Spelling suggestions: "subject:"heattransfer"" "subject:"datatransfer""
781 |
Flow boiling heat transfer, pressure drop and dryout characteristics of low GWP refrigerants in a vertical mini-channelAnwar, Zahid January 2014 (has links)
Two-phase heat transfer in mini/micro-channels is capable of meeting the high cooling demands of modern high heat flux applications. The phase change process ensures better temperature uniformity and control for local hot spots. Furthermore, these compact channels could be helpful in reducing the required charge and material inventories.Environmental concerns—mainly ozone depletion and global warming—have instigated a search for new alternatives in refrigeration industry. While new compounds are being developed to address stringent legislative demands, natural alternatives are also coming into prominence. A limited number of investigators have reported on thermal performance of such alternatives. The current study is therefore focused on saturated flow boiling heat transfer, pressure drop and dryout characteristics for three low global warming potential (GWP) refrigerants (R152a, R600a and R1234yf) in a vertical mini-channel.In this study experiments were carried out by uniformly heating a test section (stainless steel tube with 1.60 mm inside diameter and 245 mm heated length) at 27 and 32 oC saturation temperature with 50-500 kg/m2s mass velocities. The effects of various parameters of interest (like heat flux, mass flux, system pressure, vapor quality, operating media) on flow boiling heat transfer, frictional pressure drop and dryout characteristics were recorded. R134a, which has been widely used in several applications, is utilized as a reference case for comparison of thermal performance in this study.Experimental results for saturated boiling heat transfer showed strong influence of heat flux and system pressure with insignificant contributions from mass flux and vapor quality. Two phase frictional pressure drop increased with mass flux, vapor quality and with reduced operating pressure. The dryout heat flux remained unaffected with variation in saturation temperature, critical vapor quality in most cases was about 85%. The experimental results (boiling heat transfer, two-phase pressure drop and dryout heat flux) were compared with well-known macro and micro-scale correlations from the literature. / <p>QC 20141124</p>
|
782 |
Falling-film evaporation over horizontal rectangular tubesBustamante, John Gabriel 27 August 2014 (has links)
The present study is the first investigation of falling-film evaporation over horizontal rectangular tubes. This geometry is representative of the external profile
of microchannel tubes. Incorporating these designs into shell-and-tube heat exchangers has the potential to provide compact, high-performance components for a wide
range of applications. This fluid flow was investigated experimentally, targeting three areas: measurements of heat transfer coefficients, quantification of flow
characteristics, and the performance of flow distributors. Falling-film evaporation experiments were conducted using water on a rectangular test section with
dimensions of 203 × 1.42 × 27.4 mm (length × width × height), measuring heat transfer coefficients over a range of saturation temperatures, test section spacings,
heat fluxes, and film Reynolds numbers. This was supported by a flow visualization study that quantified droplet and wave parameters using image analysis of high
speed videos. Finally, the performance of eight liquid distributors, which are used to establish falling-film flows, was quantified and the size of the generated
droplets and jets was measured. Three models were developed to predict the flow regime, wetted tube area, and heat transfer coefficient. The flow regime model is
based on a thermodynamic analysis, while the wetted tube area is found with a hydrodynamic model based on idealized flow assumptions. Finally, the heat transfer
model relies on a relationship with the classic Nusselt (1916) film theory. Each of these models demonstrated good agreement with the experimental data, as well as
trends in the literature. The increased understanding of falling-film evaporation gained in this study will enable the accurate design of shell-and-tube heat
exchangers with microchannel tubes.
|
783 |
Gasification and Pyrolysis Characterization and Heat Transfer Phenomena During Thermal Conversion of Municipal Solid WasteZhou, Chunguang January 2014 (has links)
The significant generation of municipal solid waste (MSW) has become a controversial global issue. Pyrolysis and gasification technologies for treating rejects from solid waste disposal sites (SWDSs), for which over 50 % of MSW is attributed to combustible species, have attracted considerable attention. MSW is an alternative energy source that can partly replace fossil resources; there is an increasing awareness that global warming caused by the utilization of fossil resources is occurring. The goal of this thesis is to realize the efficient and rational utilization of MSW and decrease the harmful impact of pollutants, such as dioxin, HCl, and CO2, on the environment. To achieve this goal, some fundamental studies have been experimentally and numerically conducted to enhance the understanding of the properties of municipal solid waste thermal conversion. In this thesis, the pyrolysis behaviors of single pelletized recovered fuel were tested. A detailed comparison of the pyrolysis behaviors of typical recovered solid waste and biomass particles was conducted. A swelling phenomenon with a swelling ratio of approximately 1.6 was observed on the surface of pelletized recovered fuels. Subsequently, a particle model was constructed to describe the thermal conversion process for large recovered fuel particles that are composed of a high fraction of polyethylene (PE) and a comparable low fraction of cardboard. The results indicate that an understanding of the heat transfer mechanism in highly porous and molten structures and the selection of a heat transfer model are crucial for accurate prediction of the conversion process. MSW pyrolysis is a promising method for producing liquid products. With the exception of lignocellulosic materials, such as printing paper and cardboard, PE, polystyrene (PS), polypropylene (PP), polyethylene terephthalate (PET), and polyvinyl chloride (PVC) are the six main polymers in domestic waste in Europe. Characterization studies of the products obtained from these individual components, such as PE, PET, PVC, printing paper, and cardboard, have been conducted on a pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) system and a fixed-bed reactor. The possible pathways for the formation of the main primary/secondary products in rapid and conventional pyrolysis were also discussed. MSW steam gasification with CaO was performed in a batch-type fixed-bed gasifier to examine the effect of CaO addition on the heat transfer properties, pollutant removal, and devolatilization and char gasification behaviors in the presence of steam. A new carbon capture and recycle (CCR) system combined with an integrated municipal solid waste system was proposed. The foundation of the system is the development of a novel method to remediate CO2 using a high-temperature process of reforming CH4 and/or O2 and/or H2O without catalysts. Thermodynamic and experimental studies were performed. High temperatures significantly promoted the multi-reforming process while preventing the problem of catalyst deactivation. Potential improvements in the efficiency of the novel technology can be achieved by optimizing the reforming reactants. Landfill gas (LFG) and fuel gas from bio-waste treatment contain a considerable fraction of CH4, which may be a source of CH4 for this process. / <p>QC20141028</p>
|
784 |
The design and optimisation of a bubble pump for an aqua-ammonia diffusion absorption heat pump / Stefan van der Walt.Van der Walt, Stefan January 2012 (has links)
Energy shortages around the world necessitated research into alternative energy sources especially for domestic applications to reduce the load on conventional energy sources. This resulted in research done on the possibility of integrating solar energy with an aqua-ammonia diffusion absorption cycle specifically for domestic applications.
The bubble pump can be seen as the heart of the diffusion absorption cycle, since it is responsible, in the absence of a mechanical pump, to circulate the fluid and to desorb the refrigerant (ammonia) from the mixture. It is thus of paramount importance to ensure that the bubble pump is designed efficiently.
Various bubble pump simulation models have been developed over the years, but it was found that none of the existing models served as a good basis for application-specific design. Most of the models constrained too many parameters from the outset which made the investigation of the effects of certain parameters on the bubble pump’s performance impossible. According to the research, no bubble pump model investigated the effect of such a wide variety of factors including tube diameter, heat flux, mass flux, generator heat input and system pressure on the bubble pump’s lift height.
A simulation model for a bubble pump for integration with a solar-driven aqua-ammonia diffusion absorption cycle was developed. It serves as a versatile design model to optimise the bubble pump for a large variety of conditions as well as changes in parameters. It was achieved by constraining the bubble pump dimensions and parameters as little as possible. A unique feature of this model was the fact that the bubble pump tube was divided into segments of known quality which made the length of the pipe completely dependent on the flow inside the pipe. It also made the demarcation of the flow development inside the tube easier.
The model attempted to incorporate the most appropriate correlations for pressurised two-phase aqua-ammonia flow. The most appropriate void fraction correlation was found to be Abstract
The design and optimisation of a bubble pump for an aqua-ammonia diffusion absorption heat pump the Rouhani-Axelsson (Rouhani I) correlation. It was mainly due to its exclusive use of thermophysical properties and the vapour quality.
The most appropriate heat transfer coefficient that predicted the most realistic wall temperature, was the correlation from Riviera and Best (1999) which was the only correlation found in the literature developed with aqua-ammonia in mind. It was found that the published correlation could not reproduce their experimental results, and a modification of their correlation was made after which the simulation model’s results correlated well with the experimental values of Riviera and Best (1999).
The main goal of the simulation model was to determine the height that the bubble pump was capable of lifting at the slug to churn flow transition under various conditions. The effect of varying a variety of parameters on the bubble pump lift height was also investigated.
The results from Shelton & White Stewart (2002) were compared to the outputs of the simulation model, and it was found that their constraining of the submergence ratio limited their outputs, and that their heat inputs under different conditions was a bit optimistic. The simulation model’s outputs correlated well at higher tube diameters with the results from Shelton & White Stewart (2002), but at the lower diameters which was used in their study it was impossible to compare data, since their diameters was already in mini flow and micro flow regions. The temperatures also correlated well, all within 2% of the results from Shelton & White Stewart (2002).
It was found that there couldn’t be just one set of optimised conditions and values for the bubble pump, but that each cycle with differing specifications and operating conditions would yield a unique set of optimised parameters. It was for that reason very important not to constrain parameters beforehand without investigating its effect on the bubble pump first. / Thesis (MIng (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2013.
|
785 |
Development and evaluation of an R-744 evaporator model / J.H.C. Potgieter.Potgieter, Jan Harm Christiaan January 2013 (has links)
In recent years carbon dioxide (CO2, R-744)has moved to the foreground as an environmentally friendly alternative to commonly used CFCs and HFCs, which are being phased out due to its high ozone depleting and global warming potentials. R-744 is not only environmentally friendly but due to its unique properties, it is also ideally suited for the use in heat pump water heaters. High cycle efficiencies are achievable even at high hot water temperatures. The high cycle efficiency not only leads to energy and cost savings but also ties in with the drive for implementation of energy saving measures in South Africa. It is therefore paramount to continue development and implementation of R-744 in heat pump water heaters. Optimizing the cycle efficiency is only possible if detailed component simulation models, taking these unique properties of R-744 into account, are available.
The purpose of this study therefore was to develop a detail simulation model of a concentric tube-in-tube water-to-refrigerant evaporator, as well as a fin-and-tube air-to-refrigerant evaporator model.
Data from the North-West University R-744 heat pump test bench were used to verify the tube-in-tube evaporator simulation model. The discrepancies in the cooling capacity between the simulation and test bench can be attributed to the presence of lubricant in the system.The fin-and-tube model was verified by testing it against the NIST program EVAP-COND (NIST 2010). Overall there was good agreement between the results of the two programs, with EVAP-COND predicting a lower cooling capacity(6% to 14%) and and a higher pressure refrigerant pressure drop (30% to 50%).
It was found that both the heat transfer correlation of Jung et al. (1989) and the pressure drop correlation of Choi et al. (1999) are able to predict the experimental values accurately and are valid for use in both the evaporator models developed.
To demonstrate the use of the detail evaporator fin-and-tube model, an evaluation of the different tube geometries, commercially available in South Africa, for use with R-744 fin-and-tube evaporators was done. For a fin-and-tube evaporator it was found that the most cost effective option is to use ⅜" (10.05 mm)copper tubes and the least effective is " (12.6 mm) stainless steel tubes. / Thesis (MIng (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2013.
|
786 |
The design and optimisation of a bubble pump for an aqua-ammonia diffusion absorption heat pump / Stefan van der Walt.Van der Walt, Stefan January 2012 (has links)
Energy shortages around the world necessitated research into alternative energy sources especially for domestic applications to reduce the load on conventional energy sources. This resulted in research done on the possibility of integrating solar energy with an aqua-ammonia diffusion absorption cycle specifically for domestic applications.
The bubble pump can be seen as the heart of the diffusion absorption cycle, since it is responsible, in the absence of a mechanical pump, to circulate the fluid and to desorb the refrigerant (ammonia) from the mixture. It is thus of paramount importance to ensure that the bubble pump is designed efficiently.
Various bubble pump simulation models have been developed over the years, but it was found that none of the existing models served as a good basis for application-specific design. Most of the models constrained too many parameters from the outset which made the investigation of the effects of certain parameters on the bubble pump’s performance impossible. According to the research, no bubble pump model investigated the effect of such a wide variety of factors including tube diameter, heat flux, mass flux, generator heat input and system pressure on the bubble pump’s lift height.
A simulation model for a bubble pump for integration with a solar-driven aqua-ammonia diffusion absorption cycle was developed. It serves as a versatile design model to optimise the bubble pump for a large variety of conditions as well as changes in parameters. It was achieved by constraining the bubble pump dimensions and parameters as little as possible. A unique feature of this model was the fact that the bubble pump tube was divided into segments of known quality which made the length of the pipe completely dependent on the flow inside the pipe. It also made the demarcation of the flow development inside the tube easier.
The model attempted to incorporate the most appropriate correlations for pressurised two-phase aqua-ammonia flow. The most appropriate void fraction correlation was found to be Abstract
The design and optimisation of a bubble pump for an aqua-ammonia diffusion absorption heat pump the Rouhani-Axelsson (Rouhani I) correlation. It was mainly due to its exclusive use of thermophysical properties and the vapour quality.
The most appropriate heat transfer coefficient that predicted the most realistic wall temperature, was the correlation from Riviera and Best (1999) which was the only correlation found in the literature developed with aqua-ammonia in mind. It was found that the published correlation could not reproduce their experimental results, and a modification of their correlation was made after which the simulation model’s results correlated well with the experimental values of Riviera and Best (1999).
The main goal of the simulation model was to determine the height that the bubble pump was capable of lifting at the slug to churn flow transition under various conditions. The effect of varying a variety of parameters on the bubble pump lift height was also investigated.
The results from Shelton & White Stewart (2002) were compared to the outputs of the simulation model, and it was found that their constraining of the submergence ratio limited their outputs, and that their heat inputs under different conditions was a bit optimistic. The simulation model’s outputs correlated well at higher tube diameters with the results from Shelton & White Stewart (2002), but at the lower diameters which was used in their study it was impossible to compare data, since their diameters was already in mini flow and micro flow regions. The temperatures also correlated well, all within 2% of the results from Shelton & White Stewart (2002).
It was found that there couldn’t be just one set of optimised conditions and values for the bubble pump, but that each cycle with differing specifications and operating conditions would yield a unique set of optimised parameters. It was for that reason very important not to constrain parameters beforehand without investigating its effect on the bubble pump first. / Thesis (MIng (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2013.
|
787 |
Development and evaluation of an R-744 evaporator model / J.H.C. Potgieter.Potgieter, Jan Harm Christiaan January 2013 (has links)
In recent years carbon dioxide (CO2, R-744)has moved to the foreground as an environmentally friendly alternative to commonly used CFCs and HFCs, which are being phased out due to its high ozone depleting and global warming potentials. R-744 is not only environmentally friendly but due to its unique properties, it is also ideally suited for the use in heat pump water heaters. High cycle efficiencies are achievable even at high hot water temperatures. The high cycle efficiency not only leads to energy and cost savings but also ties in with the drive for implementation of energy saving measures in South Africa. It is therefore paramount to continue development and implementation of R-744 in heat pump water heaters. Optimizing the cycle efficiency is only possible if detailed component simulation models, taking these unique properties of R-744 into account, are available.
The purpose of this study therefore was to develop a detail simulation model of a concentric tube-in-tube water-to-refrigerant evaporator, as well as a fin-and-tube air-to-refrigerant evaporator model.
Data from the North-West University R-744 heat pump test bench were used to verify the tube-in-tube evaporator simulation model. The discrepancies in the cooling capacity between the simulation and test bench can be attributed to the presence of lubricant in the system.The fin-and-tube model was verified by testing it against the NIST program EVAP-COND (NIST 2010). Overall there was good agreement between the results of the two programs, with EVAP-COND predicting a lower cooling capacity(6% to 14%) and and a higher pressure refrigerant pressure drop (30% to 50%).
It was found that both the heat transfer correlation of Jung et al. (1989) and the pressure drop correlation of Choi et al. (1999) are able to predict the experimental values accurately and are valid for use in both the evaporator models developed.
To demonstrate the use of the detail evaporator fin-and-tube model, an evaluation of the different tube geometries, commercially available in South Africa, for use with R-744 fin-and-tube evaporators was done. For a fin-and-tube evaporator it was found that the most cost effective option is to use ⅜" (10.05 mm)copper tubes and the least effective is " (12.6 mm) stainless steel tubes. / Thesis (MIng (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2013.
|
788 |
Development of a Thermal Model for an Inner Stator Type Reluctance MotorPieterse, Michael 06 November 2014 (has links)
Thermal modeling is an important aspect of electric motor design. Numerous techniques exist to predict the temperatures in a motor, and they can be incorporated in the design of a thermal model for a new type of electric motor. This work discusses the available modeling techniques and determines which methods are applicable for medium-sized motors with either natural convection or forced convective cooling over irregular geometry. A time-dependant thermal model, with thermal transport parameters based upon geometric and simplified air flow information, is developed based on a discrete lumped parameter model with several modifications to improve accuracy. The model was completed with the aid of nine experiments, and the result is a thermal model that exhibits an absolute error of less than 6.1??C for the nine test runs at three different currents between 8.4 A rms and 28.2 A rms and three cooling levels, natural, 10.7 CFM and 24.4 CFM.
|
789 |
TOWARDS MODELING HEAT TRANSFER USING A LATTICE BOLTZMANN METHOD FOR POROUS MEDIABanete, Olimpia 16 May 2014 (has links)
I present in this thesis a fluid flow and heat transfer model for porous media using the lattice Boltzmann method (LBM). A computer simulation of this process has been developed and it is written using MATLAB software. The simulation code is based on a two dimensional model, D2Q9. Three physical experiments were designed to prove the simulation model through comparision with numerical results. In the experiments, physical properties of the air flow and the porous media were used as input for the computer model. The study results are not conclusive but show that the LBM model may become a reliable tool for the simulation of natural convection heat transfer in porous media.
Simulations leading to improved understanding of the processes of air flow and heat transfer in porous media may be important into improving the efficiency of methods of air heating or cooling by passing air through fragmented rock.
|
790 |
Comparison of heat transfer models at the pebble, gas and reflector interface in the PBMR / Kamantha MannarMannar, Kamantha January 2010 (has links)
It is a great challenge in the design of the PBMR to accurately predict gas flow and heat transfer in the reactor. Understanding the heat transfer at the core-reflector interface in particular is a very important aspect as the reactivity of the control rods housed in the reflectors is highly temperature dependent. It is also very important because the core-reflector interface is on the critical path for heat removal during accident conditions. PBMR has developed an OECD/NEA coupled neutronic/thermal-hydraulic benchmark to aid in the understanding of the different modelling approaches currently employed at PBMR. A comparison of THERMIX-KONVEK and DIREKT results showed large temperature differences at the core-reflector interfaces. Further investigation showed that these differences are as a result of the numerical methods used i.e. Cell-Centred (CC) vs. Vertex-Centered (VC). The present study extended this comparison to Star-CD (CC) and Flownex (VC) which are also used to simulate the reactor at PBMR. An ID MATLAB program that mimics the CC and VC numerical methods was verified against Star-CD and Flownex. This program was then used to model an ID version of the OECD/NEA benchmark. Results were compared with DIREKT and THERMIX-KONVEK. Although the results compared well, there were significant errors at the core-reflector interfaces. The findings of this study were that different numerical methods will predict different temperatures, heat fluxes and (temperature-dependent) sink terms. It was also shown that in addition to the differences resulting from numerical methods, differences were seen between Star-CD and DIREKT and Flownex and THERMIX-KONVEK in the region of the core-reflector boundary. In general, for complicated simulations like that of the pebble bed, the numerical basis of software used to simulate the problem needs to be understood for the problem to be correctly modelled. / Thesis (M.Sc. Engineering Sciences (Nuclear Engineering))--North-West University, Potchefstroom Campus, 2010.
|
Page generated in 0.0682 seconds