• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 99
  • 32
  • 25
  • 5
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 192
  • 83
  • 65
  • 38
  • 30
  • 25
  • 24
  • 23
  • 23
  • 22
  • 19
  • 18
  • 17
  • 17
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Hausdorff, Packing and Capacity Dimensions

Spear, Donald W. 08 1900 (has links)
In this thesis, Hausdorff, packing and capacity dimensions are studied by evaluating sets in the Euclidean space R^. Also the lower entropy dimension is calculated for some Cantor sets. By incorporating technics of Munroe and of Saint Raymond and Tricot, outer measures are created. A Vitali covering theorem for packings is proved. Methods (by Taylor and Tricot, Kahane and Salem, and Schweiger) for determining the Hausdorff and capacity dimensions of sets using probability measures are discussed and extended. The packing pre-measure and measure are shown to be scaled after an affine transformation. A Cantor set constructed by L.D. Pitt is shown to be dimensionless using methods developed in this thesis. A Cantor set is constructed for which all four dimensions are different. Graph directed constructions (compositions of similitudes follow a path in a directed graph) used by Mauldin and Willjams are presented. Mauldin and Williams calculate the Hausdorff dimension, or, of the object of a graph directed construction and show that if the graph is strongly connected, then the a—Hausdorff measure is positive and finite. Similar results will be shown for the packing dimension and the packing measure. When the graph is strongly connected, there is a constant so that the constant times the Hausdorff measure is greater than or equal to the packing measure when a subset of the realization is evaluated. Self—affine Sierpinski carpets, which have been analyzed by McMullen with respect to their Hausdorff dimension and capacity dimension, are analyzed with respect to their packing dimension. Conditions under which the Hausdorff measure of the construction object is positive and finite are given.
52

Study of the fractals generated by contractive mappings and their dimensions / 縮小写像により生成されるフラクタルとそれらの次元に関する研究

Inui, Kanji 23 March 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(人間・環境学) / 甲第22534号 / 人博第937号 / 新制||人||223(附属図書館) / 2019||人博||937(吉田南総合図書館) / 京都大学大学院人間・環境学研究科共生人間学専攻 / (主査)教授 角 大輝, 教授 上木 直昌, 准教授 木坂 正史 / 学位規則第4条第1項該当 / Doctor of Human and Environmental Studies / Kyoto University / DFAM
53

Numerical Values of the Hausdorff and Packing Measures for Limit Sets of Iterated Function Systems

Reid, James Edward 08 1900 (has links)
In the context of fractal geometry, the natural extension of volume in Euclidean space is given by Hausdorff and packing measures. These measures arise naturally in the context of iterated function systems (IFS). For example, if the IFS is finite and conformal, then the Hausdorff and packing dimensions of the limit sets agree and the corresponding Hausdorff and packing measures are positive and finite. Moreover, the map which takes the IFS to its dimension is continuous. Developing on previous work, we show that the map which takes a finite conformal IFS to the numerical value of its packing measure is continuous. In the context of self-similar sets, we introduce the super separation condition. We then combine this condition with known density theorems to get a better handle on finding balls of maximum density. This allows us to extend the work of others and give exact formulas for the numerical value of packing measure for classes of Cantor sets, Sierpinski N-gons, and Sierpinski simplexes.
54

Dimensions and projections

Nilsson, Anders January 2006 (has links)
This thesis concerns dimensions and projections of sets that could be described as fractals. The background is applied problems regarding analysis of human tissue. One way to characterize such complicated structures is to estimate the dimension. The existence of different types of dimensions makes it important to know about their properties and relations to each other. Furthermore, since medical images often are constructed by x-ray, it is natural to study projections. This thesis consists of an introduction and a summary, followed by three papers. Paper I, Anders Nilsson, Dimensions and Projections: An Overview and Relevant Examples, 2006. Manuscript. Paper II, Anders Nilsson and Peter Wingren, Homogeneity and Non-coincidence of Hausdorff- and Box Dimensions for Subsets of ℝn, 2006. Submitted. Paper III, Anders Nilsson and Fredrik Georgsson, Projective Properties of Fractal Sets, 2006. To be published in Chaos, Solitons and Fractals. The first paper is an overview of dimensions and projections, together with illustrative examples constructed by the author. Some of the most frequently used types of dimensions are defined, i.e. Hausdorff dimension, lower and upper box dimension, and packing dimension. Some of their properties are shown, and how they are related to each other. Furthermore, theoretical results concerning projections are presented, as well as a computer experiment involving projections and estimations of box dimension. The second paper concerns sets for which different types of dimensions give different values. Given three arbitrary and different numbers in (0,n), a compact set in ℝn is constructed with these numbers as its Hausdorff dimension, lower box dimension and upper box dimension. Most important in this construction, is that the resulted set is homogeneous in the sense that these dimension properties also hold for every non-empty and relatively open subset. The third paper is about sets in space and their projections onto planes. Connections between the dimensions of the orthogonal projections and the dimension of the original set are discussed, as well as the connection between orthogonal projection and the type of projection corresponding to realistic x-ray. It is shown that the estimated box dimension of the orthogonal projected set and the realistic projected set can, for all practical purposes, be considered equal.
55

An exploration of fractal dimension

Cohen, Dolav January 1900 (has links)
Master of Science / Department of Mathematics / Hrant Hakobyan / When studying geometrical objects less regular than ordinary ones, fractal analysis becomes a valuable tool. Over the last 30 years, this small branch of mathematics has developed extensively. Fractals can be de fined as those sets which have non-integral Hausdor ff dimension. In this thesis, we take a look at some basic measure theory needed to introduce certain de finitions of fractal dimensions, which can be used to measure a set's fractal degree. We introduce Minkowski dimension and Hausdor ff dimension as well as explore some examples where they coincide. Then we look at the dimension of a measure and some very useful applications. We conclude with a well known result of Bedford and McMullen about the Hausdor ff dimension of self-a ffine sets.
56

Characterizations of Continua of Finite Degree

Irwin, Shana 08 1900 (has links)
In this thesis, some characterizations of continua of finite degree are given. It turns out that being of finite degree (by formal definition) can be described by saying there exists an equivalent metric in which Hausdorff linear measure of the continuum is finite. I discuss this result in detail.
57

Introduction to fractal dimension

Aburamyah, Ghder January 1900 (has links)
Master of Science / Department of Mathematics / Hrant Hakobyan / When studying geometrical objects less regular than ordinary ones, fractal analysis becomes a valuable tool. Over the last 40 years, this small branch of mathematics has developed extensively. Fractals can be defined as those sets which have non-integer Hausdorff or Minkowski dimension. In this report, we introduce certain definitions of fractal dimensions, which can be used to measure a set’s fractal degree. We introduce Minkowski dimension and Hausdorff dimension and explore some examples where they coincide, as well as other examples where they do not.
58

Dimensions and projections

Nilsson, Anders January 2006 (has links)
<p>This thesis concerns dimensions and projections of sets that could be described as fractals. The background is applied problems regarding analysis of human tissue. One way to characterize such complicated structures is to estimate the dimension. The existence of different types of dimensions makes it important to know about their properties and relations to each other. Furthermore, since medical images often are constructed by x-ray, it is natural to study projections.</p><p>This thesis consists of an introduction and a summary, followed by three papers.</p><p>Paper I, Anders Nilsson, Dimensions and Projections: An Overview and Relevant Examples, 2006. Manuscript.</p><p>Paper II, Anders Nilsson and Peter Wingren, Homogeneity and Non-coincidence of Hausdorff- and Box Dimensions for Subsets of ℝ<i>n</i>, 2006. Submitted.</p><p>Paper III, Anders Nilsson and Fredrik Georgsson, Projective Properties of Fractal Sets, 2006. To be published in Chaos, Solitons and Fractals.</p><p>The first paper is an overview of dimensions and projections, together with illustrative examples constructed by the author. Some of the most frequently used types of dimensions are defined, i.e. Hausdorff dimension, lower and upper box dimension, and packing dimension. Some of their properties are shown, and how they are related to each other. Furthermore, theoretical results concerning projections are presented, as well as a computer experiment involving projections and estimations of box dimension.</p><p>The second paper concerns sets for which different types of dimensions give different values. Given three arbitrary and different numbers in (0,<i>n</i>), a compact set in ℝ<i>n</i> is constructed with these numbers as its Hausdorff dimension, lower box dimension and upper box dimension. Most important in this construction, is that the resulted set is homogeneous in the sense that these dimension properties also hold for every non-empty and relatively open subset.</p><p>The third paper is about sets in space and their projections onto planes. Connections between the dimensions of the orthogonal projections and the dimension of the original set are discussed, as well as the connection between orthogonal projection and the type of projection corresponding to realistic x-ray. It is shown that the estimated box dimension of the orthogonal projected set and the realistic projected set can, for all practical purposes, be considered equal.</p>
59

Discrete Geometric Homotopy Theory and Critical Values of Metric Spaces

Wilkins, Leonard Duane 01 May 2011 (has links)
Building on the work of Conrad Plaut and Valera Berestovskii regarding uniform spaces and the covering spectrum of Christina Sormani and Guofang Wei developed for geodesic spaces, the author defines and develops discrete homotopy theory for metric spaces, which can be thought of as a discrete analog of classical path-homotopy and covering space theory. Given a metric space, X, this leads to the construction of a collection of covering spaces of X - and corresponding covering groups - parameterized by the positive real numbers, which we call the [epsilon]-covers and the [epsilon]-groups. These covers and groups evolve dynamically as the parameter decreases, changing topological type at specific parameter values which depend on the topology and local geometry of X. This leads to the definition of a critical spectrum for metric spaces, which is the set of all values at which the topological type of the covers change. Several results are proved regarding the critical spectrum and its connections to topology and local geometry, particularly in the context of geodesic spaces, refinable spaces, and Gromov-Hausdorff limits of compact metric spaces. We investigate the relationship between the critical spectrum and covering spectrum in the case when X is geodesic, connections between the geometry of the [epsilon]-groups and the metric and topological structure of the [epsilon]-covers, as well as the behavior of the [epsilon]-covers and critical values under Gromov-Hausdorff convergence.
60

On Convolution Squares of Singular Measures

Chan, Vincent January 2010 (has links)
We prove that if $1 > \alpha > 1/2$, then there exists a probability measure $\mu$ such that the Hausdorff dimension of its support is $\alpha$ and $\mu*\mu$ is a Lipschitz function of class $\alpha-1/2$.

Page generated in 0.0295 seconds