Spelling suggestions: "subject:"haptic freedback"" "subject:"haptic 1feedback""
11 |
Smart Clothes as a Tangible User Interface to Affect Human Emotions using Haptic ActuatorsArafsha, Faisal January 2012 (has links)
Affective haptic research is a rapidly growing field. Today, more smart haptic clothes are being studied and implemented which are aimed to effect its users emotionally. However, they have some limitations. This research intends to improve the existing literature and contribute by involving consumers directly in the design of a smart haptic jacket by adding heat, vibration actuators, and by enhancing portability. In this thesis, we are interested in six basic emotions: love, joy, surprise, anger, sadness, and fear. An online survey was designed and conducted on 92 respondents that gave feedback of what it is expected from an affective haptic jacket. The results of this survey assisted in the general design, and the feedback helped to build a prototype. 86% of the respondents expressed interest in the system and are willing to try it when it is ready. A detailed design architecture is provided along with details on the hardware and software used for the implementation. Finally, the prototype was evaluated on 14 participants using the actual prototype haptic jacket based on a QoE comparison between the absence and the presence of haptic actuation. The proposed system showed improvement over a similar system that is designed for the same purpose.
|
12 |
Creating a Data Acquisition Platform for Robot Skill TrainingNahari, Ammar Jamal 01 February 2019 (has links)
No description available.
|
13 |
Transparent Capacitive and Piezoelectric Micromachined Ultrasonic Transducers for Tactile Feedback with 3D DisplaysLaughlin, Emily Anne 06 August 2021 (has links) (PDF)
3D display technology is limited by the user's ability to interact with displays without being connected to external equipment. In order to feel tactile feedback in conjunction with displays, ultrasonic sound pressure fields have been created; however, ceramic transducers interfere with the user's immersive experience. We have created transparent ultrasonic transducers using capacitive micromachined ultrasonic transducer (CMUT) and piezoelectric micromachined ultrasonic transducer (PMUT) technology that allow the user to remain immersed in the experience while interacting with the display. Individual transparent piezoelectric transducers made with indium tin oxide (ITO) and polyvinylidene fluoride (PVDF) generate 66.9dB with 91.6% transparency. Samples were phased and modulated using a field programmable gate array (FPGA) in a 36-element array.
|
14 |
New haptic syringe device for virtual angiography trainingHuang, D., Tang, P., Wang, X., Wan, Tao Ruan, Tang, W. 01 April 2019 (has links)
No / Angiography is an important minimally invasive diagnostic procedure in endovascular interventions. Effective training for the procedure is expensive, time consuming and resource demanding. Realistic simulation has become a viable solution to addressing such challenges. However, much of previous work has been focused on software issues. In this paper, we present a novel hardware system-an interactive syringe device with haptics as an add-on hardware component to 3D VR angiography training simulator. Connected to a realistic 3D computer simulation environment, the hardware component provides injection haptic feedback effects for medical training. First, we present the design of corresponding novel electronic units consisting of many design modules. Second, we describe a curve fitting method to estimate injection dosage and injection speed of the contrast media based on voltage variation between the potentiometer to increase the realism of the simulated training. A stepper motor control method is developed to imitate the coronary pressure for force feedback of syringe. Experimental results show that the validity and feasibility of the new haptic syringe device for achieving good diffusion effects of contrast media in the simulation system. A user study experiment with medical doctors to assess the efficacy and realism of proposed simulator shows good outcomes. / National Natural Science Foundation of China (61402278), the Innovation Program of the Science and Technology Commission of Shanghai Municipality of China (16511101302), Research Program of Shanghai Engineering Research Center of Motion Picture Special Effects (16dz2251300)
|
15 |
Exploring Human Responses to a Virtual Character BumpClaudia M Krogmeier (6632114) 11 June 2019 (has links)
<p>How
does haptic feedback during human-virtual character interaction affect
participant physiological responses in virtual reality? In this
between-subjects study, haptic feedback and non-haptic feedback conditions in
which virtual characters bump into the participant who is immersed in a virtual
environment are compared. A questionnaire was developed to determine the influence
of haptic feedback on presence, embodiment, positive and negative affect, interaction
with virtual characters, and haptic feedback realism, among other more
exploratory concepts. These exploratory variables include engagement, flow,
comfort with virtual characters, comfort with virtual characters’ appearance,
realism of virtual character interaction, realism of haptic feedback, and
virtual reality sickness. Physiological data was collected using galvanic skin response
(GSR) to investigate the influence of haptic feedback on physiological arousal during
human-virtual character interaction. Five conditions were developed (no haptic
feedback, full and half intensity, incorrect position, and delayed timing).
Significant differences were found in embodiment, realism of virtual character
interaction, haptic feedback realism, and GSR amplitude after the first
interaction with the virtual character. These results may inform future virtual
reality studies that investigate haptic feedback during human-virtual character
interaction and/or arousal via GSR data, as well as advise studies that seek to
correlate self-report responses with physiological data. </p>
|
16 |
A levels-of-precision approach for physics-based soft tissues modeling / Uma abordagem de níveis de precisão para modelagem de tecidos moles fisicamente baseadosSilva, Daniele Fernandes e January 2015 (has links)
Simulação computacional de ambientes cirúrgicos têm sido amplamente utilizados, normalmente para treinamentos, ajudando no desenvolvimento de habilidades essenciais e minimizando erros em procedimentos cirúrgicos. Para estes ambientes, é essencial a obtenção de um comportamento mais realista, sendo importante o uso de técnicas com alta precisão, além de uma simulação em tempo real. A fim de melhor controlar este trade-off entre eficiência e eficácia, apresentamos um ambiente híbrido e adaptativo que combina um conjunto de métodos para alcançar uma boa precisão e desempenho na simulação. Nosso sistema mescla métodos físicos de deformação (Método de Elementos Finitos e Mass-Mola) com um método não-físico que aproxima o comportamento dos primeiros (Green Coordinates), sendo capaz de utilizar o método apropriado dependendo da situação. Para melhor simular um ambiente cirúrgico completo, foram implementadas ferramentas adicionais para interação, permitindo pegar e manipular, queimar, e sentir os objetos do cenário. Nosso sistema proporciona grande imersão ao usuário, consumindo menos recursos computacionais e aumentando as taxas de atualização da simulação. / Computational simulation of surgical environments have been widely used usually for trainings, improving essential skills and minimizing errors in surgical procedures. As these environments are always looking for a more realistic behavior, it is important to use high-precision techniques while ensuring a real-time simulation. In order to better manage this trade-off between efficiency and effectiveness, we present a hybrid and adaptive environment that combines a set of methods to achieve good accuracy and performance for a simulation. Our system merges physically deformation methods (Finite Elements Method and Mass Spring Damper) with a non-physical method that approximates the formers behavior (Green Coordinates), being able to use the appropriate method depending on the situation. To simulate an approximation of a complete surgical environment, we also implement interaction tools, such as picking, burning, and haptic feedback. Our system provides great immersion for the user, consuming less computational resources and increasing update rates.
|
17 |
A levels-of-precision approach for physics-based soft tissues modeling / Uma abordagem de níveis de precisão para modelagem de tecidos moles fisicamente baseadosSilva, Daniele Fernandes e January 2015 (has links)
Simulação computacional de ambientes cirúrgicos têm sido amplamente utilizados, normalmente para treinamentos, ajudando no desenvolvimento de habilidades essenciais e minimizando erros em procedimentos cirúrgicos. Para estes ambientes, é essencial a obtenção de um comportamento mais realista, sendo importante o uso de técnicas com alta precisão, além de uma simulação em tempo real. A fim de melhor controlar este trade-off entre eficiência e eficácia, apresentamos um ambiente híbrido e adaptativo que combina um conjunto de métodos para alcançar uma boa precisão e desempenho na simulação. Nosso sistema mescla métodos físicos de deformação (Método de Elementos Finitos e Mass-Mola) com um método não-físico que aproxima o comportamento dos primeiros (Green Coordinates), sendo capaz de utilizar o método apropriado dependendo da situação. Para melhor simular um ambiente cirúrgico completo, foram implementadas ferramentas adicionais para interação, permitindo pegar e manipular, queimar, e sentir os objetos do cenário. Nosso sistema proporciona grande imersão ao usuário, consumindo menos recursos computacionais e aumentando as taxas de atualização da simulação. / Computational simulation of surgical environments have been widely used usually for trainings, improving essential skills and minimizing errors in surgical procedures. As these environments are always looking for a more realistic behavior, it is important to use high-precision techniques while ensuring a real-time simulation. In order to better manage this trade-off between efficiency and effectiveness, we present a hybrid and adaptive environment that combines a set of methods to achieve good accuracy and performance for a simulation. Our system merges physically deformation methods (Finite Elements Method and Mass Spring Damper) with a non-physical method that approximates the formers behavior (Green Coordinates), being able to use the appropriate method depending on the situation. To simulate an approximation of a complete surgical environment, we also implement interaction tools, such as picking, burning, and haptic feedback. Our system provides great immersion for the user, consuming less computational resources and increasing update rates.
|
18 |
A levels-of-precision approach for physics-based soft tissues modeling / Uma abordagem de níveis de precisão para modelagem de tecidos moles fisicamente baseadosSilva, Daniele Fernandes e January 2015 (has links)
Simulação computacional de ambientes cirúrgicos têm sido amplamente utilizados, normalmente para treinamentos, ajudando no desenvolvimento de habilidades essenciais e minimizando erros em procedimentos cirúrgicos. Para estes ambientes, é essencial a obtenção de um comportamento mais realista, sendo importante o uso de técnicas com alta precisão, além de uma simulação em tempo real. A fim de melhor controlar este trade-off entre eficiência e eficácia, apresentamos um ambiente híbrido e adaptativo que combina um conjunto de métodos para alcançar uma boa precisão e desempenho na simulação. Nosso sistema mescla métodos físicos de deformação (Método de Elementos Finitos e Mass-Mola) com um método não-físico que aproxima o comportamento dos primeiros (Green Coordinates), sendo capaz de utilizar o método apropriado dependendo da situação. Para melhor simular um ambiente cirúrgico completo, foram implementadas ferramentas adicionais para interação, permitindo pegar e manipular, queimar, e sentir os objetos do cenário. Nosso sistema proporciona grande imersão ao usuário, consumindo menos recursos computacionais e aumentando as taxas de atualização da simulação. / Computational simulation of surgical environments have been widely used usually for trainings, improving essential skills and minimizing errors in surgical procedures. As these environments are always looking for a more realistic behavior, it is important to use high-precision techniques while ensuring a real-time simulation. In order to better manage this trade-off between efficiency and effectiveness, we present a hybrid and adaptive environment that combines a set of methods to achieve good accuracy and performance for a simulation. Our system merges physically deformation methods (Finite Elements Method and Mass Spring Damper) with a non-physical method that approximates the formers behavior (Green Coordinates), being able to use the appropriate method depending on the situation. To simulate an approximation of a complete surgical environment, we also implement interaction tools, such as picking, burning, and haptic feedback. Our system provides great immersion for the user, consuming less computational resources and increasing update rates.
|
19 |
Haptic feedback for laparoscopic surgery instruments / Retours haptiques pour instruments de chirurgie laparoscopiqueHoward, Thomas 14 October 2016 (has links)
La présente thèse traite de l'utilisation de retours haptiques pour fournir des informations aux chirurgiens durant des opérations de chirurgie minimalement invasive dans le but de les aider à améliorer leurs gestes.De meilleurs résultats pour les patients on amené la chirurgie minimalement invasive à devenir le standard pour bon nombre d'interventions. Cependant, la perte de perception de profondeur, la coordination main-oeil compliquée ainsi que les distorsions de sensations haptiques compliquent largement la tâche pour le chirurgien. Nous explorons le potentiel de retours haptiques pour intuitivement assister les chirurgiens durant des gestes de chirurgie minimalement invasive. Les formes de retour évaluées sont principalement haptiques (tactiles et kinesthésiques), avec des comparaisons à des retours visuels et multi-modaux (combinaisons de retours visuels et haptiques).Nos expériences dans le domaine de la navigation d'outils de chirurgie montrent des résultats encourageants quand aux bénéfices obtenus par des retours haptiques en termes d'amélioration de la qualité du geste chirurgical. Les guides par "virtual fixtures" montrent une nette supériorité par rapport aux autres formes de retour étudiées, cependant les retours vibrotactiles permettent aussi des améliorations notables. Des travaux parallèles sur le retour d'informations au sujet des efforts d'intéraction en bout d'outils a mis en évidence des différences importantes en termes des exigences de conception pour le retour tactile. Ceci nous a permis d'effectuer une conception et validation préliminaire de retours tactiles spécifiques à des applications de maitrise d'efforts, en utilisant l'exemple de la suture. / The present thesis focuses on the use of haptic feedback technologies to provide information to surgeons during laparoscopic or minimal access surgery (MAS) with the aim of assisting them in improving their gestures.Better overall outcomes for patients have led MAS to become standard for many surgical interventions. However, loss of visual depth perception, difficult hand-eye coordination and distorted haptic sensation seriously complicate this task for the surgeon. We explore the potential of haptic cues for intuitively assisting surgeons during MAS gestures. Evaluated forms of feedback mainly focus on haptic (tactile and kinaesthetic) cues, but include comparisons to visual and multi-modal combined haptic and visual cues.Experiments on surgical tool navigation show encouraging results for the benefit of haptic cues in improving surgical gestures, with clear superiority of soft guidance virtual fixtures over other forms of feedback. However, promising results for the use of vibrotactile feedback are also obtained. These results are confirmed in preliminary experiments on tool navigation in preliminary experiments on tool navigation during a laparoscopic cutting training task.Parallel work on feeding back interaction forces highlighted significant differences in the usability and design requirements for tactile cues when compared to instrument navigation applications. This led us to design and perform preliminary testing on tactile cues appropriate force information in the case of intra-corporeal suture knot tying.
|
20 |
Intuitive robot teleoperation based on haptic feedback and 3D visualizationYangjun, Chen January 2016 (has links)
Robots are required in many jobs. The jobs related to tele-operation may be very challenging and often require reaching a destination quickly and with minimum collisions. In order to succeed in these jobs, human operators are asked to tele-operate a robot manually through a user interface. The design of a user interface and of the information provided in it, become therefore critical elements for the successful completion of robot tele-operation tasks. Effective and timely robot tele-navigation mainly relies on the intuitiveness provided by the interface and on the richness and presentation of the feedback given. This project investigated the use of both haptic and visual feedbacks in a user interface for robot tele-navigation. The aim was to overcome some of the limitations observed in a state of the art works, turning what is sometimes described as contrasting into an added value to improve tele-navigation performance. The key issue is to combine different human sensory modalities in a coherent way and to benefit from 3-D vision too. The proposed new approach was inspired by how visually impaired people use walking sticks to navigate. Haptic feedback may provide helpful input to a user to comprehend distances to surrounding obstacles and information about the obstacle distribution. This was proposed to be achieved entirely relying on on-board range sensors, and by processing this input through a simple scheme that regulates magnitude and direction of the environmental force-feedback provided to the haptic device. A specific algorithm was also used to render the distribution of very close objects to provide appropriate touch sensations. Scene visualization was provided by the system and it was shown to a user coherently to haptic sensation. Different visualization configurations, from multi-viewpoint observation to 3-D visualization, were proposed and rigorously assessed through experimentations, to understand the advantages of the proposed approach and performance variations among different 3-D display technologies. Over twenty users were invited to participate in a usability study composed by two major experiments. The first experiment focused on a comparison between the proposed haptic-feedback strategy and a typical state of the art approach. It included testing with a multi-viewpoint visual observation. The second experiment investigated the performance of the proposed haptic-feedback strategy when combined with three different stereoscopic-3D visualization technologies. The results from the experiments were encouraging and showed good performance with the proposed approach and an improvement over literature approaches to haptic feedback in robot tele-operation. It was also demonstrated that 3-D visualization can be beneficial for robot tele-navigation and it will not contrast with haptic feedback if it is properly aligned to it. Performance may vary with different 3-D visualization technologies, which is also discussed in the presented work.
|
Page generated in 0.0565 seconds