• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 4
  • 1
  • 1
  • Tagged with
  • 14
  • 14
  • 14
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Application of Hansen Solubility Parameters and Thermomechanical Techniques to the Prediction of Miscibility of Amorphous Solid Dispersion. Investigating the role of cohesive energy and free volume to predict phase separation kinetics in hot-melt extruded amorphous solid dispersion using dynamic mechanical analyser, shear rheometer and solubility parameters data

Mousa, Mohamad A.M.R. January 2022 (has links)
Hot-melt extruded solid dispersion technique is increasingly employed to improve the solubility of poorly water-soluble drugs. The technique relies on the enhanced solubility of the amorphous form of the drug compared to its crystalline counterpart. These systems however are thermodynamically unstable. This means that the drug crystallises with time. Therefore, efforts to measure the stability of these systems over the life span of the product are crucial. This study focused on investigating the use of Hansen Solubility Parameters to quantify polymer-drug interaction and to predict the stability of solid dispersions. This was achieved through a systematic review of hot-melt extruded solid dispersion literature. The study also investigated the use of a combined mechanical and rheological model to characterise the physicochemical and release behaviour of three solid dispersion immediately after preparation and after storage for one month at 40oC or three months at room temperature. Results revealed that the total solubility parameter |ΔбT| was able to predict the stability of the systems for more than 4 months using a cut-off point of 3 MPa-1 with a negative predictive value of 0.9. This was followed by ΔбD with a cut-off point of 1.5 MPa- 1. Moreover, Dynamic Mechanical Analyser and shear rheometry data were shown to be more sensitive than Differential Scanning Calorimetry, Powder X-Ray Diffraction, Scanning Electron Microscope and Fourier Transform Infrared in detecting crystallisation and the interaction between the drug and the polymer. The Dynamic Mechanical Analyser data were consistent with the dissolution behaviour of the samples when comparing the freshly prepared samples with those after storage. The results highlight the need for a unified characterisation approach and the necessity of verifying the homogeneity of mixing during the extrusion process.
12

The Use of Solubility Parameters to Select Membrane Materials for Pervaporation of Organic Mixtures

Buckley-Smith, Marion January 2006 (has links)
Pevaporation is a method for separating volatile components from liquid mixtures at ambient temperatures. The paint processing industry uses Hansen solubility parameters (HSP) to indicate polymer solubility. The potential of this method to predict solvent-polymer affinity was investigated for screening potential membrane materials for the pervaporation of a model solution containing linalool and linalyl acetate (major components of lavender essential oil), in ethanol. Published HSP values were collated for various polymers, and statistically analysed to determine variations in HSP values for polymer species. An investigation of published research into pervaporation of organic/organic binary solutions separated by homogeneous membranes indicated that the solvent whose HSP value was closest to that of the polymer would preferentially permeate. This relationship did not always hold for halogenated solvents or aqueous/organic solutions. Conflicting literature regarding the relationship between solvent uptake by polymers and HSP relative energy differences was resolved using a logarithmic relationship between these two parameters. The following membranes were selected, using their HSP to indicate their potential to interact with lavender oil components: Polyamide (PA: 26.9 micro;m), Polycarbonate (PC: 20.5 micro;m), Poly(ether imide) (PEI: 29.2 micro;m), Poly(ether sulphone) (PES: 27.6 micro;m), Polyethylene (HDPE: 10 micro;m, LDPE: 13-30 micro;m), Polyimide (PI: 30.0 micro;m), Poly(methyl methacrylate) (PMMA: 50 micro;m), Polypropylene (PP: 15.9 micro;m), and Poly(tetrafluoro ethylene) (PTFE: 26.7 micro;m). The HSP (dispersive, polar hydrogen bonding components) for each membrane were calculated using the mean value obtained from swelling experiments, group contribution (calculated using Hoftyzer-Van Krevelen, Hoy and Beerbower methods), refractive indices (dispersive component), dielectric constants (polar component), and published HSP values. Pervaporation experiments investigated the effect of membrane thickness, process temperature, permeate pressure, impinging jet heights, feed flow rates and concentrations, and pre-soaking the membrane; on flow rate and selectivity in a polyethylene membrane. Membrane thickness was the dominant factor in membrane selectivity; the thinnest membranes (11.3-14.8 micro;m) had much poorer selectivity than membranes gt;24.7 micro;m. Temperatures between 22-34ordm;C, permeate pressure lt;10 kPa, impinging jet heights between 0.36-3.36 mm, feed flow rates between 541-1328 mL/min and concentrations between 1.78-6.01 % v/v of linalool and linalyl acetate in ethanol did not significantly affect selectivity. Flow rates increased with operating temperature, permeate pressure, and impinging jet heights. However, feed flow rate and concentration had no effect on membrane flux rate. Pre-soaking the membrane reduced the time to reach steady-state. Selected membranes were further investigated under standard operating conditions (permeate temperature 30ordm;C, permeate pressure lt;10 kPa, impinging jet height 1.36 mm, feed flow rate 804 mL/min and feed concentration of 5% v/v of linalool and linalyl acetate in ethanol). PMMA completely disintegrated in feed solution, and PC was too brittle to make an effective homogeneous membrane. PA, PC, PEI and PTFE had the highest efficiency (selectivity x flow rate) in their homogeneous form. However, PEI, PI and PTFE had the greatest selectivity, thus further trials should be done to improve stability and flow rates through these membranes. Pervaporation selectivity did not always follow trends predicted by HSP. Although polymers such as PA, PEI, PES, and PI preferentially permeated linalool as predicted, PC, PP and PTFE did not preferentially permeate linalyl acetate. This may have been due to the difference in size and diffusivity of these molecules (linalyl acetate, the larger molecule, did not follow the sorption selectivity predictions), or reliability of literature HSP values and those calculated by group contribution. This research shows that HSP is a good screening method for pervaporation membranes, especially where the molecules being separated are of comparable size. Polymers that have HSP close to the desired component and not to other components tend to have the best selectivity and flux characteristics. However, diffusion is an important factor, and is not completely accounted for by HSP. Recommendations for further research include: carrying out pervaporation analyses of selected polymers using pure lavender essential oil; modifying polymers to form asymmetric or composite membranes with improved permeation characteristics; and potential use of thin channel inverse gas chromatography to determine a more accurate HSP which includes diffusivity.
13

Magnetit-Nanokomposite als Funktionspartikeln für die Bioseparation / Magnetite nanocomposites as functional particles for bioseparation applications

Tchanque Kemtchou, Valéry 09 December 2014 (has links) (PDF)
Die vorliegende Arbeit beschäftigt sich mit der Herstellung von funktionellen Magnetit-Nanokompositen durch Sprühtrocknung für die Anwendung in der Bioseparation. Dabei liegen die Schwerpunkte auf der Anwendung von Polyelektrolyten als Ionenaustauscher sowie auf der Nachhaltigkeit des Herstellungsprozesses. Basierend auf einem existierenden Herstellungsprozess wurde die Aufgabenstellung konkretisiert. Es wurden Möglichkeiten zur nachhaltigen Prozessgestaltung der Synthese von kationischen bzw. anionischen magnetischen Funktionspartikeln zur Proteinabtrennung vorgestellt. Als magnetische Komponente wurde Magnetit verwendet. Aufgrund seines pseudo-amphiphilen Charakters und seiner besonderen Eigenschaften in Bezug auf die Stabilisierung von Magnetit-Kolloiden wurde Polyvinylbutyral (Mowital B 30T) als Matrixpolymer bei der Sprühtrocknung benutzt. Für die nachhaltige Prozessgestaltung wurden Isopropanol und Tetrahydrofuran als Dichlormethan-Ersatz bei der Sprühtrocknung verwendet. Bei der Synthese kationischer Magnetic Beads wurden verzweigtes Polyethylenimin und lineares Poly(Allyamin) als Anionenaustauscher verwendet. Beide Polykationen sind schwache Polyelektrolyte mit Aminogruppen. Für die Verarbeitung der Polykationen als funktionelle Liganden in magnetischen Funktionspartikeln wurde zwei Herstellungsmethoden vorgestellt: eine Synthese ohne Oberflächenmodifizierung, wobei die mechanische und chemische Stabilität der Funktionspartikeln einzig von der chemischen Struktur der eingesetzten Materialien bzw. vom Matrixpolymer abhängt, und eine Synthese mit Oberflächenmodifizierung. Die Synthese mit Oberflächenmodifizierung ist gekennzeichnet durch die kovalente Bindung von Polyethylenimin bzw. Poly(Allyamin) an der Oberfläche der Funktionspartikeln (Polyvinylbutyral). Dafür wurde 1,1’-Carbonyldiimidazol als „zero length“-Crosslinker benutzt. Die nach beiden Methoden hergestellten Funktionspartikeln wurden charakterisiert, um ihre technische Eignung beurteilen zu können. Für die Charakterisierung der sorptiven Eigenschaften wurde unter anderem der Bowman-Birk Inhibitor (BBI) verwendet. Das Protein ist ein Sojaprodukt und für seine krebsvorbeugende Wirkung bekannt. Um die Selektivität der Abtrennung zu untersuchen, wurden BBI-Produkte mit unterschiedlichen Reinheitsgraden benutzt. Durch die zwei vorgestellten Methoden konnten kationische magnetische Funktionspartikeln erfolgreich hergestellt werden. Alle Funktionspartikeln sind superparamagnetisch, und der Medianwert ihrer Partikelgrößenverteilung liegt im einstelligen Mikrometerbereich. Aufgrund eines höheren Polykationanteils ist die Bindungskapazität der Funktionspartikeln ohne Oberflächenmodifizierung um den Faktor 2,4 größer als die BBI-Bindungskapazität der Funktionspartikeln mit Oberflächenmodifizierung (Qmax=322 mg/g). Das Fehlen eine feste Anbindung des funktionellen Liganden an den Funktionspartikeln ohne Oberflächenmodifizierung verleiht jedoch diesen eine sehr schlechte chemische Stabilität in Lösungen. Es wurde auch gezeigt, dass oberflächenmodifizierte Funktionspartikeln mit ähnlichen Eigenschaften durch den Einsatz von Dichlormethan bzw. Tetrahydrofuran als Lösungsmittelersatz während der Sprühtrocknung hergestellt werden können. Durch den Einsatz von mit Poly(allylamin) oberflächenmodifizierten Funktionspartikeln konnte BBI von technischen Sojamolken unterschiedlicher Reinheitsgrade erfolgreich abgetrennt werden. Anionische Magnetic Beads wurden mit Kationenaustauscherharz als funktionellem Ligand hergestellt. Dabei wurde Isopropanol als organisches Lösungsmittel während der Sprühtrocknung verwendet. Die Synthese wurde analog zur Synthese der kationischen Magnetic Beads ohne Oberflächenmodifizierung durchgeführt. Es wurde auch hier gezeigt, dass anionische magnetische Funktionspartikeln mit guten sorptiven Eigenschaften durch den Einsatz von Isopropanol als organisches Lösungsmittel hergestellt werden können. Die anionischen Funktionspartikeln besitzen im Vergleich zu Literaturwerten höhere Bindungskapazitäten (bis 280 mg/g; ermittelt mit Lysozym). Im letzten Kapitel wird der kritische Prozessschritt des Lösungsmittelaustausches behandelt. Nach dem Lösungsmittelaustausch sollten die Magnetitnanopartikeln in der organischen Phase stabil sein. Dies ermöglicht sowohl eine homogene Verteilung der Nanopartikeln in der Matrix als auch deren bessere Verkapselung während der Sprühtrocknung. Es wurde festgestellt, dass sich eine vollständige Abtrennung von Dichlormethan durch die angewendete Destillationsmethode nicht erreichen lässt. Anhand von zwei Modellsystemen — Rizinolsäure- und Ölsäure-beschichteten Magnetitnanopartikeln — und Lösungsmittelgemischen wurde die Stabilität von sterisch stabilisierten Magnetitpartikeln in binären Lösungsmittelgemischen untersucht. Der Fokus bei dieser Untersuchung lag auf der Untersuchung der Stabilität der beschichteten Magnetitnanopartikeln in einer möglichst Dichlormethan- bzw. Isooktan-freien organischen Phase. Als zweites Lösungsmittel (als Lösungsmittelersatz betrachtet) wurden neben Tetrahydrofuran und Isopropanol technisch verbreitete Lösungsmittel wie Isooktan und 1-Butanol eingesetzt. Die Untersuchungsergebnisse zeigen, dass die Anwendung der technischen Rizinolsäure bzw. Ölsäure einen zusätzlichen Einfluss auf die Stabilität der Magnetitpartikeln hat, da diese aus anderen Fettsäuren mit unterschiedlichen chemischen Strukturen bestehen. Die Diskrepanz zwischen der berechneten HANSEN-Distanzen und der Stabilität der Magnetitnanopartikeln mit reinen Fettsäuren lässt vermutet, dass die Zusammensetzung der Lösungsmittelgemische an der fest/flüssig-Grenzfläche anders ist als im freien Volumen. Ein Modell zur Beschreibung der Stabilität der Nanopartikeln, das auf einer Anreicherung des Ausgangslösungsmittels an der Grenzfläche basiert, wurde postuliert. Solange die Diffusion des zweiten Lösungsmittels in die Adsorptionsschicht nicht ausreichend genug ist, um die Löslichkeit der Fettsäureketten entscheidend zu reduzieren und somit einen Abfall der Abstoßungskräfte zwischen der Partikeln hervorzurufen, bleiben alle beschichteten Magnetitnanopartikeln stabil im Lösungsmittelgemisch. Dies ist der Fall für die mit der reinen Rizinolsäure beschichteten Magnetitnanopartikeln in allen verwendeten Lösungsmittelgemischen mit 0,5 Vol. % DCM in der kontinuierlichen Phase. Durch die vorgestellten Herstellungsmethoden wurde gezeigt, dass magnetische Funktionspartikeln sowohl mit festen partikelförmigen Ionenaustauschern als auch mit flüssigen schwachen Polyelektrolyten erfolgreich synthetisiert werden können. Eine nachhaltige Prozessgestaltung durch die Reduzierung der Dichlormethanmenge im Sprühtrocknungsprozess ist auch möglich. Für eine erfolgreiche industrielle Anwendung der Funktionspartikeln müssen aber ihre chemischen sowie mechanischen Eigenschaften deutlich verbessert werden. Dies könnte z.B. durch die Verwendung eines anderen Matrixpolymers oder durch die Entfernung von nicht gebundenen Bestandteilen durch gezielte Waschung der Funktionspartikeln erfolgen. Die Bindungskapazität sowie die Selektivität der oberflächenmodifizierten Funktionspartikeln sollte ebenfalls verbessert werden. Dafür wurde einen Ansatz durch die Quaternisierung der Aminogruppen präsentiert. Schließlich würde die Untersuchung der Stabilität der beschichteten Magnetitnanopartikeln in einphasigen reinen Lösungsmitteln nähere Erkenntnisse über das postulierte Modell der Anreicherung von Dichlormethan in der Adsorptionsschicht erbringen. Dabei könnte die Dichlormethanmenge durch mehrstufige Destillation bzw. Rektifikation beim Lösungsmittelaustausch entfernt werden. Eine vollständige Untersuchung dieses Effekts würde zusätzlich eine Antwort auf zahlreiche Fragestellungen der Kolloidchemie in Bezug auf das Stabilitätsverhalten von Pigmentdispersionen (Lacke) oder von beschichteten Nanopartikeln in Polymerlösungen erbringen.
14

Magnetit-Nanokomposite als Funktionspartikeln für die Bioseparation

Tchanque Kemtchou, Valéry 29 October 2014 (has links)
Die vorliegende Arbeit beschäftigt sich mit der Herstellung von funktionellen Magnetit-Nanokompositen durch Sprühtrocknung für die Anwendung in der Bioseparation. Dabei liegen die Schwerpunkte auf der Anwendung von Polyelektrolyten als Ionenaustauscher sowie auf der Nachhaltigkeit des Herstellungsprozesses. Basierend auf einem existierenden Herstellungsprozess wurde die Aufgabenstellung konkretisiert. Es wurden Möglichkeiten zur nachhaltigen Prozessgestaltung der Synthese von kationischen bzw. anionischen magnetischen Funktionspartikeln zur Proteinabtrennung vorgestellt. Als magnetische Komponente wurde Magnetit verwendet. Aufgrund seines pseudo-amphiphilen Charakters und seiner besonderen Eigenschaften in Bezug auf die Stabilisierung von Magnetit-Kolloiden wurde Polyvinylbutyral (Mowital B 30T) als Matrixpolymer bei der Sprühtrocknung benutzt. Für die nachhaltige Prozessgestaltung wurden Isopropanol und Tetrahydrofuran als Dichlormethan-Ersatz bei der Sprühtrocknung verwendet. Bei der Synthese kationischer Magnetic Beads wurden verzweigtes Polyethylenimin und lineares Poly(Allyamin) als Anionenaustauscher verwendet. Beide Polykationen sind schwache Polyelektrolyte mit Aminogruppen. Für die Verarbeitung der Polykationen als funktionelle Liganden in magnetischen Funktionspartikeln wurde zwei Herstellungsmethoden vorgestellt: eine Synthese ohne Oberflächenmodifizierung, wobei die mechanische und chemische Stabilität der Funktionspartikeln einzig von der chemischen Struktur der eingesetzten Materialien bzw. vom Matrixpolymer abhängt, und eine Synthese mit Oberflächenmodifizierung. Die Synthese mit Oberflächenmodifizierung ist gekennzeichnet durch die kovalente Bindung von Polyethylenimin bzw. Poly(Allyamin) an der Oberfläche der Funktionspartikeln (Polyvinylbutyral). Dafür wurde 1,1’-Carbonyldiimidazol als „zero length“-Crosslinker benutzt. Die nach beiden Methoden hergestellten Funktionspartikeln wurden charakterisiert, um ihre technische Eignung beurteilen zu können. Für die Charakterisierung der sorptiven Eigenschaften wurde unter anderem der Bowman-Birk Inhibitor (BBI) verwendet. Das Protein ist ein Sojaprodukt und für seine krebsvorbeugende Wirkung bekannt. Um die Selektivität der Abtrennung zu untersuchen, wurden BBI-Produkte mit unterschiedlichen Reinheitsgraden benutzt. Durch die zwei vorgestellten Methoden konnten kationische magnetische Funktionspartikeln erfolgreich hergestellt werden. Alle Funktionspartikeln sind superparamagnetisch, und der Medianwert ihrer Partikelgrößenverteilung liegt im einstelligen Mikrometerbereich. Aufgrund eines höheren Polykationanteils ist die Bindungskapazität der Funktionspartikeln ohne Oberflächenmodifizierung um den Faktor 2,4 größer als die BBI-Bindungskapazität der Funktionspartikeln mit Oberflächenmodifizierung (Qmax=322 mg/g). Das Fehlen eine feste Anbindung des funktionellen Liganden an den Funktionspartikeln ohne Oberflächenmodifizierung verleiht jedoch diesen eine sehr schlechte chemische Stabilität in Lösungen. Es wurde auch gezeigt, dass oberflächenmodifizierte Funktionspartikeln mit ähnlichen Eigenschaften durch den Einsatz von Dichlormethan bzw. Tetrahydrofuran als Lösungsmittelersatz während der Sprühtrocknung hergestellt werden können. Durch den Einsatz von mit Poly(allylamin) oberflächenmodifizierten Funktionspartikeln konnte BBI von technischen Sojamolken unterschiedlicher Reinheitsgrade erfolgreich abgetrennt werden. Anionische Magnetic Beads wurden mit Kationenaustauscherharz als funktionellem Ligand hergestellt. Dabei wurde Isopropanol als organisches Lösungsmittel während der Sprühtrocknung verwendet. Die Synthese wurde analog zur Synthese der kationischen Magnetic Beads ohne Oberflächenmodifizierung durchgeführt. Es wurde auch hier gezeigt, dass anionische magnetische Funktionspartikeln mit guten sorptiven Eigenschaften durch den Einsatz von Isopropanol als organisches Lösungsmittel hergestellt werden können. Die anionischen Funktionspartikeln besitzen im Vergleich zu Literaturwerten höhere Bindungskapazitäten (bis 280 mg/g; ermittelt mit Lysozym). Im letzten Kapitel wird der kritische Prozessschritt des Lösungsmittelaustausches behandelt. Nach dem Lösungsmittelaustausch sollten die Magnetitnanopartikeln in der organischen Phase stabil sein. Dies ermöglicht sowohl eine homogene Verteilung der Nanopartikeln in der Matrix als auch deren bessere Verkapselung während der Sprühtrocknung. Es wurde festgestellt, dass sich eine vollständige Abtrennung von Dichlormethan durch die angewendete Destillationsmethode nicht erreichen lässt. Anhand von zwei Modellsystemen — Rizinolsäure- und Ölsäure-beschichteten Magnetitnanopartikeln — und Lösungsmittelgemischen wurde die Stabilität von sterisch stabilisierten Magnetitpartikeln in binären Lösungsmittelgemischen untersucht. Der Fokus bei dieser Untersuchung lag auf der Untersuchung der Stabilität der beschichteten Magnetitnanopartikeln in einer möglichst Dichlormethan- bzw. Isooktan-freien organischen Phase. Als zweites Lösungsmittel (als Lösungsmittelersatz betrachtet) wurden neben Tetrahydrofuran und Isopropanol technisch verbreitete Lösungsmittel wie Isooktan und 1-Butanol eingesetzt. Die Untersuchungsergebnisse zeigen, dass die Anwendung der technischen Rizinolsäure bzw. Ölsäure einen zusätzlichen Einfluss auf die Stabilität der Magnetitpartikeln hat, da diese aus anderen Fettsäuren mit unterschiedlichen chemischen Strukturen bestehen. Die Diskrepanz zwischen der berechneten HANSEN-Distanzen und der Stabilität der Magnetitnanopartikeln mit reinen Fettsäuren lässt vermutet, dass die Zusammensetzung der Lösungsmittelgemische an der fest/flüssig-Grenzfläche anders ist als im freien Volumen. Ein Modell zur Beschreibung der Stabilität der Nanopartikeln, das auf einer Anreicherung des Ausgangslösungsmittels an der Grenzfläche basiert, wurde postuliert. Solange die Diffusion des zweiten Lösungsmittels in die Adsorptionsschicht nicht ausreichend genug ist, um die Löslichkeit der Fettsäureketten entscheidend zu reduzieren und somit einen Abfall der Abstoßungskräfte zwischen der Partikeln hervorzurufen, bleiben alle beschichteten Magnetitnanopartikeln stabil im Lösungsmittelgemisch. Dies ist der Fall für die mit der reinen Rizinolsäure beschichteten Magnetitnanopartikeln in allen verwendeten Lösungsmittelgemischen mit 0,5 Vol. % DCM in der kontinuierlichen Phase. Durch die vorgestellten Herstellungsmethoden wurde gezeigt, dass magnetische Funktionspartikeln sowohl mit festen partikelförmigen Ionenaustauschern als auch mit flüssigen schwachen Polyelektrolyten erfolgreich synthetisiert werden können. Eine nachhaltige Prozessgestaltung durch die Reduzierung der Dichlormethanmenge im Sprühtrocknungsprozess ist auch möglich. Für eine erfolgreiche industrielle Anwendung der Funktionspartikeln müssen aber ihre chemischen sowie mechanischen Eigenschaften deutlich verbessert werden. Dies könnte z.B. durch die Verwendung eines anderen Matrixpolymers oder durch die Entfernung von nicht gebundenen Bestandteilen durch gezielte Waschung der Funktionspartikeln erfolgen. Die Bindungskapazität sowie die Selektivität der oberflächenmodifizierten Funktionspartikeln sollte ebenfalls verbessert werden. Dafür wurde einen Ansatz durch die Quaternisierung der Aminogruppen präsentiert. Schließlich würde die Untersuchung der Stabilität der beschichteten Magnetitnanopartikeln in einphasigen reinen Lösungsmitteln nähere Erkenntnisse über das postulierte Modell der Anreicherung von Dichlormethan in der Adsorptionsschicht erbringen. Dabei könnte die Dichlormethanmenge durch mehrstufige Destillation bzw. Rektifikation beim Lösungsmittelaustausch entfernt werden. Eine vollständige Untersuchung dieses Effekts würde zusätzlich eine Antwort auf zahlreiche Fragestellungen der Kolloidchemie in Bezug auf das Stabilitätsverhalten von Pigmentdispersionen (Lacke) oder von beschichteten Nanopartikeln in Polymerlösungen erbringen.

Page generated in 0.1008 seconds