Spelling suggestions: "subject:"hankel"" "subject:"wankel""
11 |
Universal approach for estimating unknown frequencies for unknown number of sinusoids in a signalAhmed, A., Hu, Yim Fun, Pillai, Prashant January 2013 (has links)
No / This paper presents a new approach to estimate the unknown frequencies of the constituent sinusoids in a noiseless signal. The signal comprising of unknown number of sinusoids of unknown amplitudes and unknown phases is measured in the time domain. The Hankel matrix of measured samples is used as a basis for further analysis in the Pisarenko harmonic decomposition. A new constraint, the Existence Factor (EF), has been introduced in the methodology based on the relationship between the frequencies of the unknown sinusoids and the eigenspace of Hankel matrix of signal's samples. The accuracy of the method has been tested through multiple simulations on different signals with an unknown number of sinusoidal components. Results showed that the proposed method has efficiently estimated all the unknown frequencies.
|
12 |
Assessment of Cyber Vulnerabilities and Countermeasures for GPS-Time Synchronized Measurements in Smart GridsKhan, Imtiaj 02 July 2024 (has links)
We aim at expanding the horizon of existing research on cyberattacks against the time-syncrhonized devices such as PMUs and PDCs, along with corresponding countermeasures. We develop a PMU-PDC cybersecurity testbed at Virginia Tech Power and Energy Center (PEC) lab. The testbed is able to simulate real-world GPS-spoofing attack (GSA) and false data injection attack (FDIA) scenarios. Moreover, the testbed can incorporates cyberattack detection algorithm in pseudo real-time. After that, we propose three stealthy attack scenarios that exploit the vulnerabilities of time-synchronization for both PMU and PDC. The next part of this dissertation is the enhancement of Hankel-matrix based bad data detection model. The existing general Hankel-matrix based bad data detection model provide satisfactory performance. However, it fails in differentiating GPS-spoofing attack from FDIA. We propose an enhanced phase angle Hankel-matrix model that can conclusively identify GPS-spoofing attack. Furthermore, we reduce the computational burden for Hankel-matrix based bad data and cyberattack detection models. Finally, we verify the effectiveness of our enhanced Hankel-matrix model for proposed stealthy attack scenarios. / Doctor of Philosophy / Modern power systems incorporate numerous smart metering devices and communication channels to provide better resiliency against hazardous situations. One such metering device is Phasor Measurement Device (PMU), what provides GPS time-synchronized measurements to the system operator. The time-synchronized measurements are critical in ensuring the cyber and physical security of grids. However, like other smart devices, PMUs are susceptible to conventional cyberattacks. In addition to conventional cyberattacks, PMUs are also vulnerable to attacks against its time-synchronization. In this work, we dig deep into the realm of cyberattacks against time-synchronization of PMUs. We propose novel stealthy attacks against PMU time synchronization. Furthermore, we enhance existing attack detection model to conclusively identify such stealthy attacks and implemented the model in cybersecurity testbed that we developed at Virginia Tech.
|
13 |
Continuité des *- représentations et opérateurs de Hankel / continuity of *-representation and Hankel operatorsAl homsi, Wael 08 November 2013 (has links)
Continuité des *-représentations et opérateurs de Hankel Cette thèse est comporte deux parties indépendantes. Dans le première partie de ce travail, nous établissons une condition nécessaire et suffisante pour qu'une *-représentation d'un *-semi-groupe abélien topologique S est continu à l'identité e de S. Les résultats sont obtenus moyennant un théorème de représentation intégrale par rapport à une mesure portée par les semi caractères continus. Nous donnons ensuite diverses applications de ces résultats. La deuxième partie de cette thèse traite les opérateurs de Hankel de symboles anti-méromorphes sur les couronne. Dans un premier lieu on met en place le cadre de la théorie générale des opérateurs de Hankel associée à un espace de Hilbert de fonctions holomorphes A^2(µ) de carré intégrable par rapport à une mesure admettant des moments d'indice relatif. Ensuite, nous montrons que l'espace des polynômes de Laurent est dense dans A^2(µ) cela nous permet de définir de façon claire les opérateurs de Hankel et étudier leurs propriétés spectrales. En particulier, pour de nombreux exemples, nous établissons des conditions nécessaires et suffisantes, en termes des moments, garantissant la continuité, la compacité et l'appartenance aux classes de Schatten de ces opérateurs de Hankel. / Continuity of *-representation and Hankel operators This thesis consists of two independent parts. In the first part of this work, we establish a necessary and sufficient condition for a *-representation a *-semigroup abelian topological S is continuous at the identity e of S. The results are obtained by means of a theorem of integral representation with respect to a measure supported by continuous semi characters. We then give several applications of these results. The second part of this thesis deals with Hankel operators anti-meromorphic symbols on an annulus. In the first place we put in place the framework of the general theory of Hankel operators associated with a Hilbert space of holomorphic functions A^2(μ) of square integrable with respect to a measure admitting relative index times. Next, we show that the space of Laurent polynomials is dense in A ^ 2 ( μ ) it allows us to clearly define the Hankel operators and study their spectral properties. In particular, many examples, we establish necessary and sufficient conditions, in terms of time, ensuring continuity compactness and Schatten classes of membership of the Hankel operators.
|
14 |
Propriétés spectrales de l'opérateur solution canonique du d-bar et des opérateurs de Hankel de symbole antiholomorphe.Lovera, Stéphanie 08 June 2005 (has links) (PDF)
Cette thèse est consacrée à l'étude spectrale de l'opérateur solution canonique du dbar en liaison avec les opérateurs de Hankel dans le cas de plusieurs variables complexes.<br />Dans un premier temps, on étudie les propriétés spectrales de l'opérateur solution canonique du dbar restreint aux (0,1)-formes à coefficients holomorphes. Nous donnons des conditions nécessaires et suffisantes, pour que l'opérateur solution canonique du dbar soit borné, compact et appartienne à la p-ème classe de Schatten, et ce dans le cas d'une ou plusieurs variables et pour toute une classe d'espaces de Hilbert contenant des espaces de Hilbert de fonctions holomorphes classiques comme des espaces de Bergman à poids, des espaces de Fock, des espaces de Sobolev de fonctions holomorphes, des espaces de Hardy-Sobolev, l'espace de Hardy ou l'espace invariant de Moebius. <br /><br /><br />Dans un second temps, on s'intéresse à l'existence d'un opérateur de Hankel défini sur un espace de Hilbert de fonctions holomorphes, de symbole antiholomorphe non trivial dans une classe de Schatten donnée et on cherche à étudier le rapport entre la croissance d'une fonction f et la taille des valeurs singulières de l'opérateur de Hankel induit par f-bar. <br /> Dans ce travail, on considère les grands opérateurs de Hankel de symbole antiholomorphe définis sur l'espace de Hardy du disque unité de C, l'espace de Dirichlet ou des espaces de Sobolev de fonctions holomorphes sur le disque unité de C. On donne d'abord une condition nécessaire et suffisante sur p pour que la p-ème classe de Schatten contienne un opérateur de Hankel de symbole antiholomorphe non trivial. Ensuite, on caractérise les fonctions f pour lesquelles l'opérateur de Hankel de symbole f-bar est un opérateur de Hilbert-Schmidt. En outre, on établit des conditions nécessaires sur f pour que l'opérateur induit par f-bar soit un opérateur borné, compact et appartienne à la p-ème classe de Schatten, excepté dans le cas de l'espace de Dirichlet.
|
15 |
The numerical synthesis and inversion of acoustic fields using the Hankel transform with application to the estimation of the plane wave reflection coefficient of the ocean bottomJanuary 1983 (has links)
Douglas R. Mook. / Originally published as thesis (Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, M.S., 1984). / Includes bibliographical references. / Advanced Research Projects Agency Contract no. N00014-81-K-0742 NR-049-506 National Science Foundation Grant ECS80-07102
|
16 |
Advances in sliding window subspace tracking /Toolan, Timothy M. January 2005 (has links)
Thesis (Ph. D.)--University of Rhode Island, 2005. / Typescript. Includes bibliographical references (leaves 87-89).
|
17 |
Adhesive Contact of a Conical Frustum Punch with a Transversely Isotropic or an Orthotropic Elastic Half SpaceMao, Chunliu 2010 December 1900 (has links)
The adhesive contact problems of a conical frustum punch indenting a transversely isotropic elastic half space and an orthotropic elastic half space are analytically studied in this thesis work. To solve the problem involving a transversely isotropic half space, the harmonic potential function method and the Hankel transform are employed, which lead to a general closed-form solution for the adhesive contact problem. For the case with an orthotropic half space, the problem of a point load applied on the half space is first solved by using the double Fourier transform method. The solution for the adhesive contact problem is then obtained through integrating the former solutions over the punch surface.
|
18 |
Ολοκληρωτικοί μετασχηματισμοί και εφαρμογές αυτώνΚαϊάφα, Δήμητρα 27 April 2015 (has links)
Οι ολοκληρωτικοί μετασχηματισμοί είναι ένα από τα πιο σημαντικά εργαλεία των μαθηματικών. Για σχεδόν πάνω από δυο αιώνες, οι ολοκληρωτικοί μετασχηματισμοί χρησιμοποιούνται επιτυχώς για την επίλυση πολλών προβλημάτων στα εφαρμοσμένα μαθηματικά, τη μαθηματική φυσική και τις επιστήμες των μηχανικών. Η βασική λογική τους είναι να μετασχηματιστεί ένα δύσκολο πρόβλημα σε ένα πιο απλό, να λυθεί και μετά, χρησιμοποιώντας τον αντίστροφο μετασχηματισμό, να βρεθεί η λύση του αρχικού προβλήματος. Οι ολοκληρωτικοί μετασχηματισμοί χρησιμοποιούνται για την επίλυση συνήθων διαφορικών εξισώσεων (Σ.Δ.Ε), διαφορικών εξισώσεων με μερικές παραγώγους (Μ.Δ.Ε), ολοκληρωτικών εξισώσεων όπως επίσης και στον υπολογισμό ολοκληρωμάτων. Στην παρούσα διπλωματική εργασία παρουσιάζουμε πέντε ολοκληρωτικούς μετασχηματισμούς: τον μετασχηματισμό Laplace, Fourier, Hankel, Hilbert και Stieltjes και αφού παρουσιάσουμε κάποια ιστορικά στοιχεία και τις ιδιότητές του για τον κάθε ένα ξεχωριστά, εν συνεχεία, δίνουμε διάφορα παραδείγματα εφαρμογής τους σε διάφορους τομείς των θετικών επιστημών, τόσο σε κλασικά προβλήματα όσο και σε προβλήματα που έχουν ‘αντληθεί’ από ερευνητικές εργασίες. / Integral transforms are one of the most significant tools at the disposal of mathematicians around the world. For almost two centuries now, integral transforms have been successfully deployed in various domains such as applied mathematics, physics and engineering. The main logic behind integral transforms is the transformation of a complicated problem into a much simpler one, the solution of the simpler version, and finally the application of the inverse transform in order to obtain the solution of the initial "complicated" one. Integral transforms are mainly used for solving ordinary differential equations (ODE), partial differential equations (PDE) and integral equations. However, they are also used in the computation of improper integrals.
In the current Thesis, five major integral transforms will be presented, namely, Laplace, Fourier, Hankel, Hilbert and Stieltjes. Initially we will start by providing the historical background as well as the properties of each one of these integral transforms. We will then continue by discussing some practical examples of how these integral transforms may be applied in sciences – not just for solving widely discussed and known problems, but also for problems that have emerged from recent research studies.
|
19 |
Elektrokardiogramos tyrimas naudojant koreliacinius sąryšius bei Henkelio matricas / Analysis of electrocardiogram using correlation and Hankel matrixPatackaitė, Kristina 16 August 2007 (has links)
Pasinaudojant Henkelio matricomis tiriamas elektrokardiogramos ir jos parametrų kompleksiškumas. Po to, elektrokardiogramos fragmentai aprašomi eksponenčių baigtine sume. Taip pat pasiūlytas algoritmas, kaip pasinaudojant koreliacija dvylika standartinių derivacijų pakeisti trimis laisvai pasirenkamomis. / The method how to reinstate standard ECG lead by means of correlation and by three freely chosen ECG leads is suggested in this work. Next method is to evaluate complexity, to analyze, how many components are needed to record ECG and ECG parameters. Also we try to describe ECG fragment using exponential sum.
|
20 |
Time and frequency domain scattering for the one-dimensional wave equation /Browning, Brian L. January 1999 (has links)
Thesis (Ph. D.)--University of Washington, 1999. / Vita. Includes bibliographical references (p. 137-138).
|
Page generated in 0.0379 seconds