Spelling suggestions: "subject:"organicinorganic"" "subject:"inorganic:organic""
1 |
Total syntheses of (±)- cylindricines A, D, and E, and (±)- deoxypenostatin A : synthetic approaches toward the synthesis of (±)- penostatins A and B /Liu, Tao. January 2000 (has links)
Thesis (Ph. D.)--Brandeis University, 2000. / "UMI:9967594." MICROFILM COPY ALSO AVAILABLE IN THE UNIVERSITY ARCHIVES. Includes bibliographical references.
|
2 |
Studies towards the asymmetric total synthesis of oximidines I and IIOppenheimer, Jossian, January 2005 (has links)
Thesis (Ph. D.)--Ohio State University, 2005. / Title from first page of PDF file. Document formatted into pages; contains xvii, 185 p.; also includes graphics Includes bibliographical references (p. 176-185). Available online via OhioLINK's ETD Center
|
3 |
Cascade approaches to decahydroquinoline ring systemsLingard, Hannah January 2010 (has links)
The aims of this project were to develop a cascade approach towards decahydroquinoline frameworks (Scheme I) and apply this to the synthesis of decahydroquinoline-containing natural products such as lycopodine, cermizine B and lepadin D (Scheme I). Scheme I. Several linear precursors were synthesized via a modular strategy. For example, lycopodine linear precursor i was synthesized in a total of 12 steps (Scheme II). Scheme II. Conditions for cyclization and hydrogenation were tested, with the diastereoselectivity examined in each system. For example, the lepadin linear precursor ii produced two decahydroquinolines iii and iv upon cyclization (Scheme III). Scheme III. It was found that the diastereoselectivity was dependent on the ring substituents and variation of the hydrogenation conditions could change the facial selectivity of enamine reduction.
|
4 |
The Socioecological Lives of Small-Scale Organic Farmers and Farms: An Exploration of DifferenceHubert, Alyssa 10 June 2013 (has links)
Organic farming has often been described as a single unified entity. Further, this unified praxis is often discussed as an alternative approach to agriculture and as a particular social and environmental movement. There has been increasing acknowledgement in academia that there are many different organics, or versions, or knowledges of organic, but what this means to individual farmers and farms remains to be explored. This is the point of departure for this work. This is an interdisciplinary project situated at the intersection of human geography, cultural anthropology, and political science, informed by and engaged with actor-network theory and visual methodologies. My methods include ethnographic participant observation, interviews, and photovoice. For this project I visited 17 small-scale organic farms in southern British Columbia. My findings indicate that different ideas, opinions, and narratives of organic abound, but most importantly that reconciling difference and nostalgia amid vast change was an overwhelming theme for the farmers and farms in this project.
|
5 |
Cis-arenediols as versatile chiral synthons in the synthesis of prostaglandins, cyclitols, carbohydrates, and alkaloids /Contla, Hector Luna, January 1991 (has links)
Thesis (Ph. D.)--Virginia Polytechnic Institute and State University, 1991. / Vita. Abstract. Includes bibliographical references (leaves 169-194). Also available via the Internet.
|
6 |
The Use of Solubility Parameters to Select Membrane Materials for Pervaporation of Organic MixturesBuckley-Smith, Marion January 2006 (has links)
Pevaporation is a method for separating volatile components from liquid mixtures at ambient temperatures. The paint processing industry uses Hansen solubility parameters (HSP) to indicate polymer solubility. The potential of this method to predict solvent-polymer affinity was investigated for screening potential membrane materials for the pervaporation of a model solution containing linalool and linalyl acetate (major components of lavender essential oil), in ethanol. Published HSP values were collated for various polymers, and statistically analysed to determine variations in HSP values for polymer species. An investigation of published research into pervaporation of organic/organic binary solutions separated by homogeneous membranes indicated that the solvent whose HSP value was closest to that of the polymer would preferentially permeate. This relationship did not always hold for halogenated solvents or aqueous/organic solutions. Conflicting literature regarding the relationship between solvent uptake by polymers and HSP relative energy differences was resolved using a logarithmic relationship between these two parameters. The following membranes were selected, using their HSP to indicate their potential to interact with lavender oil components: Polyamide (PA: 26.9 micro;m), Polycarbonate (PC: 20.5 micro;m), Poly(ether imide) (PEI: 29.2 micro;m), Poly(ether sulphone) (PES: 27.6 micro;m), Polyethylene (HDPE: 10 micro;m, LDPE: 13-30 micro;m), Polyimide (PI: 30.0 micro;m), Poly(methyl methacrylate) (PMMA: 50 micro;m), Polypropylene (PP: 15.9 micro;m), and Poly(tetrafluoro ethylene) (PTFE: 26.7 micro;m). The HSP (dispersive, polar hydrogen bonding components) for each membrane were calculated using the mean value obtained from swelling experiments, group contribution (calculated using Hoftyzer-Van Krevelen, Hoy and Beerbower methods), refractive indices (dispersive component), dielectric constants (polar component), and published HSP values. Pervaporation experiments investigated the effect of membrane thickness, process temperature, permeate pressure, impinging jet heights, feed flow rates and concentrations, and pre-soaking the membrane; on flow rate and selectivity in a polyethylene membrane. Membrane thickness was the dominant factor in membrane selectivity; the thinnest membranes (11.3-14.8 micro;m) had much poorer selectivity than membranes gt;24.7 micro;m. Temperatures between 22-34ordm;C, permeate pressure lt;10 kPa, impinging jet heights between 0.36-3.36 mm, feed flow rates between 541-1328 mL/min and concentrations between 1.78-6.01 % v/v of linalool and linalyl acetate in ethanol did not significantly affect selectivity. Flow rates increased with operating temperature, permeate pressure, and impinging jet heights. However, feed flow rate and concentration had no effect on membrane flux rate. Pre-soaking the membrane reduced the time to reach steady-state. Selected membranes were further investigated under standard operating conditions (permeate temperature 30ordm;C, permeate pressure lt;10 kPa, impinging jet height 1.36 mm, feed flow rate 804 mL/min and feed concentration of 5% v/v of linalool and linalyl acetate in ethanol). PMMA completely disintegrated in feed solution, and PC was too brittle to make an effective homogeneous membrane. PA, PC, PEI and PTFE had the highest efficiency (selectivity x flow rate) in their homogeneous form. However, PEI, PI and PTFE had the greatest selectivity, thus further trials should be done to improve stability and flow rates through these membranes. Pervaporation selectivity did not always follow trends predicted by HSP. Although polymers such as PA, PEI, PES, and PI preferentially permeated linalool as predicted, PC, PP and PTFE did not preferentially permeate linalyl acetate. This may have been due to the difference in size and diffusivity of these molecules (linalyl acetate, the larger molecule, did not follow the sorption selectivity predictions), or reliability of literature HSP values and those calculated by group contribution. This research shows that HSP is a good screening method for pervaporation membranes, especially where the molecules being separated are of comparable size. Polymers that have HSP close to the desired component and not to other components tend to have the best selectivity and flux characteristics. However, diffusion is an important factor, and is not completely accounted for by HSP. Recommendations for further research include: carrying out pervaporation analyses of selected polymers using pure lavender essential oil; modifying polymers to form asymmetric or composite membranes with improved permeation characteristics; and potential use of thin channel inverse gas chromatography to determine a more accurate HSP which includes diffusivity.
|
7 |
Innovative materials for packaging / Matériaux innovants pour le packagingHalawani, Nour 14 February 2017 (has links)
Ce travail porte sur l'étude du mélange thermodurcissable - thermoplastique (époxyamine / polyetherimide avec séparation de phase) pour évaluer les performances électriques et thermiques. Ces matériaux seraient des nouveaux candidats pour remplacer la couche d'encapsulation dans les semi-conducteurs, par exemple ceux utilisés comme interrupteur dans les applications électroniques de puissance. Les mélanges de polymères seraient un nouveau candidat en tant qu'isolant pour le système. La matrice epoxy-amine seul et les melanges epoxy / Polyetherimide on été caractérisés par microscopie électronique à transmission, microscopie électronique à balayage, Calorimétrie différentielle à balayage, analyse thermogravimétrique, analyse mécanique dynamique, analyse diélectrique avec simulation analytique et des mesures de conductivité électrique et de tension de claquage ont également été entreprises. Ces techniques complémentaires ont d'abord été utilisées pour étudier la séparation de phases et ensuite pour quantifier la taille des nodules de thermoplastiques dans la matrice thermodurcissable. Cette séparation de phase a été examiné et a montré une diminution des valeurs diélectriques de 15% et une augmentation de la tension de claquage par rapport au système époxy-amine pur. / This work deals with the study of thermoset-thermoplastic blend (epoxy-amine/poly-etherimide phase separated) to assess the electrical and thermal performances. These materials would be new candidates to replace the encapsulation layer in semiconductors, for example ones used as switches in power electronic applications. Polymers blends would be a novel candidate as an insulator for the system. Pure epoxy system as well as Epoxy/Polyetherimide blends where characterized by transmission electron microscopy, scanning electron microscopy, differential scanning calorimetry, thermogravimetric analysis, dynamic mechanical analysis, dielectric analysis with analytical simulation, electrical conductivity and breakdown voltage measurements. These complementary techniques were used first to investigate the presence of the phase separation phenomenon and secondly to quantify the separated nodules size. The effect of this phase separation was examined and showed a decrease in the dielectric values of 15 % and an increase in the breakdown voltage compared to the pure epoxy system. It was finally simulated to show a close assumption of what is found experimentally.
|
8 |
Electronic properties of metal-organic and organic-organic interfaces studied by photoemission and photoabsorption spectroscopy / Elektronische Eigenschaften von Metall/Organischen und Organik/Organischen Grenzflächen, untersucht mit Hilfe von Photoemissionsspektroskopie und NahkantenröntgenfeinstrukturmessungenMolodtsova, Olga 14 December 2007 (has links) (PDF)
In this work systematic studies of the organic semiconductor CuPc have been presented. In general the investigation can be devided in three parts. In the first one we have studied the electronic structure of clean CuPc thin film. The next two parts are devoted to organic-organic and metal–organic interface formation, where one of the interface components is CuPc thin film. The main results of this thesis are: - The electronic structure of the pristine organic semiconductor CuPc (valence band and empty states) has been obtained by a combination of conventional and resonant photoemission, near-edge X-ray absorption, as well as by theoretical ab initio quantum-chemical calculations. A qualitative assignment of different VB structures has been given, or in other words the contributions of different atomic species as well as sites of the CuPc molecule to the electronic DOS has been established. In particular, it was shown, that the HOMO is mainly comprised of the spectral weights from the orbitals of carbon pyrolle atoms. Additional contributions to the HOMO stems from the benzene atoms. A combined experimental and theoretical study of the unoccupied electronic density of states of CuPc was presented. Our study allows identifying the contributions from different parts of the molecule to the unoccupied DOS and the measured spectra, which lays grounds for future studies of the evolution of the CuPc electronic states upon e.g. functionalization or doping. Application of similar studies to other organic semiconductors will also provide significant insight into their unoccupied electronic states. - The electronic properties of the organic heterointerfaces between fullerite and pristine copper phthalocyanine were studied. Both interfaces, CuPc/C60 and C60/CuPc, were found to be non-reactive with pronounced shifts of the vacuum level pointing to the formation of an interfacial dipole mainly at the CuPc side of the heterojunctions. The dipole values are close to the difference of the work functions of the two materials. Important interface parameters and hole-injection barriers were obtained. The sequence of deposition does not influence the electronic properties of the interfaces. - CuPc doped with potassium was studied by means of photoemission and photoabsorption spectroscopy. A detailed analysis of the core-level PE spectra allows one to propose possible lattice sites, which harbor the potassium ions. Contrasting to a few results reported in the literature, the films prepared in this thesis showed no finite electronic density of states at the Fermi level. - Two stages of the In/CuPc interface formation have been distinguished. The low-coverage stage is characterized by a strong diffusion of the In atoms into the organic film. Metal ions occupy sites close to the pyrolle nitrogen and strongly interact with molecules transferring negative charge to CuPc. Indium diffusion into the organic films saturates at a stoichiometry of In2CuPc. Subsequently, in the second stage the formation of a metallic indium film occurs on the top of the In2CuPc film. - Upon deposition on CuPc film Sn and Ag atoms do not diffuse into the organic film forming metallic clusters and/or thin metallic overlayer. Sharp metal-organic film interface is formed, in contrast to indium and potassium deposition. Presented experimental results also give evidence for absence of noticeable chemical reaction of Sn and Ag with CuPc thin film. - The systematic investigation of interface formation between CuPc thin film and various metals gives us the possibility to summarize all results with demonstrating similarities and differences for all systems studied.
|
9 |
Electronic properties of metal-organic and organic-organic interfaces studied by photoemission and photoabsorption spectroscopyMolodtsova, Olga 18 July 2007 (has links)
In this work systematic studies of the organic semiconductor CuPc have been presented. In general the investigation can be devided in three parts. In the first one we have studied the electronic structure of clean CuPc thin film. The next two parts are devoted to organic-organic and metal–organic interface formation, where one of the interface components is CuPc thin film. The main results of this thesis are: - The electronic structure of the pristine organic semiconductor CuPc (valence band and empty states) has been obtained by a combination of conventional and resonant photoemission, near-edge X-ray absorption, as well as by theoretical ab initio quantum-chemical calculations. A qualitative assignment of different VB structures has been given, or in other words the contributions of different atomic species as well as sites of the CuPc molecule to the electronic DOS has been established. In particular, it was shown, that the HOMO is mainly comprised of the spectral weights from the orbitals of carbon pyrolle atoms. Additional contributions to the HOMO stems from the benzene atoms. A combined experimental and theoretical study of the unoccupied electronic density of states of CuPc was presented. Our study allows identifying the contributions from different parts of the molecule to the unoccupied DOS and the measured spectra, which lays grounds for future studies of the evolution of the CuPc electronic states upon e.g. functionalization or doping. Application of similar studies to other organic semiconductors will also provide significant insight into their unoccupied electronic states. - The electronic properties of the organic heterointerfaces between fullerite and pristine copper phthalocyanine were studied. Both interfaces, CuPc/C60 and C60/CuPc, were found to be non-reactive with pronounced shifts of the vacuum level pointing to the formation of an interfacial dipole mainly at the CuPc side of the heterojunctions. The dipole values are close to the difference of the work functions of the two materials. Important interface parameters and hole-injection barriers were obtained. The sequence of deposition does not influence the electronic properties of the interfaces. - CuPc doped with potassium was studied by means of photoemission and photoabsorption spectroscopy. A detailed analysis of the core-level PE spectra allows one to propose possible lattice sites, which harbor the potassium ions. Contrasting to a few results reported in the literature, the films prepared in this thesis showed no finite electronic density of states at the Fermi level. - Two stages of the In/CuPc interface formation have been distinguished. The low-coverage stage is characterized by a strong diffusion of the In atoms into the organic film. Metal ions occupy sites close to the pyrolle nitrogen and strongly interact with molecules transferring negative charge to CuPc. Indium diffusion into the organic films saturates at a stoichiometry of In2CuPc. Subsequently, in the second stage the formation of a metallic indium film occurs on the top of the In2CuPc film. - Upon deposition on CuPc film Sn and Ag atoms do not diffuse into the organic film forming metallic clusters and/or thin metallic overlayer. Sharp metal-organic film interface is formed, in contrast to indium and potassium deposition. Presented experimental results also give evidence for absence of noticeable chemical reaction of Sn and Ag with CuPc thin film. - The systematic investigation of interface formation between CuPc thin film and various metals gives us the possibility to summarize all results with demonstrating similarities and differences for all systems studied.
|
10 |
Potential Energy Minimization as the Driving Force for Order and Disorder in Organic Layers / Potentialenergie-Minimierung als Triebfeder für Ordnung und Unordnung in organischen SchichtenWagner, Christian 15 June 2010 (has links) (PDF)
The topic of this work is the structural characterization and theoretical modeling of organic single and heterolayers. The growth of sub-monolayers and monolayers (ML) of the two polycyclic aromatic hydrocarbons quaterrylene (QT) and hexa-peri-hexabenzocoronene (HBC) on Ag(111) and Au(111) was investigated. A transition from a disordered, isotropic phase to an ordered phase with increasing coverage was found. The lattice of the ordered phase turned out to be coverage dependent. The intermolecular potential was modeled including Coulomb and van der Waals interaction by a force-field approach. The postulated repulsive character of the potential could be connected to the non-uniform intramolecular charge distribution and to a screening of the van der Waals forces. Furthermore, the influence of the variable lattice constant on the epitaxial growth of HBC was studied. The second part of this work deals with a ML of 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) on a ML of HBC. In dependency on the initial lattice constant of HBC, a total of three line-on-line (LOL) and point-on-line coincident phases of PTCDA (with respect to HBC) was found. Following an analysis of the general properties of LOL coincident systems via force-field calculations, a new method to predict the structure of such systems is introduced. / Thema dieser Arbeit ist die strukturelle Charakterisierung von organischen Einfach- und Heterolagen sowie deren theoretische Beschreibung und Modellierung. Es wurden Submonolagen und Monolagen (ML) der polyzyklischen Kohlenwasserstoffe Quaterrylen (QT) und Hexa-peri-hexabenzocoronen (HBC) auf Ag(111) und Au(111) Einkristallen untersucht und ein Übergang von einer ungeordneten, isotropen Phase zu einer geordneten Phase mit steigender Bedeckung beobachtet. Die geordnete Phase wies dabei bedeckungsabhängige Gitterkonstanten auf. Das intermolekulare Potential wurde unter Berücksichtigung von Coulomb und van der Waals Anteilen mittels Kraftfeldmethoden modelliert. Der postulierte repulsive Charakter des Potentials konnte auf die Ladungsverteilung im Molekül und eine Abschwächung des van der Waals Potentials zurückgeführt werden. Weiterhin wurde der Einfluss der variablen HBC Gitterkonstante auf die epitaktische Relation des Gitters zum Metallsubstrat untersucht. Der zweite Teil der Arbeit widmet sich der Untersuchung einer ML 3,4,9,10-Perylenetetracarboxylic dianhydrid (PTCDA) auf einer ML HBC. Dabei wurden, in Abhängigkeit von der HBC Gitterkonstante, insgesamt drei verschiedene Typen von line-on-line bzw. point-on-line Epitaxie nachgewiesen. Im Anschluss an eine Analyse der generellen Eigenschaften solcher epitaktischer Lagen mittels Kraftfeldrechnungen wird eine neue Methode zur Vorhersage der Struktur konkreter Systeme vorgestellt.
|
Page generated in 0.0555 seconds