• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 70
  • 20
  • 16
  • 7
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 140
  • 30
  • 21
  • 16
  • 16
  • 16
  • 14
  • 14
  • 13
  • 13
  • 12
  • 10
  • 9
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Characterization of the Functional Roles of Histidine-Rich Glycoprotein in Coagulation

Vu, Trang 11 1900 (has links)
Histidine-rich glycoprotein (HRG) is a protein present in plasma at ~ 2 μM, but whose physiologic function is unclear. HRG is a multi-domain protein that contains a unique histidine-rich core that interacts with zinc and hydrogen ions to modulate ligand binding. Due to its modular structure and capacity to sense local changes in zinc and pH, HRG binds several ligands including complement proteins, phospholipids, DNA, fibrin(ogen), heparin, factor (F) XIIa and plasmin. Thus, it is hypothesized that HRG functions as an accessory or adapter protein that bridges different ligands together. Despite the array of ligands and potential involvement in immunity, angiogenesis, coagulation and fibrinolysis, no clear role for HRG has emerged. Congenital HRG deficiency in humans has been associated with a variable phenotype; some investigators report increased susceptibility to thrombosis while others do not. However, studies in HRG-deficient mice reveal that HRG attenuates coagulation. Coagulation is initiated via the intrinsic (or contact) and extrinsic (or tissue factor) pathways and culminates in the generation of thrombin. Thrombin catalyzes the conversion of fibrinogen into a fibrin meshwork that reinforces the platelet plug at sites of vascular injury. There are two circulating isoforms of fibrinogen that differ with respect to their γ-chains. Bulk fibrinogen is composed of a pair of γA-chains, and is designated γA/γA-fibrinogen, whereas a minor variant contains a γA-chain and a γʹ-chain, and is designated γA/γʹ-fibrinogen. The γʹ-chain contains an anionic 20-amino acid residue extension at its COOH-terminus, which provides an accessory binding site for thrombin. Thrombin possesses an anion binding pocket termed exosite II that flanks the active site and mediates its interaction with the γʹ-chain of fibrinogen. Exosite II is an evolutionary feature that is unique to thrombin, as this region is not observed on the prototypic serine protease trypsin or on other defibrinogenating enzymes from snake venom such as batroxobin. Although the physiologic function of the thrombin-γʹ-chain interaction is unclear, it is proposed that this interaction modulates thrombin’s activity when it is bound to fibrin clots. Consistent with this, we show that γA/γʹ-fibrin attenuates thrombin’s capacity to promote clot expansion compared with thrombin bound to γA/γA-fibrin clots, thereby demonstrating that γA/γʹ-fibrin attenuates thrombin’s activity. In the presence of physiologic concentrations of zinc, HRG binds the γʹ-chain of fibrino(gen) and competes with thrombin for binding, thereby suggesting that HRG is a unique modulator of thrombin activity on fibrin clots. Platelets store zinc and HRG in their α-granules and release both components when they undergo activation at sites of injury, which localizes HRG in the vicinity of fibrin-bound thrombin. Consistent with the role of HRG in modulating coagulation, we also show that HRG attenuates contact activation of coagulation, but has no impact on clotting initiated by the extrinsic pathway. The intrinsic pathway is initiated when FXII is activated by polyanions such as RNA and DNA, which are released into the blood after cellular activation, injury or death. FXIIa activates FXI, thereby propagating coagulation and leading to thrombin generation and fibrin formation. Recently, studies using rodent, rabbit and non-human primate models of thrombosis have shown that knock down of FXII or FXI with antisense oligonucleotides or blocking FXIIa or FXIa activity with inhibitors attenuates thrombosis, while having a minimal impact on hemostasis. With increasing evidence that the intrinsic pathway plays an important role in thrombosis, FXII and FXI have emerged as prominent targets for new anticoagulants. However, little is known about how the intrinsic pathway is regulated, so as to prevent uncontrolled clotting. HRG attenuates the intrinsic pathway by binding both FXIIa and the contact activators, RNA and DNA. By binding nucleic acids, HRG is localized to the site of contact activation, where it is poised to inhibit FXIIa. HRG binds to an allosteric region on FXIIa and attenuates its capacity to feedback activate FXII and to activate FXI, thereby inhibiting the initiating steps of contact activation. In addition, HRG attenuates the cofactor role of RNA and DNA in thrombin activation of FXI, which is an important feedback step. With the capacity to modulate multiple steps in the intrinsic pathway, HRG likely serves as a dynamic regulator of contact activation. We tested our hypothesis that HRG is a novel inhibitor of the intrinsic pathway in a murine model of FeCl3-induced arterial injury. HRG-deficient mice exhibit accelerated thrombosis compared with wild type controls, an effect that was abolished by repletion with human HRG. Therefore, these studies indicate that HRG deficiency induces a prothrombotic phenotype. Consistent with the role of HRG as a modulator of the intrinsic pathway, we show that thrombosis after the FeCl3-induced arterial injury is attenuated by administration of RNase, but not DNase, or by knock down of FXII, but not FVII. Therefore, these studies show that thrombosis in this model is induced by RNA and occurs in a FXII-dependent manner. Furthermore, blood loss after tail tip amputation is similar in HRG-deficient and wild type mice, demonstrating that HRG does not modulate hemostasis. Therefore, these studies suggest that HRG is a dynamic regulator of the intrinsic pathway, and acts as a molecular brake to limit procoagulant stimuli. The observations that HRG binds fibrin(ogen), FXIIa and nucleic acids and modulates the thrombin-γʹ-interaction and intrinsic pathway of coagulation, suggest that HRG is a key regulator of coagulation. HRG, the contact system and fibrin are also important in the innate immune response, demonstrating that the interaction of HRG with these factors may provide a unique link between coagulation and immunity. Since immune cells and the coagulation system contribute to both deep vein thrombosis and sepsis, further characterization of the role of HRG in these conditions will contribute to a better understanding of the pathophysiological role of HRG, and may identify novel therapeutic directions. / Thesis / Doctor of Philosophy (PhD)
82

Molecular Characterization of Inositol Monophosphatase Like Enzymes in Arabidopsis thaliana

Nourbakhsh, Aida 27 July 2012 (has links)
myo-Inositol synthesis and catabolism are crucial in many multicellular eukaryotes for production of phosphatidylinositol and inositol phosphate signaling molecules. myo-inositol monophosphatase (IMP) is a major enzyme required for the synthesis of myo-inositol and breakdown of inositol (1,4,5)-trisphosphate (InsP3), a potent second messenger involved in many biological activities. Arabidopsis contains a single canonical IMP gene, which was previously shown in our lab to encode a bifuntional enzyme with both IMP and L-galactose 1-phosphatase activity. Analysis of metabolite levels in imp mutants showed only slight modifications with less myo-inositol and ascorbate accumulation in these mutants. This result suggests the presence of other functional IMP enzymes in plants. Two other genes in Arabidopsis encode chloroplast proteins, which we have classified as IMP-like (IMPL), because of their greater homology to the prokaryotic IMPs such as the SuhB, and CysQ proteins. Prokaryotic IMP enzymes are known to dephosphorylate D-Inositol 1-P (D-Ins 1-P) and other substrates in vitro, however their in vivo substrates are not characterized. A recent study revealed the ability of IMPL2 to complement a bacterial histidinol 1-phosphate phosphatase mutant defective in histidine synthesis, which suggested an important role for IMPL2 in amino acid synthesis. The research presented here focuses on the characterization of IMPL functional roles in plant growth and development. To accomplish this I performed kinetic comparisons of the Arabidopsis recombinant IMPL1 and IMPL2 enzymes with various inositol phosphate substrates and with L-histidinol 1-phosphate, respectively. The data supports that IMPL2 gene encodes an active histidinol 1-phosphate phosphatase enzyme in contrast to the IMPL1 enzyme which has the ability to hydrolyze D-Ins 1-P substrate and may be involved in the recycling of inositol from the second messenger, InsP3. Analysis of metabolite levels in impl2 mutant plants reveals that impl2 mutant growth is impacted by alterations in the histidine biosynthesis pathway. Together these data solidify the catalytic role of IMPL2 in histidine synthesis in plants and highlight its importance in plant growth and development. / Ph. D.
83

Chromatinstruktur und Regulation der Genexpression am Histidin/Adenin-Verzweigungspunkt in Hefe und Aspergillus / Chromatin Structure and Regulation of Gene Expression at the Histidine/Adenine Branch Point in Yeast and Aspergillus

Valerius, Oliver 27 May 2001 (has links)
No description available.
84

Estimation du potentiel de résistance de Botrytis cinerea à des biofongicides / Estimate of potential resistance of Botrytis cinerea to biofungicides

Ajouz, Sakhr 21 December 2009 (has links)
La pourriture grise, causée par le champignon Botrytis cinerea, est l'une des principales maladies aériennes fongiques sur diverses cultures d’importance agronomique. La diversité génétique de B. cinerea est très forte et la capacité rapide d’adaptation de ce champignon à une pression sélective est également avérée. Ce champignon est ainsi capable de développer des résistances à une grande variété de composés fongicides de synthèse ou d'origine naturelle. Des méthodes alternatives de lutte ont de ce fait été développées ces dernières années : divers agents de lutte biologique (ALB) présentant différents modes d’actions ont été identifiés et pour certains d’entre eux commercialisés pour contrôler B. cinerea. Cependant la durabilité de la lutte biologique est un domaine encore très peu étudié. La perte d'efficacité d'un ALB pourrait résulter de la préexistence d’isolats moins sensibles de pathogènes dans les populations naturelles et/ou de la capacité de l’agent pathogène à produire, sous une pression de sélection continue exercée par l’ALB, des mutants ayant une sensibilité réduite. L'objectif global de la présente étude est d'évaluer le risque potentiel de perte d'efficacité de la lutte biologique vis-à-vis de B. cinerea. Dans cette étude, les efforts ont été concentrés sur la pyrrolnitrine, un antibiotique produit par divers ALBs, dont certains sont efficaces contre B. cinerea. Les objectifs spécifiques de l'étude étaient (i) d’évaluer la diversité de la sensibilité à la pyrrolnitrine au sein de la population naturelle de B. cinerea, (ii) d'estimer le risque de perte d'efficacité des ALBs produisant la pyrrolnitrine due à la pression de sélection exercée par la pyrrolnitrine et (iii) d'étudier le mécanisme de résistance à la pyrrolnitrine chez B. cinerea. Parmi 204 isolats de B. cinerea, une gamme importante de sensibilité à la pyrrolnitrine a été observée, avec un facteur de résistance de 8,4 entre l’isolat le plus sensible et l'isolat le moins sensible. La production de 20 générations successives pour 4 isolats de B. cinerea, sur des doses croissantes de pyrrolnitrine, a abouti au développement de mutants avec des niveaux élevés de résistance à l'antibiotique, et à une réduction in vitro de la sensibilité à la bactérie productrice de pyrrolnitrine Pseudomonas chlororaphis PhZ24. La comparaison entre les mutants résistants à la pyrrolnitrine et leurs parents sensibles pour la croissance mycélienne, la sporulation et l'agressivité sur plantes a révélé que la résistance à la pyrrolnitrine est associée à un fort coût adaptatif. Des observations cytohistologiques sur tomates ont confirmé que l’isolat sensible à la pyrrolnitrine attaque le pétiole rapidement et envahit la tige, alors que le mutant résistant à la pyrrolnitrine ne s'étend pas au-delà du pétiole. De plus, ce dernier mutant forme un mycélium anormal et des cellules ressemblant à des chlamydospores. Les résultats ont d'autre part révélé que les mutants de B. cinerea résistants à la pyrrolnitrine sont résistants au fongicide iprodione, suggérant ainsi qu'une pression exercée par la pyrrolnitrine sur le champignon conduit à une résistance au fongicide. Réciproquement, la production de générations successives sur iprodione conduit à une résistance à l'antibiotique. Afin d'étudier les déterminants moléculaires de la résistance de B. cinerea à la pyrrolnitrine, le gène histidine kinase Bos1, impliqué entre autres dans la résistance aux fongicides chez B. cinerea a été séquencé chez les souches sensibles et les mutants résistants. La comparaison des séquences a mis en évidence des mutations ponctuelles différentes chez les mutants de B. cinerea obtenus sur la pyrrolnitrine et ceux obtenus sur l'iprodione. De plus, les résistances à la pyrrolnitrine et à l'iprodione ne sont pas systématiquement associées à une mutation ponctuelle dans le gène Bos1. Enfin, aucune modification n'a été détectée dans la taille des allèles de neuf locus microsatellites quelle que soit la pression sélective exercée et quelle que soit le phénotype du mutant produit. Cette étude montre qu'un champignon pathogène des plantes est capable de développer progressivement une moindre sensibilité à un agent de lutte biologique mais que cette moindre sensibilité est associée à une forte perte de fitness / Gray mould, caused by Botrytis cinerea, is a severe disease on a wide range of crops. Disease control generally relies on chemicals, although biological control strategies have been intensively studied over the last decades. This pathogen can withstand a wide variety of fungitoxic compounds including fungicides and natural molecules. This capacity to adapt to different stress might, potentially, compromise the durability of biological control methods. The global purpose of that work was to estimate the potential of B. cinerea to overcome the efficacy of biological control agents. Knowledge on the potential development of resistance to biological control agents can help to devise or improve resistance management strategies. In this work, efforts have been focused on the antibiotic pyrrolnitrin produced by various bacteria described as potential biological control agents against B. cinerea. The specific objectives of the study were (i) to evaluate the diversity in susceptibility to pyrrolnitrin among natural population of B. cinerea, (ii) to estimate the risk of loss of efficacy of pyrrolnitrinproducing biological control agent due to selection pressure exerted by pyrrolnitrin and (iii) to study the mechanism of resistance to pyrrolnitrin in B. cinerea. An important range of sensitivity to pyrrolnitrin with an 8.4-fold difference in EC50 values between the most sensitive and the least sensitive isolates was observed within the 204 isolates tested. The production of 20 generations, for 4 isolates of B. cinerea, on increasing doses of pyrrolnitrin, resulted in the development of mutants of B. cinerea with high levels of resistance to the antibiotic and a reduced sensitivity in vitro to the pyrrolnitrin-producing Pseudomonas chlororaphis PhZ24. Comparison of the pyrrolnitrin-resistant mutants and their sensitive parent isolates for mycelial growth, sporulation and aggressiveness on plant tissues revealed that the high level of resistance to pyrrolnitrin has resulted in a high fitness cost. Additional cytohistological investigations revealed that while the sensitive isolate spread throughout the petiole and rapidly invaded the stem via the abscission zone, the pyrrolnitrinresistant mutant failed to extend beyond petiole to invade the stem. Moreover, the pyrrolnitrin-resistant mutant formed abnormal mycelium and chlamydospore-like cells. The comparison of resistance to pyrrolnitrin and to the iprodione fungicide in B. cinerea revealed that fungicide pressure exerted on the fungus is able to build-up resistance to pyrrolnitrin. Comparison of sequences of the osmosensing class III histidine kinase encoding gene bos1 revealed different mutations in pyrrolnitrin- and iprodione-resistant mutants. However, resistance to pyrrolnitrin and to iprodione was not systematically associated with a point mutation in the Bos1 gene. Finally, no changes were observed in the allele size at nine microsatellite loci whatever the four selective pressure endured by the fungus despite their phenotypic changes. This study provides evidence that a fungal plant pathogen is able to gradually build-up resistance to an antibiotic produced by a biocontrol agent
85

Plasmodium falciparum Histidine-rich Protein 2 Gene Variation and Malaria Detection in Madagascar and Papua New Guinea

Willie, Nigani 04 June 2018 (has links)
No description available.
86

Genetic and epidemiological aspects of implantation defects : Studies on recurrent miscarriage, preeclampsia and oocyte donation

Elenis, Evangelia January 2016 (has links)
Implantation requires complex molecular and cellular events involving coagulation, angiogenesis and immunological processes that need to be well regulated for a pregnancy to establish and progress normally.  The overall aim of this thesis was to study different models associated with atypical angiogenesis, impaired implantation and/or placentation, such as recurrent miscarriage (RM), oocyte donation (OD) and preeclampsia. Histidine-rich glycoprotein (HRG), a serum protein with angiogenic potential has been previously shown to have an impact on implantation and fertility.  In two retrospective case-control studies, women suffering from RM (Study I) and gestational hypertensive disorders (GHD) (Study IV) have been compared to healthy control women, regarding carriership of HRG genotypes (HRG A1042G and C633T SNP, respectively).  According to the findings of this thesis, heterozygous carriers of the HRG A1042G SNP suffer from RM more seldom than homozygous carriers (Study I).  Additionally, the presence of the HRG 633T allele was associated with increased odds of GHD (GHD IV).  Studies II and III comprised a national cohort of relatively young women with optimal health status conceiving singletons with donated oocytes versus autologous oocytes (spontaneously or via IVF).  We explored differences in various obstetric (Study II) and neonatal (Study III) outcomes from the Swedish Medical Birth Register.  Women conceiving with donated oocytes had a higher risk of GHD, induction of labor and cesarean section, as well as postpartum hemorrhage and retained placenta, when compared to autologously conceiving women.  OD infants had higher odds of prematurity and lower birthweight and length when born preterm, compared to neonates from autologous oocytes.  With regard to the indication of OD treatment, higher intervention but neverthelss favourable neonatal outcomes were observed in women with diminished ovarian reserve; the risk of GHD did not differ among OD recipients after adjustment. In conclusion, HRG genetic variation appears to contribute to placental dysfunction disorders.  HRG is potential biomarker that may contribute in the prediction of the individual susceptibility for RM and GHD.  Regarding OD in Sweden, the recipients-despite being of optimal age and health status- need careful preconceptional counselling and closer prenatal monitoring, mainly due to increased prevalence of hypertensive disorders and prematurity.
87

Efekt sulfidu sodného na vlastnosti modelových hemových senzorových proteinů s globinovou strukturou senzorové domény / Effect of sodium sulfide on the propreties of model globine-coupled heme-containing sensor proteins

Bartošová, Martina January 2014 (has links)
Hydrogen sulfide mediates various physiological functions and along with carbon monoxide and nitric oxide it is an important gaseous signaling molecule. Cellular targets for H2S are proteins, enzymes, transcriptional factors or ion channels. In many cases, the effect of H2S on the regulatory protein is mediated by modifications of its cystein residues. In hemeproteins, the regulation of catalytic activity is induced by formation of the Fe(III)-SH complex or by reduction of the heme iron with subsequent formation of Fe(II)-O2 complex. The effect of Na2S on model sensor heme-containing proteins is presented in this thesis. Protein, isolated from bacterium Anaeromyxobacter sp. strain FW109-5, containing a globine coupled sensor domain and a histidine kinase domain is one of the studied proteins, the second one is protein isolated from bacterium Escherichie coli, containing a globine coupled sensor domain and a diguanylate cyclase domain. The effect of Na2S on both model proteins and their mutants was studied by UV-Vis spectral analysis. Spectra of YddV-HD Y43A were very unique, because thery confirmed formation of a homogenous complex Fe(III)-SH in this protein, whereas only mixtures of varous heme complexes were detected in other tested proteins. Additionally the effect of Na2S on functional domain...
88

Caracterização e avaliação do papel da degradação de hisitdina na bioenergética de Trypanosoma cruzi. / Characterization and evaluation of the role of histidine degradation in Trypanosoma cruzi bioenergetics.

Barison, Maria Julia 01 December 2015 (has links)
Trypanosoma cruzi é capaz de incorporar histidina, um aminoácido essencial, através de um sistema de transporte saturável, de alta especificidade e dependente de ATP. Uma vez no citoplasma, a histidina amônio-liase (TcHAL), catalisa a deaminação não oxidativa da His a urocanato, quem é convertido pela urocanato hidratase (TcUH) ao intermediário 4-imidazolona-5-propionato. Posteriormente, duas enzimas (imidazolona propionase e formiminoglutamase) atúam para gerar glutamato. TcHAL e TcUH foram caracterizadas cinetica e bioquímicamente. O α-cetoglutarato, produto da deaminação do Glu gerado na degradação de His, ingressa ao ciclo de Krebs e os electrons gerados são capazes de restabelecer o potencial de membrana mitocondrial, promover a síntese de ATP e consumo de oxigênio na mitocôndria. Além disso, His é capaz de estimular a metaciclogênese: estudos metabolômicos mostraram que His é utilizada como fonte energética principalmente no inicio da diferenciação. Nossos dados mostram a relevância da His na bioenergética de T. cruzi, nos estágios presentes no inseto vetor. / Trypanosoma cruzi incorporates histidine, an essential amino acid, through a saturable, highly specific and ATP dependent transport system. Once in the cytoplasm, a histidine ammonia-lyase (TcHAL) catalyzes the non-oxidative deamination of His to urocanate, which is converted by an urocanate hydratase (TcUH) to the intermediate 4-imidazolone-5-propionate. Afterwards, two enzymes (imidazolonepropionase and fomiminoglutamase) complete the glutamate formation. Kinetic and biochemical parameters of TcHAL and TcUH were determined. We observe that His degradation can feed Krebs cycle, and the electrons produced are able to restore the mitochondrial inner membrane potential, promote ATP biosynthesis and oxygen consumption at the mitochondrion. Furthermore, His was able to stimulate metacyclogenesis: a metabolomics approach shows that His is used as an energy source, mainly, in early stages of differentiation. Our data shows the relevance of His in T. cruzi bioenergetics, mainly in insect vector stages.
89

Computational Quantum Chemistry Studies of the Interactions of Amino Acids Side Chains with the Guanine Radical Cation.

Acheampong, Edward 01 December 2018 (has links)
Guanine is generally accepted as the most easily oxidized DNA base when cells are subjected to ionizing radiation, photoionization or photosensitization. At pH 7, the midpoint reduction potential is on the order of 0.2 – 0.3 V higher than those of the radicals of e.g. tyrosine, tryptophan cysteine and histidine, so that the radical “repair” (or at least, a thermodynamically favorable reaction) involving these amino acids is feasible. Computational quantum studies have been done on tyrosine, tryptophan, cysteine and histidine side chains as they appear in histones. Density functional theory was employed using B3LYP/6-31G+ (d, p) basis set to study spin densities on these amino acids side chains as they pair with the guanine radical cation. The amino acid side chains are positioned so as not to disrupt the Watson-Crick base pairing. Our results indicate that, these side chains of amino acid with reducing properties can repair guanine radical cation through electron transfer coupled with proton transfer.
90

Molecular and Biological Characteristics of Stroma and Tumor Cells in Colorectal Cancer

Gao, Jingfang January 2008 (has links)
Carcinogenesis is a progressive process involving multiple genetic alterations in tumor cells and complex interactions in the tumor-host microenvironment. To better understand the contribution of molecular alterations in tumor cells and stromal variables to the development of colorectal cancer (CRC) and identify prognostic factors, in this study we examined the clinicopathological and biological significance of stromal variables, including particularly interesting new cysteine-histidine rich protein (PINCH), inflammatory infiltration, angiogenesis and lymphangiogenesis, as well as hRAD50/hMRE11/hNBS1 proteins and hRAD50 mutation in tumor cell in CRC. PINCH protein expression in the stroma was increased from normal mucosa to primary tumors and further to lymph node metastases. In particular, PINCH expression was most intense at the tumor invasive margin, which was related to low inflammatory infiltration and independently related to an unfavorable prognosis. Low inflammatory infiltration at the tumor invasive margin was related to advanced tumor stage, worse differentiation and microsatellite instability (MSI). Further, it was independently related to an unfavorable prognosis. Increased blood and lymphatic vessel density was observed in the primary tumors compared with the corresponding normal mucosa. However, neither angiogenesis nor lymphangiogenesis was associated with tumor stage and patients’ survival. Moreover, PINCH was present in a proportion of endothelial cells of the tumor vasculature, and PINCH expression in tumor-associated stroma was positively related to blood vessel density. In primary tumor cells of CRC, strong expression of hRAD50, hMRE11 or hNBS1 was related to microsatellite stability (MSS). A high percentage of hMRE11 expression was associated with less local recurrence and high apoptotic activity. Further, we observed that the expression of hRAD50, hMRE11 or hNBS1 among normal mucosa, primary tumors and metastases in MSS CRC differed from that in MSI CRC. In MSS CRC, the expression intensity of hRAD50, hMRE11 and hNBS1 was consistently increased with respect to normal mucosa, but there was no difference between the primary tumors and metastases. In the primary MSS tumors, the expression of individual or combination of hRAD50/hMRE11/hNBS1 was associated with a favorable prognosis in the same series of the CRCs. Moreover, strong/high hRAD50 in MSS primary tumors was related to earlier tumor stage, better differentiation and high inflammatory infiltration, whereas strong hNBS1 expression tended to be independently related to a favorable prognosis in MSS CRC with earlier tumor stage. However, in MSI CRC, there were neither differences in the expression of hRAD50/hMRE11/hNBS1 among normal mucosa, primary tumors and metastases, nor any association of the protein expressions with clinicopathological variables. On the other hand, frameshift mutations of (A)9 at coding region of hRAD50 were only found in MSI CRC. Our study indicates that 1) PINCH is likely a regulator of angiogenesis, and PINCH expression at the tumor invasive margin is an independent prognostic indicator in CRC. 2) Inflammatory infiltration at the tumor invasive margin is also an independent prognostic indicator in CRC. The lack of association between high inflammatory infiltration and MSI may help to explain the non-association of MSI with survival in CRC patients. 3) Angiogenesis and lymphangiogenesis occur in the early stage of CRC development, but do not associate with CRC progression and patients’ prognosis. 4) hRAD50/hMRE11/hNBS1 may act dependently and independently, playing different roles in MSS and MSI CRC development. In MSS CRC, the strong expression of the three proteins, associated with a favorable prognosis, may present the cellular response against tumor progression. Expression of hNBS1 may be a prognostic indicator for MSS CRC patients in the earlier tumor stage. In MSI CRC, the frameshift mutations at the coding region of hRAD50 may contribute to tumor development.

Page generated in 0.0757 seconds