• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 100
  • 32
  • 25
  • 5
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 193
  • 84
  • 65
  • 38
  • 30
  • 25
  • 24
  • 23
  • 23
  • 22
  • 20
  • 18
  • 17
  • 17
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Dinâmica complexa e formalismo termodinâmico / Complex dynamics and thermodynamic formalism

Lima, Carlos Alberto Siqueira 01 April 2011 (has links)
Estudaremos sistemas dinâmicos complexos da esfera de Riemann, e empregaremos técnicas do Formalismo Termodinâmico incluindo a fórmula de Bowen para provar que a dimensão de Hausdorff \'dim IND. H\' J( \'f IND. lâmbda\' ) do conjunto de Julia J( \'f IND. lâmbda\' ) de uma família holomorfa de funções racionais hiperbólicas f \'lambda\' define uma função real analítica do parâmetro \'lambda\' . Este resultado foi provado por Ruelle [44] em 1981. Daremos uma prova alternativa usando movimentos holomorfos. Trata-se de uma técnica inovadora, originalmente desenvolvida por Mañé, Sad e Sullivan no trabalho [31] sobre estabilidade estrutural de sistemas dinâmicos complexos / We shall study complex dynamical systems in the Riemann sphere and prove that the Hausdorff dimension \'dim IND. H\' J( \'f IND. Lãmbda\' ) of the Julia set J( \'f IND. lâmbda\' ) of an holomorphic family of hyperbolic rational maps \'f IND. lâmbda\' defines a real analytic map of the parameter \'lâmbda\': This result was proved in 1981 by D. Ruelle (see [44]). We give an alternative proof using holomorphic motions (see [31]), which was originally developed to study the structural stability problem of complex dynamical systems. Throughout this work, we shall use several tools of Thermodynamic Formalism, including Bowens formula
42

Um estudo da teoria das dimensões aplicado a sistemas dinâmicos / A study of dimension theory applied to dynamical system

Silva, Alex Pereira da 13 March 2015 (has links)
Este trabalho se propõe a estudar o comportamento assintótico dos sistemas dinâmicos autônomos respaldado na Teoria das Dimensões. Mais precisamente, vamos compreender de que maneira nos é útil limitar a dimensão fractal do atrator global de um semigrupo a fim de estudar a dinâmica em dimensão finita, sem que se perca informações sobre a dinâmica ao fazê-lo. Para tanto, o Teorema de Mañé tem um papel decisivo junto às propriedades da dimensão de Hausdorff e a da dimensão fractal; nos permitindo encontrar uma projeção cuja restrição ao atrator é injetora sobre um espaço de dimensão finita. Constatamos ainda que esta abordagem por projeções se aplica largamente a semigrupos originados de equações diferenciais em espaços de Banach de dimensão infinita. / In this work, we study the asymptotic behavior of autonomous dynamical systems supported on the Dimension Theory. More precisely, we understand how fractal dimension finiteness of the global attractor of a semigroup can be used to study the dynamics in finite dimension, without losing information on the dynamics in doing so. For this purpose, the Mañés Theorem plays a decisive role considering the Hausdorff dimension properties and the fractal dimension; thanks to which we managed to find a projection whose restriction to the attractor is an injective application over a finite dimensional space. Besides, we also acknowledge that this projections approach is largely applied to semigroups arrising from differential equations in infinite dimensional Banach spaces.
43

Lebesgue points, Hölder continuity and Sobolev functions

Karlsson, John January 2009 (has links)
<p>This paper deals with Lebesgue points and studies properties of the set of Lebesgue points for various classes of functions. We consider continuous functions, L<sup>1</sup> functions and Sobolev functions. In the case of uniformly continuous functions and Hölder continuous functions we develop a characterization in terms of Lebesgue points. For Sobolev functions we study the dimension of the set of non-Lebesgue points.</p>
44

Lebesgue points, Hölder continuity and Sobolev functions

Karlsson, John January 2009 (has links)
This paper deals with Lebesgue points and studies properties of the set of Lebesgue points for various classes of functions. We consider continuous functions, L1 functions and Sobolev functions. In the case of uniformly continuous functions and Hölder continuous functions we develop a characterization in terms of Lebesgue points. For Sobolev functions we study the dimension of the set of non-Lebesgue points.
45

On the Dimension of a Certain Measure Arising from a Quasilinear Elliptic Partial Differential Equation

Akman, Murat 01 January 2014 (has links)
We study the Hausdorff dimension of a certain Borel measure associated to a positive weak solution of a certain quasilinear elliptic partial differential equation in a simply connected domain in the plane. We also assume that the solution vanishes on the boundary of the domain. Then it is shown that the Hausdorff dimension of this measure is less than one, equal to one, greater than one depending on the homogeneity of the certain function. This work generalizes the work of Makarov when the partial differential equation is the usual Laplace's equation and the work of Lewis and his coauthors when it is the p-Laplace's equation.
46

Dinâmica complexa e formalismo termodinâmico / Complex dynamics and thermodynamic formalism

Carlos Alberto Siqueira Lima 01 April 2011 (has links)
Estudaremos sistemas dinâmicos complexos da esfera de Riemann, e empregaremos técnicas do Formalismo Termodinâmico incluindo a fórmula de Bowen para provar que a dimensão de Hausdorff \'dim IND. H\' J( \'f IND. lâmbda\' ) do conjunto de Julia J( \'f IND. lâmbda\' ) de uma família holomorfa de funções racionais hiperbólicas f \'lambda\' define uma função real analítica do parâmetro \'lambda\' . Este resultado foi provado por Ruelle [44] em 1981. Daremos uma prova alternativa usando movimentos holomorfos. Trata-se de uma técnica inovadora, originalmente desenvolvida por Mañé, Sad e Sullivan no trabalho [31] sobre estabilidade estrutural de sistemas dinâmicos complexos / We shall study complex dynamical systems in the Riemann sphere and prove that the Hausdorff dimension \'dim IND. H\' J( \'f IND. Lãmbda\' ) of the Julia set J( \'f IND. lâmbda\' ) of an holomorphic family of hyperbolic rational maps \'f IND. lâmbda\' defines a real analytic map of the parameter \'lâmbda\': This result was proved in 1981 by D. Ruelle (see [44]). We give an alternative proof using holomorphic motions (see [31]), which was originally developed to study the structural stability problem of complex dynamical systems. Throughout this work, we shall use several tools of Thermodynamic Formalism, including Bowens formula
47

Algumas Propriedades Geométricas do Conjunto de Julia / Some Geometric Properties of the Julia Set

Liberato, Serginei José do Carmo 24 February 2014 (has links)
Made available in DSpace on 2015-03-26T13:45:36Z (GMT). No. of bitstreams: 1 texto completo.pdf: 680613 bytes, checksum: d49992ace83b65d0a439badc8cc946f3 (MD5) Previous issue date: 2014-02-24 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In this work we study some geometric properties of Julia sets and filled-in Julia sets of polynomials. In addition, we seek a form of measure the Julia set, for this we use the Hausdorff measure and determine a lower bound to the Hausdorff dimension of the Julia set. / Neste trabalho estudamos algumas propriedades geométricas do Conjunto de Julia e do e Conjunto de Julia Cheio. Além disso, procuramos uma forma de mensurar o conjunto de Julia, para isso utilizamos a medida de Hausdorff e determinamos uma cota inferior para a dimensão de Hausdorff do conjunto de Julia.
48

Dimensão de Hausdorff e algumas aplicações / Hausdorff Dimension and some applications

Mucheroni, Laís Fernandes [UNESP] 18 August 2017 (has links)
Submitted by LAÍS FERNANDES MUCHERONI (lais.mucheroni@gmail.com) on 2017-09-18T17:23:23Z No. of bitstreams: 1 dissertacao_mestrado_lais.pdf: 1067574 bytes, checksum: 952e3477ef0efeafd01d052547e8f2e5 (MD5) / Approved for entry into archive by Monique Sasaki (sayumi_sasaki@hotmail.com) on 2017-09-19T20:08:28Z (GMT) No. of bitstreams: 1 mucheroni_lf_me_rcla.pdf: 1067574 bytes, checksum: 952e3477ef0efeafd01d052547e8f2e5 (MD5) / Made available in DSpace on 2017-09-19T20:08:28Z (GMT). No. of bitstreams: 1 mucheroni_lf_me_rcla.pdf: 1067574 bytes, checksum: 952e3477ef0efeafd01d052547e8f2e5 (MD5) Previous issue date: 2017-08-18 / Intuitivamente, um ponto tem dimensão 0, uma reta tem dimensão 1, um plano tem dimensão 2 e um cubo tem dimensão 3. Porém, na geometria fractal encontramos objetos matemáticos que possuem dimensão fracionária. Esses objetos são denominados fractais cujo nome vem do verbo "frangere", em latim, que significa quebrar, fragmentar. Neste trabalho faremos um estudo sobre o conceito de dimensão, definindo dimensão topológica e dimensão de Hausdorff. O objetivo deste trabalho é, além de apresentar as definições de dimensão, também apresentar algumas aplicações da dimensão de Hausdorff na geometria fractal. / We know, intuitively, that the dimension of a dot is 0, the dimension of a line is 1, the dimension of a square is 2 and the dimension of a cube is 3. However, in the fractal geometry we have objects with a fractional dimension. This objects are called fractals whose name comes from the verb frangere, in Latin, that means breaking, fragmenting. In this work we will study about the concept of dimension, defining topological dimension and Hausdorff dimension. The purpose of this work, besides presenting the definitions of dimension, is to show an application of the Hausdorff dimension on the fractal geometry.
49

Resultados genéricos sobre entropia e dimensão de Hausdorff para difeomorfismos conservativos sobre superfícies / Generic properties about entropy and Hausdorff dimensions for area preserving diffeomorphisms of surfaces

Thiago Aparecido Catalan 28 February 2008 (has links)
Apresentamos duas propriedades genéricas para difeomorfismos conservativos da classe \'C POT.1\' sobre uma superfície compacta de dimensão dois. Obtemos uma limitação inferior para entropia topológica de difeomorfismos genéricos, e mostramos que tais difeomorfismos sempre possuem conjuntos invariantes fechados com órbitas densas e dimensão de Hausdorff dois / We present two generic properties of \'C POT.1\" area preserving diffeomorphisms of a two dimensional compact oriented surface. We obtain a lower bound for the topological entropy of a generic diffeomorphisms, and we show that such a diffeomorphism always has closed invariant sets with dense orbits and Hausdorff dimension two
50

Um estudo da teoria das dimensões aplicado a sistemas dinâmicos / A study of dimension theory applied to dynamical system

Alex Pereira da Silva 13 March 2015 (has links)
Este trabalho se propõe a estudar o comportamento assintótico dos sistemas dinâmicos autônomos respaldado na Teoria das Dimensões. Mais precisamente, vamos compreender de que maneira nos é útil limitar a dimensão fractal do atrator global de um semigrupo a fim de estudar a dinâmica em dimensão finita, sem que se perca informações sobre a dinâmica ao fazê-lo. Para tanto, o Teorema de Mañé tem um papel decisivo junto às propriedades da dimensão de Hausdorff e a da dimensão fractal; nos permitindo encontrar uma projeção cuja restrição ao atrator é injetora sobre um espaço de dimensão finita. Constatamos ainda que esta abordagem por projeções se aplica largamente a semigrupos originados de equações diferenciais em espaços de Banach de dimensão infinita. / In this work, we study the asymptotic behavior of autonomous dynamical systems supported on the Dimension Theory. More precisely, we understand how fractal dimension finiteness of the global attractor of a semigroup can be used to study the dynamics in finite dimension, without losing information on the dynamics in doing so. For this purpose, the Mañés Theorem plays a decisive role considering the Hausdorff dimension properties and the fractal dimension; thanks to which we managed to find a projection whose restriction to the attractor is an injective application over a finite dimensional space. Besides, we also acknowledge that this projections approach is largely applied to semigroups arrising from differential equations in infinite dimensional Banach spaces.

Page generated in 0.0481 seconds