real time grouitng control (RTGC) är en av de mycket använda analytiska modellerna för att förutsäga injekteringsprocessen. I tidigare forskning har denna metod diskuterats under konstant tryck. Men i praktiken är injektionen inte alltid konstant. Effekten av variabelt insprutningstryck diskuterades inte fullständigt. I denna studie används en 2D radiell enfasflödesmodell för att beskriva berginjekteringsprocessen. Modellen löses med hjälp av numerisk integration för att införliva variabelt insprutningstryck. Modellens känslighet granskas efteråt. I denna artikel analyseras den dynamiska injekteringstekniken med den nya modellen. Fältdata från tre bergtekniska projekt jämförs med modellprognosen för att bedöma modellens prestanda. Resultaten från den traditionella RTGC-metoden jämförs med modellprognosen. Resultaten visar att modelleringsförutsägelse med användning av variabelt insprutningstrycksvillkor avsevärt skiljer sig från det som använder konstant insprutningstryck. Dessutom visar tidsvariabel modell, som är en utökad version av den traditionella RTGC-teorin, en något bättre förutsägelse jämfört med registrerade data och RTGC-resultat. Man kan också dra slutsatsen att dynamisk injektering skulle kunna förbättra injekteringsprestandan ur ett analytiskt perspektiv. I slutändan skulle denna forskning resultera i ett effektivt verktyg för vidare studier inom detta område.
23

State of the Art Report on Cement Based Grout Properties and Dynamic Grouting

Meng, Bowen January 2021 (has links)
Dynamic grouting in rock mass has been studied since 1985 while desired penetration in rock masses with fine fractures is still a challenge because of uncertainty and complexity in the grouting process. This has attracted the attention of researchers in different countries and regions, especially in some Nordic countries such as Sweden. This study presents a comprehensive review of grouting relevant research, including factors that influence penetration, different evaluation systems (equipment, and methods), and a variety of grouting techniques. Filtration as the main obstacle is a tendency that particles of suspensions would gradually separate from the flow and block the flow path. Hence, the effects of various factors on filtration are discussed in detail based on previous research and experiments. Factors such as temperature, grain size, and w/c ratio were found to have a dominant influence on filtration stability and rheology. This means rheology and filtration are highly coupled and brings more difficulties in penetration investigation with dynamic grouting. Therefore, the influence of each factor on rheology and filtration was discussed to help with the understanding of the mechanism in different grouting techniques. Then a review of dynamic grouting methods from 1985 is made in chronological order to find the limitations on existing equipment and evaluation methods. Even it is difficult to conclude the most efficient grouting method in micro-fractures without the quantitative comparison of efficiency, this review paves the way to a more systematic exploration of novel grouting equipment and techniques. Meanwhile, a contradiction regarding the influence of high-frequency oscillatory pressure on viscosity was revealed. Rather than rapid dissipation of pressure in the slots, the thermal effect caused by high-frequency oscillatory grouting is introduced to explain its adverse impact on penetration in fractures (250 and 100μm). The potential reason is the faster hydration of grouts resulted from the increased temperature and the speed of molecular motion. In the end, by evaluating the benefits from different combinations of grouting methods. It was found that the ultrasound dispersing method along with low-frequency rectangular pressure impulse would contribute to the rheology and filtration stability in the mixing and grouting phase respectively. With the application of CDF simulation, this proposal and the assumption of the thermal effect of high-frequency oscillatory pressure can be better verified in future research. / Dynamisk injektering i bergmassa har studerats sedan 1985. Önskad tätning av bergmassor med fina sprickor är dock fortfarande en utmaning på grund av osäkerhet och komplexitet i injekteringsprocessen. Detta har uppmärksammats av forskare i olika länder och regioner, särskilt i nordiska länder såsom Sverige. Denna studie presenterar en omfattande granskning av relevant forskning, inklusive faktorer som påverkar penetration, olika utvärderingssystem (utrustning och metoder) och en mängd olika injekteringstekniker. Filtrering som ett huvudsakligt hinder är en tendens att partiklar av cementsuspensioner gradvis separerar och blockerar flödesbanan, främst i små sprickor. Därför diskuteras effekterna av olika faktorer på filtrering i detalj baserat på tidigare forskning och experiment. Faktorer som temperatur, kornstorlek och vattencementtal har en dominerande påverkan på filtreringsstabilitet och reologi. Detta innebär att reologi och filtrering är starkt kopplade och medför fler svårigheter vid injektering. Därför diskuteras varje faktors påverkan på reologi och filtrering för att hjälpa till att förstå mekanismen i olika injekteringstekniker. Därefter görs en översyn av dynamiska injekteringsmetoder från 1985 i kronologisk ordning för att hitta begränsningarna för befintlig utrustning och utvärderingsmetoder. Även om det är svårt att avgöra den mest effektiva injekteringsmetoden vid mikrofrakturer, utan den kvantitativa jämförelsen av effektivitet, banar denna översyn vägen för en mer systematisk studie av ny injekteringsutrustning och teknik. Samtidigt påvisades en motsättning angående påverkan av högfrekvent oscillerande tryck på viskositeten. I stället för en snabb tryckförlust i sprickor introduceras den termiska effekten som orsakas av högfrekvent oscillerande injektering för att förklara dess negativa inverkan på penetration i tunna sprickor (250 och 100μm). Den potentiella orsaken är den snabbare hydratiseringen av injekteringsmedel som beror på den ökade temperaturen och hastigheten på molekylär rörelse. Genom att i slutändan utvärdera fördelarna med olika kombinationer av injekteringsmetoder. Det har visat sig att metoden med ultraljud för att dispergera injekteringsbruket tillsammans med lågfrekvent rektangulär tryckimpuls påverkar reologin och filtreringsstabiliteten i blandnings- och injekteringsfasen. Med tillämpningen av CDF-simulering kan antagandet om den termiska effekten av högfrekvent oscillerande tryck verifieras bättre i framtida forskning.
24

Escavações multi-escoradas em solos moles incorporando laje de fundo de jet grout e pré-esforço nas escoras

Mateus, Ricardo Daniel da Costa January 2010 (has links)
Tese de mestrado integrado. Engenharia Civil. Faculdade de Engenharia. Universidade do Porto. 2010
25

Escavações em maciços terrosos suportados por paredes de Jet Grouting

Pereira, Manuel Ricardo Martins de Carvalho Lima January 2009 (has links)
Tese de mestrado integrado. Engenharia Civil (Especialização em Construções). Faculdade de Engenharia. Universidade do Porto. 2009
26

Aterros sobre solos moles reforçados com colunas de Jet Grout encabeçadas por geossintéticos

Caramelo, Tiago André Lima Mimoso January 2011 (has links)
Tese de mestrado integrado. Engenharia Civil (Construções). Universidade do Porto. Faculdade de Engenharia. 2011
27

Contenção com paredes autoportantes de Jet Grouting em escavações cilíndricas

Guerra, Gonçalo Miguel Torrão January 2009 (has links)
Tese de mestrado integrado. Engenharia Cívil (Especialização em Construções). Faculdade de Engenharia. Universidade do Porto. 2009
28

Grout pump characteristics evaluated with the UVP+PD method

Rahman, Mashuqur, Håkansson, Ulf, Wiklund, Johan January 2012 (has links)
Rock grouting is performed to decrease the hydraulic conductivity around underground structures, such as tunnels and caverns. Cement grouts are often used and pumped into joint and fractures of the rock formation. Piston type pumps are mostly used for high pressure rock grouting. A pulsation effect is inevitable when using this type of pump due to the movement of the piston. The effect of this pulsation on rock grouting is yet to be known but believed to be benefi-cial for the penetration of the grout. Current flow meters used in the field are not accu-rate enough to determine the fluctuation of the flow rate when it is less than 1 l/min. In addition, currently available flow meters measure the average of the flow over a cer-tain period of time, hence the true fluctuation of the flow rate due to the pulsation of the piston remains unknown. In this paper, a new methodology, the so called ‘Ultrasound Velocity Profiling – Pressure Difference’ (UVP+PD) method has been introduced to show the pulsation effect when using a piston type pump. The feasibility of this method was successfully investigated for the direct in-line determination of the rheological properties of micro cement based grouts under field conditions (Rahman &amp; Håkansson, 2011). Subse-quently, it was also found that this method can be very efficient to measure the fluctu-ation of the flow rate for different types of pumps. From a grouting point of view the UVP+PD method can be used to synchronize the pressure and flow of a piston type pump by measuring the pulsation effect. Conse-quently it can be used as a tool for the efficiency and quality control of different types of pumps. / <p>QC 20121221</p>
29

Design approaches for grouting of rock fractures; Theory and practice

Yaghoobi Rafi, Jalaleddin January 2013 (has links)
Currently, cement base grout is used widely for sealing of the rock fractures in order to decrease the permeability of rock mass. Grouting procedure is one of the main tasks in cycle of rock excavation. In addition, huge amount of grout should be used during dam construction in order to seal the bedding and embankment walls. Therefore, considering the effect of grouting in duration and cost of the project, improving the design methods seems essential. In successful grouting the goal is to achieve the required sealing of fractures while avoiding ground movement due to applied pressure. Empirical methods have been developed to decide the pumping pressure, grout mix properties and stop criteria in order to fulfill requirements of successful grouting but there are ambiguities in using them and performance of them have been questioned. In these methods, assumptions and criteria are based on rules of thumbs and experiences from previous projects. The main uncertainties connected to these methods are identifying amount of grout spread and state of the fracture. Theoretical approach is an analytical solution which provides the chance for estimation of penetration length of the grout in real time. Furthermore, void filling fracture aperture and trend of the grout flow are estimated. As the development of this theory, elastic and ultimate jacking limits have been established based on the estimated penetration length. Therefore, it is possible to identify jacking of the fracture and estimate the state of the fracture in real time.  In this research work, performance of this theoretical approach which is called “Real Time Grouting Control Method” has been validated through case studies. Properties of the used material, data for pressure and flow in addition to geological characteristics have been gathered from projects in sedimentary rock (Gotvand Dam in Iran and THX Dam in Laos) and hard rock (City Line Project in Sweden). This theory made it possible to observe overflow of grout and jacking of the fractures in sedimentary rock. In place of hard rock with mostly vertical fractures, this theoretical approach confirms usage of higher pressure which will shorten the grouting time. In this research work, variation in properties of the grout mix during grouting has been neglected. moreover, orientation of the fracture and its deformation due to injection pressure are not considered. Despite these assumptions, the results were promising and performance this approach in estimation of grout spread and identifying jacking of the fracture has been verified. / <p>QC 20130520</p> / Rafi, J, Stille, H, Bagheri, M, 2012. Applying “Real Time Grouting Control Method” in Sedimentary Rock, in 4th International Conference on Grouting and Deep Mixing. 16-18 February, New Orleans-USA. / Rafi J, Stille H, 2013. Controlling jacking of rock considering spread of grout and grouting pressure, Accepted in Journal of Tunneling and Underground Space Technology. / Rafi J, Tsuji M, Stille H, 2013. Theoretical Approaches in Grouting Fractures of the Rock Mass: Theories and Applications. Accepted in the 47th US Rock Mechanics / Geomechanics Symposium. 23-26 June, San Francisco, CA, USA. / Rafi J, Tsuji M, Stille H, 2013. Theoretical approaches in grouting design: estimation of penetration length and fracture deformation in real time in Bergmekanikdagen, 11 March, Stockholm-Sweden.
30

Rheology of cement grout  : Ultrasound based in-line measurement technique and grouting design parameters

Rahman, Mashuqur January 2015 (has links)
Grouting is performed in order to decrease the permeability and increase the stiffness of the material, especially soil and rock. For tunnelling and underground constructions, permeation grouting is done where cement based materials are pumped inside drilled boreholes under a constant pressure, higher than the ground water pressure. The aim of permeation grouting is to reduce the water flow into tunnels and caverns and to limit the lowering of the surrounding groundwater table. Cement based materials are commonly used as grout due to their availability and lower costs. To obtain a proper water sealing and reduce the lowering of the ground water table, a desired spread of grout must be achieved and the rheology of the cement grout is the governing factor for estimating the required spread. Rheological properties of cement grout such as viscosity and yield stress are commonly measured off-line using laboratory instruments, and some simple tools are available to make field measurements. Although the rheological properties of the grout that is used play a fundamental role in design and execution, no method has yet been developed to measure these properties in-line in field work. In addition to the real time measurement, there is no standard method for determining the yield stress for grouting applications. Despite the common usage of Bingham model fitting to determine the yield stress, the range of shear rate is often not specified or is neglected.   In this work, an in-line rheometry method combining the Ultrasound Velocity Profiling (UVP) technique with Pressure Difference (PD) measurements, known as “UVP+PD”, was successfully tested for continuous in-line measurements of concentrated micro cement based grouts. A major obstacle of using the ultrasound based methodology was the transducers, which would be capable of emitting sufficient acoustic energy and can be used in field conditions. The transducer technology was developed in a parallel project and the Flow-Viz industrial rheometer was found to be capable of detail measurement of the velocity profiles of cement grout. The shape of the velocity profiles was visualized, and the change in the shape of the profiles with concentration and time was observed. The viscosity and yield stress of the grout were determined using rheological models, e.g. Bingham and Herschel-Bulkley. In addition, rheological properties were determined using the non-model approach (gradient method) and the tube viscometry concept and were compared with results obtained using the rheological models. The UVP+PD method was found to be capable of determining the rheological behavior of cement grout regardless of the rheological model. The yield stress of cement grout was investigated using off-line rheometry techniques and UVP+PD in-line measurements. Tests were performed applying different shear histories and it was found that two ranges of yield stress indeed exist. Therefore, the design value of yield stress should be chosen with respect to the prevailing shear rate at the grout front for the required spread of grout. In addition, an appropriate shear rate range should be used when a Bingham fitting is done to determine the yield stress. In order to estimate the shear rate, plug thickness and velocity for one dimensional and two dimensional geometry, a non- dimensional nomogram was developed. The advantage of using the nomogram is that it does not depend on the applied pressure and the rheological properties of the grout and can therefore, be used as a simple design tool. Analytical approaches were used for the estimation and good agreements were found with numerical calculations and experimental results. In conclusion, in this work, it was found that it is possible to continuously measure the velocity profiles and determine the change of the rheological properties of cement grout using the ultrasound based UVP+PD method under field conditions. The yield stress was also investigated and it was found that two range of yield stress exist depending on the prevailing shear rate of the grout, which should be used for designing the grouting time at different conditions. In order to decide the design value of yield stress for grouting applications, a non-dimensional nomogram was developed that can be used to estimate the plug thickness, shear rate and velocity of the grout. / <p>Funding for the project was provided by the Swedish Rock Engineering Research Foundation (BeFo), The Swedish Research Council (FORMAS) and The Development Fund of the Swedish Construction Industry (SBUF), who are gratefully acknowledged. QC 20151112</p>

Page generated in 0.0621 seconds