• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 133
  • 13
  • 11
  • 10
  • 6
  • 3
  • 3
  • 1
  • 1
  • Tagged with
  • 213
  • 95
  • 50
  • 40
  • 39
  • 37
  • 36
  • 36
  • 36
  • 35
  • 34
  • 33
  • 31
  • 30
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Fabrication and Characterization of Optoelectronics Non-volatile Memory Devices based on 2D Materials

Alqahtani, Bashayr 07 1900 (has links)
The development of digital technology permits the storage and processing of binary data at high rates, with high precision and density. Therefore, over the past few decades, Moore's law has pushed the development of scaling semiconductor devices for computing hardware. Although the current downward scaling trend has reached its scaling limits, a new "More-than-Moore" (MtM) trend has been emphasized as a diversified function of data collection, storage units, and processing devices. The function diversification defined in MtM can be viewed as an alternative form of "scaling down" for electronic systems, as it incorporates non-computing functions into digital ones, allowing digital devices to interact directly with the environment around them. Two-dimensional (2D) materials display promising potential for combining optical sensing and data storage with broadband photoresponse, outstanding photoresponsivity, rapid switching speed, multi-bit data storage, and high energy efficiency. In this work, in-solution 2D materials flakes (Hafnium Diselenide (HfSe2) and Germanium Selenide (GeSe) have been studied as a charge-trapping layer in non-volatile memory through the seamless fabrication process. Furthermore, the behavior of fabricated non-volatile memories under light illumination has been investigated towards in-memory light sensing. Atomic Force Microscopy, RAMAN spectroscopy, and X-ray Diffraction Spectroscopy characterized the charge-trapping materials. The electrical characterization of Metal Oxide Semiconductor (MOS) Capacitor memory revealed a memory window of 4V for the HfSe2 device under ±10V biasing. Intriguingly, the GeSe device exhibited an extraordinarily wide memory window of 11V under the same electrical biasing. Furthermore, the memory endurance for both materials as charge trapping layer (CTL) exceeds the standard threshold of electrical programming and erasing cycles. The accelerated retention test at different temperatures showed the memory device's stability and reliability for both materials. Under light stimuli with electrical readout voltage, the MOS memory exhibited wavelength and intensity-responsive behavior. The MOS memory of HfSe2 has demonstrated remarkable capabilities in storing the detected light signal, while also exhibiting a noteworthy increase in the memory window of approximately 1.8 V when subjected to a laser wavelength of 405 nm. Meanwhile, the GeSe device's CV measurement revealed a similar trend with the greatest memory window enhancements occurring in relation to 465 nm laser wavelength. Under ±6 V biasing in the absence of light, the memory window was found to be 8.3 V. However, following exposure to a 465 nm laser, this value increased significantly to 9.9 V, representing an increment of 1.6 V. In addition, both devices exhibited distinct sensing of various light intensities and an enhanced memory window as a result of the observable Vt shift caused by altering the levels of illumination. This memory enhancement suggests that photoexcited carriers in the CTL layer were responsible for the optical memory behavior. The 2D materials as CTL pave the way for a reconfigurable optical memory with multilevel optical data storage capacity. This research represents a significant step towards the development of a new generation of memory devices that can store and retrieve data using light signals.
132

INFLUENCE OF PROCESSING VARIABLES ON MICROSTRUCTURE DEVELOPMENT AND HARDNESS OF BULK SAMPLES OF TWO NOVEL CERAMICS PREPARED BY PLASMA PRESSURE COMPACTION

Gireesh, Guruprasad 18 May 2006 (has links)
No description available.
133

Development and Characterization of Layered, Nitrogen-Doped Hafnium Oxide and Aluminum Oxide Films for Use as Wide Temperature Capacitor Dielectrics

DeCerbo, Jennifer N. 03 June 2015 (has links)
No description available.
134

Nanolaminate coatings to improve long-term stability of plasmonic structures in physiological environments

Daniel, Monisha Gnanachandra 28 June 2017 (has links)
The unprecedented ability of plasmonic metal nano-structures to concentrate light into deep-subwavelength volumes has propelled their use in a vast array of nanophotonics technologies and research endeavors. They are used in sensing, super-resolution imaging, SPP lithography, SPP assisted absorption, SPP-based antennas, light manipulation, etc. To take full advantage of the attractive capabilities of CMOS compatible low-cost plasmonic structures based on Al and Cu, nanolaminate coatings are investigated to improve their long-term stability in corrosive physiological environments. The structures are fabricated using phase-shifting PDMS masks, e-beam deposition, RIE, Atomic Layer Deposition and Rapid Thermal Annealing. An alternate approach using Nanosphere Lithography (NSL) was also investigated. Films were examined using ellipsometry, atomic force microscopy and transmission measurements. Accelerated in-situ tests of Hafnium Oxide/Aluminum Oxide nanolaminate shells in a mildly pH environment with temperatures akin to physiological environments emulated using PBS show greatly enhanced endurance, with stable structures that last for more than one year. / Master of Science / When light (electromagnetic radiation) interacts with the free (conduction) electrons of a metallic nanostructure it leads to a coupling resulting in collective excitations (oscillations) that lead to strong enhancements of the local electromagnetic fields surrounding the nanoparticles, this phenomenon is called Localized Surface Plasmon Resonance (LSPR) and plasmonics are structures that are capable of exhibiting this phenomenon. The condition for LSPR to occur is that the dimension scale of the structure is less than the wavelength of the electromagnetic radiation interacting with it. This implies that the structure has to be in nanoscale dimensions. LSPR based plasmonic structures are compact, sensitive and can be integrated with electronic devices and can be used in various applications like implantable biological sensors (blood pH sensing, diabetics sensing, etc.), devices that integrate several laboratory testing functionalities on a single chip, studies to determine the dynamics of chemical reactions, increasing the efficiency of solar power generation, etc. LSPR is exhibited by metallic nano-particles like gold, silver, copper and aluminum. Metals like copper corrode at a rapid rate in water at room temperature and hence nano scale structures made from them that can exhibit LSPR cannot be used in higher temperature ionic environments without a protective coating. High density, uniform coatings with less defect density can be deposited using Atomic layer deposition (ALD). In this research Atomic Layer Deposited Aluminum Oxide and Hafnium Oxide nanolaminate structures are explored to increase the long-term stability of plasmonic structures in physiological solutions. In-situ tests are carried out in a Phosphate-buffered Saline (PBS) solution with a pH value of 7.2 (simulating physiological conditions) at a temperature of 37℃ (physiological temperature) and 85.1℃ (accelerated testing). The results demonstrate that the dielectric nano coatings investigated in this project can increase the stability of the plasmonic structures in the corrosive physiological environment from a few days to more than one year.
135

Revêtements céramiques réfractaires à résistance accrue à l’oxydation : corrélation entre mécanisme de diffusion, microstructure et composition

Andreani, Anne-Sophie 13 December 2010 (has links)
Pour améliorer la durée de vie des matériaux à haute température et sous atmosphère oxydante, une solution est l’utilisation d’une protection de surface constituée de matériaux ultra réfractaires non oxydes. Un des objectifs principaux de cette thèse est la sélection et la validation expérimentale de nouvelles compositions chimiques de revêtements utilisés en condition oxydante et corrosive à ultra haute température. Les recherches s’appuient sur une démarche expérimentale physico-chimique se basant sur une approche thermodynamique et thermochimique menée au préalable pour choisir les composés. Les revêtements doivent être stables chimiquement, compatibles thermomécaniquement avec le substrat et adhérent de la température ambiante à celle d’utilisation. De plus, Ils doivent jouer le rôle de barrière environnementale et/ou de barrière thermique.Des tests d’oxydation sont réalisés au four solaire sur les systèmes de matériaux non oxydes massifs élaborés par frittage flash. En parallèle, des composites modèles constitués d’une fibre de carbone revêtue par PVD d’un revêtement métallique ultra réfractaire ont été élaborés puis chauffés par effet Joule afin de réaliser des tests d’oxydation. La compréhension des mécanismes entrant en jeu lors de l’oxydation de ces « nouveaux » revêtements est aussi un des challenges de ce manuscrit. Par ailleurs, elle aide à la classification de ces matériaux selon leur résistance à l’oxydation. / In order to improve material’s lifetime used at a temperature above 2500°C and under oxidizing atmosphere, a solution is to use a surfacing protection constituted of non oxide refractory materials. One of the main objectives of this thesis is to select and experimentally validate new chemical coating compositions which will be used under corrosive and oxidizing atmosphere at ultra high temperature (more than 2000°C). A preliminary thermodynamic and thermo-chemical study aims to select compounds. These compounds are then analyzed with physic-chemical tests. Coatings have to be chemically stable, thermo-mechanically compatible with the substrate and have to stick to the substrate from ambient temperature to more than 2000°C. Moreover, coatings have to act as an environmental barrier and/or as a thermal barrier.Two kinds of oxidation tests are made. On one hand, non oxide massive material’s systems are fabricated by spark plasma sintering in order to be tested at the solar furnace. On the other hand, composite models are fabricated by PVD. A carbon fiber is covered with ultra refractory metallic coating by PVD. Then, these composite models are heated by Joule effect in order to realize oxidation tests. Understanding mechanisms at work during the oxidation of these new coatings is another main objective of this thesis. This understanding will be also useful to classify these materials regarding their resistance to oxidation.
136

Deconvoluting charge trapping and nucleation interplay in FeFETs: Kinetics and Reliability

Pesic, Milan, Padovani, Andrea, Slesazeck, Stefan, Mikolajick, Thomas, Larcher, Luca 07 December 2021 (has links)
Discovery of ferroelectric (FE) behavior in HfO 2 removed the compatibility roadblocks between the state-of-the-art CMOS and FE memories. Even though FE FETs (FeFETs) are scaled into 22 nm nodes and beyond, the limits of the technology as well as the physical mechanisms and reliability are still under research. In this paper we successfully developed a multiscale modeling platform to understand the interplay between the FE switching and charge trapping. Starting from the nucleation theory and rigorous charge transport modeling we present for the first time a self-consistent modeling framework we used for investigation of reliability and variability in FeFETs.
137

Demonstration and Endurance Improvement of p-channel Hafnia-based Ferroelectric Field Effect Transistors

Winkler, Felix, Pešić, Milan, Richter, Claudia, Hoffmann, Michael, Mikolajick, Michael, Bartha, Johann W. 25 January 2022 (has links)
So far, only CMOS compatible and scalable hafnia-zirconia (HZO) based ferroelectric (FE) n-FeFETs have been reported. To enable the full ferroelectric hierarchy [1] both p- and n-type devices should be available. Here we report a p-FeFET with a large memory window (MW) for the first time. Moreover, we propose different integration schemes comprising structures with and without internal gate resulting in metal-FE-insulator-Si (MFIS) and metal-FE-metal-insulator-Si (MFMIS) devices which could be used to tackle the problem of interface (IF) degradation and possibly decrease the power consumption of the devices.
138

Variants of Ferroelectric Hafnium Oxide based Nonvolatile Memories

Mikolajick, T., Mulaosmanovic, H., Hoffmann, M., Max, B., Mittmann, T., Schroeder, U., Slesazeck, S. 26 January 2022 (has links)
Ferroelectricity is very attractive for nonvolatile memories since it allows non-volatility paired with a field driven switching mechanism enabling a very low-power write operation. Non-volatile memories based on ferroelectric lead-zirconium-titanate (PZT) (see fig. la) are available on the market for more than a quarter of a century now [1]. Yet they are limited to niche applications due to the compatibility issues of the ferroelectric material with CMOS processes and the associated limited scalability [2]. The discovery of ferroelectricity in doped hafnium oxide has revived the activities towards a variety of scalable ferroelectric nonvolatile memory devices
139

Simulation of integrate-and-fire neuron circuits using HfO₂-based ferroelectric field effect transistors

Suresh, Bharathwaj, Bertele, Martin, Breyer, Evelyn T., Klein, Philipp, Mulaosmanovic, Halid, Mikolajick, Thomas, Slesazeck, Stefan, Chicca, Elisabetta 03 January 2022 (has links)
Inspired by neurobiological systems, Spiking Neural Networks (SNNs) are gaining an increasing interest in the field of bio-inspired machine learning. Neurons, as central processing and short-term memory units of biological neural systems, are thus at the forefront of cutting-edge research approaches. The realization of CMOS circuits replicating neuronal features, namely the integration of action potentials and firing according to the all-or-nothing law, imposes various challenges like large area and power consumption. The non-volatile storage of polarization states and accumulative switching behavior of nanoscale HfO₂ - based Ferroelectric Field-Effect Transistors (FeFETs), promise to circumvent these issues. In this paper, we propose two FeFET-based neuronal circuits emulating the Integrate-and-Fire (I&F) behavior of biological neurons on the basis of SPICE simulations. Additionally, modulating the depolarization of the FeFETs enables the replication of a biology-based concept known as membrane leakage. The presented capacitor-free implementation is crucial for the development of neuromorphic systems that allow more complex features at a given area and power constraint.
140

Amélioration du comportement à l’oxydation à très haute température des composites carbone/carbone par des revêtements alternés SiC/HfC / Improvement of very high temperature oxidation behaviour of carbon/carbon composites by HfC/SiC multilayered coatings

Szwedek, Olivier 20 December 2010 (has links)
Les composites C/C sont des matériaux très utilisés dans de nombreuses applications pour leurs propriétés exceptionnelles. Néanmoins, ils présentent l'inconvénient de s'oxyder dès les basses températures. Le travail dans cette thèse a consisté en l'élaboration de dépôts de carbures de silicium (SiC) et d’hafnium (HfC) par dépôt chimique en phase vapeur (CVD) afin de protéger en surface ces composites jusqu’à 2000°C. Cette voie d'élaboration permet l'obtention de dépôts denses et continus. Dans un premier temps, une étude thermodynamique du système chimique Hf-Cl-C-H a permis d’appréhender les conditions de dépôt d’HfC et de tracer des diagrammes de dépôt directement utilisables par l’expérimentateur. Ensuite, après avoir déterminé les conditions expérimentales de chloruration de l’hafnium, étape antérieure à la CVD, et après avoir examiné les compatibilités chimiques des deux carbures par Spark Plasma Sintering (SPS), une étude expérimentale paramétrique de la CVD d’HfC a été proposée. Cela a permis la détermination des conditions optimales de dépôt permettant l’obtention d’une protection multiséquencée HfC/SiC, les conditions de dépôt du SiC étant reprises de la littérature. En plus du procédé de CVD, un autre type de concept portant sur l'enrobage de poudres d'HfC par le SiC, puis frittées par la suite, a également été traité. Enfin, les matériaux fondés sur ces deux concepts ont été testés en oxydation à très haute température. Les résultats obtenus ont permis la validation du matériau multiséquencé à 2000°C et le matériau fritté à 1500°C. / Carbon/Carbon composites are widely used materials in many fields of application for their outstanding properties. Nevertheless, these materials have the drawback of oxidizing at very low temperatures. The aim of this work consisted in depositing by means of Chemical Vapour Deposition (CVD) coatings made of silicon carbide (SiC) and hafnium carbide (HfC) in order to protect the composite up to 2000°C in an oxidizing atmosphere. This way of manufacturing has allowed reaching dense and continuous coatings. First, a thermodynamic study of the Hf-Cl-C-H chemical system has permitted to study the influence of HfC deposition parameters and to report them into deposition diagrams. Then, after the study of experimental conditions in the metallic hafnium chlorination step and the examination of chemical compatibilities of the two carbides by Spark Plasma Sintering (SPS), a parametric study of the CVD of HfC has been carried out. This has enabled determination of optimal deposition conditions of HfC in order to manufacture an HfC/SiC multilayered protection. SiC experimental conditions were taken from the literature. Besides the materials made by CVD, another kind of material protection made of HfC powder coated with SiC and then sintered has been also studied. Finally, materials based on those two protection concepts have been oxidized at very high temperature. Results have enabled to validate the multilayered protection up to 2000°C and the HfC/SiC sintered powder up to 1500°C.

Page generated in 0.0714 seconds