• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Geant4 Simulations of Hadron Therapy and Refinement of User Interface / Geant4 simuleringar av partikelterapi och förfinande av användargränssnitt

Ekelund, Emil, Fogelberg Skoglösa, David January 2019 (has links)
Radiotherapy is one of the most used methods for treating cancer and the most common way to execute such treatments is to irradiate tumors with high energy photons. This can damage healthy tissue along the irradiation line. By using hadron therapy and instead irradiate the tumor with charged particles (protons or Carbon 12 ions), the energy can be concentrated to a more specific place in the body. However, the method is not well studied and the tools available for simulating hadron therapy can be hard to use. When simulating hadron therapy and other nuclear interactions a large amount of calculations need to be executed. Monte Carlo methods is a numerical method to solve equations based on repeated number sampling and is used in the simulation program Geant4. Hadron therapy was simulated with Geant4 and the data was analyzed with the data analysis framework ROOT. New macros and analysis scripts were created with the intention to help new Geant4 users. The aim to make Geant4 easier to use was partially met. The implementation of code for the low energy region of Carbon 12 projectiles was unsuccessful.
2

Four-dimensional dose calculation using deformable tetrahedral geometries for hadron therapy / Calcul de dose 4D à l’aide des structures tétraédriques déformables pour l’hadronthérapie

Touileb, Yazid 30 September 2019 (has links)
L’estimation de la distribution de dose et d’énergie en présence du mouvement des tissus induit par la respiration, constitue un défi technologique important dans la planification du traitement en hadronthérapie. Notamment pour le cancer pulmonaire, dans lequel de nombreuses difficultés apparaissent comme la variation de densité des tissues, le changement de la forme des organes ainsi que le décalage de la position de la tumeur pendant la respiration. Tous ces paramètres affectent la portée du faisceau d’ions utilisés pendant le traitement, et, par conséquent entraînent une distribution de dose inattendue. L’objectif principal de cette thèse est de proposer une méthode de calcul de dose basée sur les structures tétraédriques, qui permet d’estimer les distributions de dose des organes en mouvement en utilisant les simulations Monte Carlo. Ces distributions de dose sont calculées en utilisant une carte de densité tétraédrique dépendante du temps, décrivant l’anatomie interne du corps humain. De plus, le mouvement interne peut être représenté à l'aide d'une modélisation biomécanique résolue par la méthode des éléments finis (MEF) ou d'une carte de déplacement issue d’un recalage d’images déformable. Contrairement aux méthodes basées sur les structures classiques à base de voxels, la dose déposée s’accumule à l’intérieur de chaque tétraèdre au cours de la déformation, surmontant ainsi le problème du suivi tissulaire puisque le tétraèdre est défini comme une partie d’un tissu dont la composition chimique et la topologie ne changent pas. Dans la première partie de la thèse, nous avons développé une méthode de calcul de dose qui génère une carte de dose 4D en utilisant un modèle tétraédrique spécifique au patient. En outre, nous étudions l’effet du niveau de détail des maillages tétraédriques sur la précision de la distribution de la dose obtenue. Dans la deuxième partie, nous nous concentrons sur l’optimisation de la géométrie tétraédrique pour réduire le temps de simulation, sachant que l’obtention d’une distribution de dose précise peut être coûteux en termes de temps. Pour surmonter ce problème, nous avons proposé une nouvelle approche qui prend en compte la direction du faisceau afin de minimiser l'erreur de l’épaisseur équivalent eau des tétraèdres avant le volume de la tumeur. Cette méthode permet d'obtenir un maillage tétraédrique grossier et, par conséquent, d'améliorer les performances de calcul dans les simulations de Monte Carlo, tout en conservant une distribution de dose précise dans le volume cible / The estimation of energy and dose distribution patterns in respiratory-induced organ motion constitutes a significant challenge in hadron therapy treatment planning and dosimetry. Notably for lung cancer in which many difficulties arise, like tissue densities variation and the tumor position shifting during respiration. All these parameters affect the ranges of protons or ions used in treatment when passing through different tissues and can easily result in unexpected dose distribution. The present work consists of calculating the dose distributions of moving organs by means of Monte Carlo simulations and patient-specific modeling tools. The dose distributions are calculated using a time-dependent tetrahedral density map, describing the internal anatomy of the human body. Additionally, the internal motion can be described using either a biomechanical modeling based on Finite Element Analysis (FEA) or deformable image registration displacement map. Unlike methods based on the conventional voxel-based structures, the deposited energy is accumulated inside each tetrahedron during deformation, thus overcoming the problem of tissue tracking since that the tetrahedron is defined as a part of a tissue whose chemical composition and topology do not change. The first part of the Ph.D. project proposes a dose calculation method that generates a 4D dose map using a patient-specific tetrahedral model. Besides, we study the effect of the level of detail of tetrahedral meshes on the accuracy of the resulted dose distribution. In the second part, we focus on the optimization of the tetrahedral geometry to address the problem of time simulation, since obtaining a precise dose distribution can be very time-consuming. To overcome this issue, we've defined a new approach that takes into account the direction of the beam to minimize the error of the water equivalent thickness of the tetrahedrons before the tumor volume. This method allows for a coarsened tetrahedral mesh and as a result, improved computational performance in Monte Carlo simulations while guaranteeing a precise dose distribution in the target volume
3

Development of a 3D Silicon Coincidence Avalanche Detector (3D-SiCAD) for charged particle tracking / Développement d'un détecteur d'avalanche à coïncidence de silicium 3D (3D-SiCAD) pour le suivi de particules chargées

Vignetti, Matteo Maria 09 March 2017 (has links)
L’objectif de cette thèse est de développer un détecteur innovant de particules chargées, dénommé 3D Silicon Coincidence Avalanche Detector (3D-SiCAD), réalisable en technologie silicium CMOS standard avec des techniques d’intégration 3D. Son principe de fonctionnement est basé sur la détection en "coïncidence" entre deux diodes à avalanche en mode "Geiger" alignées verticalement, avec la finalité d’atteindre un niveau de bruit bien inférieur à celui de capteurs à avalanche standards, tout en gardant les avantages liés à l’utilisation de technologies CMOS; notamment la grande variété d’offres technologiques disponibles sur le marché, la possibilité d’intégrer dans un seul circuit un système complexe de détection, la facilité de migrer et mettre à jour le design vers une technologie CMOS plus moderne, et le faible de coût de fabrication. Le détecteur développé dans ce travail se révèle particulièrement adapté au domaine de la physique des particules de haute énergie ainsi qu’à la physique médicale - hadron thérapie, où des performances exigeantes sont demandées en termes de résistance aux rayonnements ionisants, "material budget", vitesse, bruit et résolution spatiale. Dans ce travail, un prototype a été conçu et fabriqué en technologie HV-CMOS 0,35µm, en utilisant un assemblage 3D de type "flip-chip" avec pour finalité de démontrer la faisabilité d’un tel détecteur. La caractérisation du prototype a finalement montré que le dispositif développé permet de détecter des particules chargées avec une excellente efficacité de détection, et que le mode "coïncidence" réduit considérablement le niveau de bruit. Ces résultats très prometteurs mettent en perspective la réalisation d’un système complet de détection CMOS basé sur ce nouveau concept. / The objective of this work is to develop a novel position sensitive charged particle detector referred to as "3D Silicon Coincidence Avalanche Detector" (3D-SiCAD). The working principle of this novel device relies on a "time-coincidence" mode detection between a pair of vertically aligned Geiger-mode avalanche diodes, with the aim of achieving negligible noise levels with respect to detectors based on conventional avalanche diodes, such as Silicon Photo-Multipliers (SiPM), and, at the same time, providing single charged particle detection capability thanks to the high charge multiplication gain, inherent of the Geiger-mode operation. A 3D-SiCAD could be particularly suitable for nuclear physics applications, in the field of High Energy Physics experiments and emerging Medical Physics applications such as hadron-therapy and Proton Computed Tomography whose future developments demand unprecedented figures in terms of material budget, noise, spatial resolution, radiation hardness, power consumption and cost-effectiveness. In this work, a 3D-SiCAD demonstrator has been successfully developed and fabricated in the Austria Micro-Systems High-Voltage 0.35 μm CMOS technology by adopting a “flip-chip” approach for the 3D-assembling. The characterization results allowed demonstrating the feasibility of this novel device and validating the expected performances in terms of excellent particle detection efficiency and noise rejection capability with respect to background counts.

Page generated in 0.0288 seconds