• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • Tagged with
  • 7
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

När två blir ett : en studie av internkommunikationen vid sammanslagningen mellan Sif och HTF

Högdahl, Kajsa, Ohlsson, Sandra January 2009 (has links)
No description available.
2

När två blir ett : en studie av internkommunikationen vid sammanslagningen mellan Sif och HTF

Högdahl, Kajsa, Ohlsson, Sandra January 2009 (has links)
No description available.
3

Dynamic process modelling of the HPS2 solar thermal molten salt parabolic trough test facility

Temlett, Robert 10 May 2019 (has links)
In recent years power generation from renewable energy has grown substantially both in South Africa and around the world. This growth is set to continue as there is more pressure to reduce the burning of fossil fuels. However, renewable energy power generation suffers from unpredictability, which causes problems when it comes to managing power grids. Concentrated Solar Power (CSP) plants offer a practical solution to store power in the form of thermal energy storage (TES). Thus, the plant can run when there is no solar energy available, leading to a more stable power supply. Unfortunately, CSP plants cost more than other renewables such as photovoltaic and wind power. Thus, there is a need for research into how to bring down the cost of CSP plants. One of the most proven types of CSP is the parabolic trough plant. The most recent innovation is to try and use molten salt as the heat transfer fluid which would reduce the cost of the plant. However, this new technology has not been implemented on a full scale CSP plant and little testing has been done to prove the technology. The HPS2 is a test facility aimed at testing the use of molten salt as a heat transfer fluid (HTF). This test facility, located in Evora Portugal, is being developed by an international consortium led by the German DLR institute of Solar Research. It is one of the first test facilities of its kind where experiments will be conducted to demonstrate the validity of using molten salt as a HTF and a storage medium in a parabolic trough CSP plant. The HPS2 test facility is not yet operational and there is a need for a dynamic thermofluid process model to better understand and predict both its steady state and transient operational behaviour. This dissertation reports on the development of such a dynamic thermofluid process model and the results obtained from it. The process model developed primarily focuses on the steam cycle with the TES incorporated into the model. The physical geometry of each of the components are employed to construct discretized elements for which the conservation of mass, energy, and momentum are applied in a one-dimensional network approach. The economizer and evaporator combined has a helical coil geometry and uses molten salt as a heat transfer fluid, which is unique. Thus, correlations had to be adjusted for the flow characteristics found in the economizer/evaporator. Results from the steady state simulations of the steam cycle show that the molten salt mass flowrate through the steam generation system will have to be reduced from the initially expected value to meet operational requirements. Results of the dynamic simulations show that the test facility will be able to produce a constant power supply despite transient solar conditions and highlights key dynamic responses for operators to be aware of.
4

Heat Transfer and Flow in Solar Energy and Bioenergy Systems

Xu, Ben January 2015 (has links)
The demand for clean and environmentally benign energy resources has been a great concern in the last two decades. To alleviate the associated environmental problems, reduction of the use of fossil fuels by developing more cost-effective renewable energy technologies becomes more and more significant. Among various types of renewable energy sources, solar energy and bioenergy take a great proportion. This dissertation focuses on the heat transfer and flow in solar energy and bioenergy systems, specifically for Thermal Energy Storage (TES) systems in Concentrated Solar Power (CSP) plants and open-channel algal culture raceways for biofuel production. The first part of this dissertation is the discussion about mathematical modeling, numerical simulation and experimental investigation of solar TES system. First of all, in order to accurately and efficiently simulate the conjugate heat transfer between Heat Transfer Fluid (HTF) and filler material in four different solid-fluid TES configurations, formulas of an effective heat transfer coefficient were theoretically developed and presented by extending the validity of Lumped Capacitance Method (LCM) to large Biot number, as well as verifications/validations to this simplified model. Secondly, to provide design guidelines for TES system in CSP plant using Phase Change Materials (PCM), a general storage tank volume sizing strategy and an energy storage startup strategy were proposed using the enthalpy-based 1D transient model. Then experimental investigations were conducted to explore a novel thermal storage material. The thermal storage performances were also compared between this novel storage material and concrete at a temperature range from 400 °C to 500 °C. It is recommended to apply this novel thermal storage material to replace concrete at high operating temperatures in sensible heat TES systems. The second part of this dissertation mainly focuses on the numerical and experimental study of an open-channel algae culture raceway for biofuel production. According to the proposed flow field design of ARID-HV algal raceway, experiments and numerical simulation have been conducted to understand the enhancement of flow mixing in the flow field of ARID-HV raceway by cutting slots on top of the dam near the dead zones. A new method was proposed to quantitatively evaluate the flow mixing by using the statistics of temporal and spatial distribution of the massless fluid particles (centered in each cell at the inlet surface) in the raceway collecting the data of path-lines of fluid particles from CFD results. It is hoped that this method can be applied to assist the algal raceway flow field design as well as other engineering applications. The third part introduces the details about the construction work of a high temperature molten salt test loop. Because of the limited operating temperature of conventional synthetic oils, in order to obtain higher energy conversion efficiency, higher operating temperature is always desirable in a CSP plant which leads to the requirement of new generation of HTF. Currently, a halide salt eutectic mixture (NaCl-KCl-ZnCl₂) as a potential HTF for future CSP applications has been proposed by a multi-institute research team, led by University of Arizona. The thermophysical properties of the halide eutectic salt have been measured. However, this new developed halide eutectic salt has not been tested in a circulating loop at a high operating temperature for the measurement of heat transfer coefficient. It is a significant effort to build such a test system due to extremely high operating temperature. As a consequence, in the third part of this dissertation, details about the design of the lab-scale test system and all the equipment items will be introduced. The investigations included in this dissertation for the heat transfer and flow in solar energy and bioenergy systems are of particular interest to the renewable energy engineering community. It is expected that the proposed methods can provide useful information for engineers and researchers.
5

THE STABILITY OF, AND CORROSION BY, EARTH-ABUNDANT MOLTEN CHLORIDES FOR USE IN HIGH-TEMPERATURE THERMAL ENERGY STORAGE

Adam Shama Caldwell (16327851) 14 June 2023
<p>  </p> <p>Concentrated solar power (CSP) is a technology that utilizes focused sunlight to heat a high-temperature medium (such as a molten salt). Heat from this medium can be transferred to a working fluid (such as supercritical CO2) that is then used to drive a turbine to generate electricity. Alternatively, the hot medium/fluid can be pumped into tanks for thermal energy storage (TES), for heat extraction later to generate dispatchable electricity and/or for electricity production at night or on cloudy days. By increasing the fluid temperature to <u>></u>750oC and utilizing TES, CSP can become more cost competitive with fossil-based electricity production. Current CSP systems utilize molten nitrate salts for heat transfer and TES that are known to thermally degrade at temperatures >600oC. To achieve temperatures <u>></u>750oC, molten chloride salts, such as ternary MgCl2-KCl-NaCl compositions, are being considered as heat transfer and thermal energy fluids for next generation CSP plants due to their higher temperature stability, low cost, and availability. </p> <p>In this work, it was demonstrated that MgCl2-containing molten salts are prone to oxidation in ambient air at 750oC, which can enhance corrosion of the containment materials and alter the thermophysical properties of the fluid. An alternative, low-cost, earth-abundant, MgCl2-free, oxidation-resistant molten salt, a eutectic CaCl2-NaCl composition, was developed, along with a corrosion mitigation strategy, to enable the slow growth of protective oxide layers on metals that are resistant to dissolution by such MgCl2-free molten chloride salts. </p> <p>This strategy was expanded to other low-cost, oxidation resistant compositions, such as eutectic BaCl2-CaCl2-KCl-NaCl with tailored chemical and thermophysical properties for CSP and TES. The melting temperature, heat capacity, oxidation resistance, and crystallization behavior were measured for eutectic a BaCl2-CaCl2-KCl-NaCl(17.5-47.8-3.3-31.4 mol%) (BCKN) salt and a MgCl2-KCl-NaCl (40-40-20 mol%) salt. BCKN salt was shown to have a similar melting temperature while having a higher heat capacity and far better oxidation resistance. </p> <p>The corrosion of the nickel-based superalloy Haynes 214 was studied in molten MgCl2-KCl-NaCl (40-40-20 mol%) salt at 750oC under inert atmosphere conditions using a custom-built rotating-disc corrosion testing apparatus that maintained laminar fluid flow on the sample. Non-protective external Cr-, Al-, and Mg- oxide layers were formed on Haynes 214 that were prone to spallation. Internal oxidation of Al was also observed along with Cr depletion zones within Haynes 214.  Corrosion kinetics were evaluated to quantify the role of fluid flow for application of this alloy for use in containment and transportation of this molten chloride salt. </p>
6

Development of a novel nitriding plant for the pressure vessel of the PBMR core unloading device / Ryno Willem Nell.

Nell, Ryno Willem January 2010 (has links)
The Pebble Bed Modular Reactor (PBMR) is one of the most technologically advanced developments in South Africa. In order to build a commercially viable demonstration power plant, all the specifically and uniquely designed equipment must first be qualified. All the prototype equipment is tested at the Helium Test Facility (HTF) at Pelindaba. One of the largest components that are tested is the Core Unloading Device (CUD). The main function of the CUD is to unload fuel from the bottom of the reactor core to enable circulation of the fuel core. The CUD housing vessel forms part of the reactor pressure boundary. Pebble-directing valves and other moving machinery are installed inside its machined inner surface. It is essential that the interior surfaces of the CUD are case hardened to provide a corrosion- and wear-resistant layer. Cold welding between the moving metal parts and the machined surface must also be prevented. Nitriding is a case hardening process that adds a hardened wear- and corrosion-resistant layer that will also prevent cold welding of the moving parts in the helium atmosphere. Only a few nitriding furnaces exist that can house a forging as large as the CUD of the PBMR. Commercial nitriding furnaces in South Africa are all too small and have limited flexibility in terms of the nitriding process. The nitriding of a vessel as large as the CUD has not yet been carried out commercially. The aim of this work was to design and develop a custom-made nitriding plant to perform the nitriding of the first PBMR/HTF CUD. Proper process control is essential to ensure that the required nitrided case has been obtained. A new concept for a gas nitriding plant was developed using the nitrided vessel interior as the nitriding process chamber. Before the commencement of detail design, a laboratory test was performed on a scale model vessel to confirm concept feasibility. The design of the plant included the mechanical design of various components essential to the nitriding process. A special stirring fan with an extended length shaft was designed, taking whirling speed into account. Considerable research was performed on the high temperature use of the various components to ensure the safe operation of the plant at temperatures of up to 600°C. Nitriding requires the use of hazardous gases such as ammonia, oxygen and nitrogen. Hydrogen is produced as a by-product and therefore safety was the most important design parameter. Thermohydraulic analyses, i.e. heat transfer and pressure drop calculations in pipes, were also performed to ensure the successful process design of the nitriding plant. The nitriding plant was subsequently constructed and operated to verify the correct design. A large amount of experimental and operating data was captured during the actual operation of the plant. This data was analysed and the thermohydraulic analyses were verified. Nitrided specimens were subjected to hardness and layer thickness tests. The measured temperature of the protruding fan shaft was within the limits predicted by Finite Element Analysis (FEA) models. Graphs of gas flow rates and other operation data confirmed the inverse proportionality between ammonia supply flow rate and measured dissociation rate. The design and operation of the nitriding plant were successful as a nitride layer thickness of 400 μm and hardness of 1 200 Vickers hardness (VHN) was achieved. This research proves that a large pressure vessel can successfully be nitrided using the vessel interior as a process chamber. / Thesis (M.Ing. (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2010.
7

Development of a novel nitriding plant for the pressure vessel of the PBMR core unloading device / Ryno Willem Nell.

Nell, Ryno Willem January 2010 (has links)
The Pebble Bed Modular Reactor (PBMR) is one of the most technologically advanced developments in South Africa. In order to build a commercially viable demonstration power plant, all the specifically and uniquely designed equipment must first be qualified. All the prototype equipment is tested at the Helium Test Facility (HTF) at Pelindaba. One of the largest components that are tested is the Core Unloading Device (CUD). The main function of the CUD is to unload fuel from the bottom of the reactor core to enable circulation of the fuel core. The CUD housing vessel forms part of the reactor pressure boundary. Pebble-directing valves and other moving machinery are installed inside its machined inner surface. It is essential that the interior surfaces of the CUD are case hardened to provide a corrosion- and wear-resistant layer. Cold welding between the moving metal parts and the machined surface must also be prevented. Nitriding is a case hardening process that adds a hardened wear- and corrosion-resistant layer that will also prevent cold welding of the moving parts in the helium atmosphere. Only a few nitriding furnaces exist that can house a forging as large as the CUD of the PBMR. Commercial nitriding furnaces in South Africa are all too small and have limited flexibility in terms of the nitriding process. The nitriding of a vessel as large as the CUD has not yet been carried out commercially. The aim of this work was to design and develop a custom-made nitriding plant to perform the nitriding of the first PBMR/HTF CUD. Proper process control is essential to ensure that the required nitrided case has been obtained. A new concept for a gas nitriding plant was developed using the nitrided vessel interior as the nitriding process chamber. Before the commencement of detail design, a laboratory test was performed on a scale model vessel to confirm concept feasibility. The design of the plant included the mechanical design of various components essential to the nitriding process. A special stirring fan with an extended length shaft was designed, taking whirling speed into account. Considerable research was performed on the high temperature use of the various components to ensure the safe operation of the plant at temperatures of up to 600°C. Nitriding requires the use of hazardous gases such as ammonia, oxygen and nitrogen. Hydrogen is produced as a by-product and therefore safety was the most important design parameter. Thermohydraulic analyses, i.e. heat transfer and pressure drop calculations in pipes, were also performed to ensure the successful process design of the nitriding plant. The nitriding plant was subsequently constructed and operated to verify the correct design. A large amount of experimental and operating data was captured during the actual operation of the plant. This data was analysed and the thermohydraulic analyses were verified. Nitrided specimens were subjected to hardness and layer thickness tests. The measured temperature of the protruding fan shaft was within the limits predicted by Finite Element Analysis (FEA) models. Graphs of gas flow rates and other operation data confirmed the inverse proportionality between ammonia supply flow rate and measured dissociation rate. The design and operation of the nitriding plant were successful as a nitride layer thickness of 400 μm and hardness of 1 200 Vickers hardness (VHN) was achieved. This research proves that a large pressure vessel can successfully be nitrided using the vessel interior as a process chamber. / Thesis (M.Ing. (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2010.

Page generated in 0.0391 seconds