• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 115
  • 30
  • 23
  • 16
  • 15
  • 14
  • 2
  • 2
  • Tagged with
  • 287
  • 72
  • 59
  • 37
  • 35
  • 34
  • 28
  • 27
  • 26
  • 24
  • 23
  • 20
  • 19
  • 18
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Instabilities in a swirling rotor wake / Instabilités d'un sillage tourbillonnaire de rotor

Quaranta, Hugo 08 March 2017 (has links)
Cette thèse est consacrée à l'étude des instabilités du sillage tourbillonnaire des rotors, largement utilisés dans l'industrie pour la conversion d'énergie mécanique. Leur sillage peut être modélisé par un ensemble de vortex hélicoïdaux entrelacés, au sein duquel de nombreuses instabilités peuvent émerger. Ces mécanismes ont un impact significatif sur l'évolution intermédiaire du sillage et peuvent influencer les performances du rotor. Ce travail, plus particulièrement dédié aux hélicoptères, s'est tout d'abord attaché à caractériser expérimentalement l'écoulement derrière trois rotors conçus pour des régimes de vols différents. Ces conditions de bases ont ensuite servi à étudier les différents modes instables de grande longueur d'onde pouvant apparaître dans le sillage. Une bonne correspondance est trouvée entre les prédictions théoriques et les mesures expérimentales des taux de croissance associés. Une rapide analyse de l'évolution spatio-temporelle de ces perturbations a permis d'étudier la propagation d'une perturbation localisée dans le plan rotor. Il est en effet envisagé que dans certaines configurations de vol de descente, les instabilités provoquent la transition du sillage vers un état spécifique connu sous le nom d'état d'anneau tourbillonnaire, potentiellement dangereux pour l'appareil. Il se caractérise par une stagnation du sillage au voisinage du plan rotor qui en dégrade les performances. / This work studies the instabilities associated with the wake of a rotor. These devices are used in many applications such as energy harvesting or propulsion,and their optimisation is crucial for both industry and the environment. The wakebehind a rotor is broadly defined as a system of interlaced helical vortices, whose dynamics governs the transition from the near-wake to the far-wake regime. In our first study, we investigate the wake behind different small-scale rotors in their design operating condition. We use the resulting flows in a subsequent linear stability analysis, aiming at predicting long-wavelength instability modes in the helical vortex. We find that the theoretical prediction of the modes growth-rates matches our experimental measurements. We also show that the dynamics of helical vortex filaments can be predicted from simple two-dimensional theory. In more critical flow configurations, instabilities are suspected to promote the transition to hazardous regimes such as the so called Vortex-Ring State, characterised by large-scale recirculating structures.The second part of this work is thus dedicated to the spatio-temporal evolution of localised perturbations in the rotor plane, and their potential tendency to propagate upstream in the flow.
112

Active Vibration Control of Helicopter Rotor Blade by Using a Linear Quadratic Regulator

Uddin, Md Mosleh 18 May 2018 (has links)
Active vibration control is a widely implemented method for the helicopter vibration control. Due to the significant progress in microelectronics, this technique outperforms the traditional passive control technique due to weight penalty and lack of adaptability for the changing flight conditions. In this thesis, an optimal controller is designed to attenuate the rotor blade vibration. The mathematical model of the triply coupled vibration of the rotating cantilever beam is used to develop the state-space model of an isolated rotor blade. The required natural frequencies are determined by the modified Galerkin method and only the principal aerodynamic forces acting on the structure are considered to obtain the elements of the input matrix. A linear quadratic regulator is designed to achieve the vibration reduction at the optimum level and the controller is tuned for the hovering and forward flight with different advance ratios.
113

Control Law Design and Validation for a Helicopter In-Flight Simulator

Fujizawa, Brian T 01 February 2010 (has links)
In-flight simulation allows one aircraft to simulate the dynamic response of another aircraft. A control system designed to give RASCAL, a JUH-60A Black Hawk helicopter based at Moffett Field, CA, in-flight simulation capabilities has been designed, optimized and validated in this research. A classical explicit model following control system with a frequency dependent feedback controller was used. The frequency dependent controller allows model following of the attitude in the short term and the velocity in the long term. Controller gains were optimized using a high order, linearized model of UH-60 dynamics. Non-linear simulations of the control laws were performed, first on a desktop computer based simulation, then in the RASCAL development facility, a hardware-in-the-loop simulator. Comparing quantitative results of the non-linear simulations with the results of the optimization using the linearized model ensured that the control system designed with the linearized model was valid in non-linear environments. Finally, a piloted evaluation in the hardware-in-the-loop simulator was performed to obtain qualitative information on the behavior of the control laws.
114

Structural dynamics analysis in the presence of unmeasured excitations

Moore, Stephen, Aerospace, Civil & Mechanical Engineering, Australian Defence Force Academy, UNSW January 2007 (has links)
Methods for comprehensive structural dynamic analysis generally employ input-output modal analysis with a mathematical model of structural vibration using excitation and response data. Recently operational modal analysis methods using only vibration response data have been developed. In this thesis, both input-output and operational modal analysis, in the presence of significant unmeasured excitations, is considered. This situation arises when a test structure cannot be effectively isolated from ambient excitations or where the operating environment imposes dynamically-important boundary conditions. The limitations of existing deterministic frequency-domain methods are assessed. A novel time-domain estimation algorithm, based on the estimation of a discrete-time autoregressive moving average with exogenous excitation (ARMAX) model, is proposed. It includes a stochastic component to explicitly account for unmeasured excitations and measurement noise. A criterion, based on the sign of modal damping, is incorporated to distinguish vibration modes from spurious modes due to unmeasured excitations and measurement noise, and to identify the most complete set of modal parameters from a group of estimated models. Numerical tests demonstrate that the proposed algorithm effectively identifies vibration modes even with significant unmeasured random and periodic excitations. Random noise is superimposed on response measurements in all tests. Simulated systems with low modal damping, closely spaced modes and high modal damping are considered independently. The accuracy of estimated modal parameters is good except for degreesof- freedom with a low response level but this could be overcome by appropriate placement of excitation and response measurement points. These observations are reflected in experimental tests that include unmeasured periodic excitations over 200% the level of measured excitations, unmeasured random excitations at 90% the level of measured excitations, and the superposition of periodic and random unmeasured excitations. Results indicate advantages of the proposed algorithm over a deterministic frequency domain algorithm. Piezoceramic plates are used for structural excitation in one experimental case and the limitations of distributed excitation for broadband analysis are observed and characterised in terms of actuator geometry and modal deformation. The ARMAX algorithm is extended for use with response measurements exclusively. Numerical and experimental tests demonstrate its performance using time series data and correlation functions calculated from response measurements.
115

Assessing estimators of feral goat (Capra hircus) abundance

Tracey, John Paul, n/a January 2004 (has links)
(1) Reliable measures of population abundance are essential for managing wildlife effectively. Aerial surveys provide a rapid and efficient means of surveying large mammals and many techniques have been developed to adjust for the inability to count all animals within transects. The probability of detection varies according to a range of factors which are important to consider when estimating density. Standardised survey methods developed in flat country are not readily transferable to steep terrain due to safety, access and difficulties delineating transect widths. Other methods have logistic constraints and must adhere to various other assumptions. (2) Density estimators are seldom examined using actual population size, hence their ability to correct for true bias is unknown. Studies that compare techniques are difficult to interpret because of the uncertainty of adherence to their respective assumptions. Factors influencing detection probability, estimators that correct for bias, the validity of their assumptions and how these relate to true density are important considerations for selecting suitable methods. The aim of this study was to obtain accurate and reliable methods for estimating the density of feral goats by improving predictions of detection probability, investigating the assumptions of aerial surveys, and examining the accuracy of 15 density estimators by comparing with total counts of feral goats. (3) Group size, vegetation and observer were the most important factors influencing the probability of observing a group of goats during aerial surveys. However, different approaches to analysing these data influenced the significance of variables and the predicted probabilities. Goat colour, type of helicopter, site and rear observer experience in hours were also found to be significant (P<0.05) when using likelihood equations based on all animals in the population rather than only those in the sample. The slope of the terrain was also shown to significantly (P=0.014) affect the probability of detection. (4) Indices are commonly used in wildlife management for their simplicity and practicality, but their validity has been questioned because of variable probability of detection. Results of this study suggest aerial survey indices are useful in monitoring a range of medium-sized mammal species across space and time if differences in detection probability between species, group size, vegetation and observer are considered and their effects are standardised. (5) An assumption of most sampling regimes that is fundamental but rarely examined is that animals are not counted more than once. In this study the behavioural responses of feral goats to helicopters were investigated as a basis for estimating the probability that goats were recounted. No long-term consequences were evident in feral goat behaviour of responses to helicopters. However, helicopter surveys were found to alter the structure of 42% of groups observed, with 28% of groups merging with others and 14% splitting into separate groups. Therefore, group size estimated from the air should not be considered as biologically important, and when estimating density, researchers should also avoid using group sizes determined from independent ground observations to correct group sizes determined from aerial surveys. Goats were also more likely to flush further when helicopters were within 150 m, which is close to or within standard helicopter strip widths. Substantial movement occurred between transects and 21% of goats were estimated to be available for recounting in adjacent transects. (6) Different detection probabilities between groups of goats may be particularly relevant when using double-counting, where multiple observers are �capturing� and �recapturing� animals in the same instant. Many analyses test and adjust for this �unequal catchability� assumption in different ways, with the approaches of Huggins and Alho allowing prediction of unique probability values for a range of co-variates. The approach of Chao attempts to correct for skewed distributions in small samples. The Horvitz-Thompson approach provides a useful basis for estimating abundance (or density) when detection probability can be estimated and is known to vary between observations according to a range of independent variables, and also avoids errors associated with averaging group size. (7) After correcting for recounting, the Alho estimator applied to helicopter surveys was the most accurate (Bias = 0.02) and reliable of all techniques, which suggests that estimates were improved by taking into account unconditional detection probability and correcting individual observations according to their characteristics. The positive bias evident in the Chao (Bias = 0.28) and Petersen (Bias = 0.15) aerial survey estimators may have been a result of averaging detection probability across all observations. The inconsistency and inaccuracy of the ground-based area-count technique emphasises the importance of other assumptions in density estimation, such as representative sampling and availability bias. The accuracy of index-manipulation-index techniques was dependent on the indices used. Capture-recapture estimates using mustering showed slight negative bias (Bias = -0.08), which was likely a result of increased probability of re-capture (i.e. trap happy). Ground-based capture-resight estimates were labour intensive and positively biased (Bias = 0.13), likely due to underestimating the area sampled, or overestimating the number of unmarked individuals with each sample. (8) Helicopter survey using double-counting is recommended for estimating the density of feral goats in steep terrain. However, consideration of recounting under intensive sampling regimes and adjustments for the factors that influence unconditional detection probability is required.
116

MALLS - Mobile Automatic Launch and Landing Station for VTOL UAVs

Gising, Andreas January 2008 (has links)
<p>The market for vertical takeoff and landing unmanned aerial vehicles, VTOL UAVs, is growing rapidly. To reciprocate the demand of VTOL UAVs in offshore applications, CybAero has developed a novel concept for landing on moving objects called MALLS, Mobile Automatic Launch and Landing Station. MALLS can tilt its helipad and is supposed to align to either the horizontal plane with an operator adjusted offset or to the helicopter skids. Doing so, eliminates the gyroscopic forces otherwise induced in the rotordisc as the helicopter is forced to change attitude when the skids align to the ground during landing or when standing on a jolting boat with the rotor spun up. This master’s thesis project is an attempt to get the concept of MALLS closer to a quarter scale implementation. The main focus lies on the development of the measurement methods for achieving the references needed by MALLS, the hori- zontal plane and the plane of the helicopter skids. The control of MALLS is also discussed. The measurement methods developed have been proved by tested implementations or simulations. The theories behind them contain among other things signal filtering, Kalman filtering, sensor fusion and search algorithms. The project have led to that the MALLS prototype can align its helipad to the horizontal plane and that a method for measuring the relative attitude between the helipad and the helicopter skids have been developed. Also suggestions for future improvements are presented.</p>
117

MPD-vågformer för helikopterradar / MPD waveforms for helicopter radar

Tornberg, Jens January 2003 (has links)
<p>A helicopter based system equipped with a millimetre-wave fire control radar is studied for improvement of the detection probability for moving ground targets. The system is a pulse doppler radar that sends out the electromagnetic wave in repetitive pulses. The frequency in which radar sends this pulse is called Pulse Repetition Frequency (PRF). </p><p>The velocity of the moving targets is measured by spectral analysis of the pulses received. With this sort of system some targets will not be possible to detect. These targets are said to be blind for the radar. Also the measured targets can be ambiguous. A solution to this is to shift PRF during the time the radar emits itspulses on the target. This method is called PRF block staggering. The antenna is mounted on a mechanical sweep on top of the rotor of the helicopter. Because of this the time on target is limited. This means that the measured velocity resolution of the radar is also limited. </p><p>With the studied method it is possible to resolve range and velocity ambiguities. This is under the condition that it is acceptable with a reduction in the velocity resolution by a factor equal to the number of PRF blocks used. </p><p>The work leading to this thesis included developing a program in Mathworks Matlab for studying different configurations of PRFs and the effect on the detection probability.</p>
118

En indirekt metod för adaptiv reglering av en helikopter / An indirect approach to adaptive control of a helicopter

Jägerback, Peter January 2009 (has links)
<p>When a helicopter is flying, the dynamics vary depending on, for example, speed and position. Hence, a time-invariant linear model cannot describe its properties under all flight conditions. It is therefore desirable to update the linear helicopter model continuously during the flight. In this thesis, two different recursive estimation methods are presented, LMS (Least Mean Square) and adaptation with a Kalman filter. The main purpose of the system estimation is to get a model which can be used for feedback control. In this report, the estimated model will be used to create a LQ controller with the task of keeping the output signal as close to the reference signal as possible.Simulations in this report show that adaptive feedback control can be used to control a helicopter's angular velocities and that the possibility to use an adaptive control algorithm in a real future helicopter is good.</p>
119

Investigation of rotor downwash effects using CFD

Johansson, Helena January 2009 (has links)
<p><p>This paper is the result of a master thesis project on helicopter rotor downwash effects using computational fluid dynamics (CFD). The work was performed at the department of Aerodynamics and Flight Mechanics at Saab AB, Linköping in 2008. It completes the author’s studies for a M.Sc degree in Applied Physics and Electrical Engineering at the Department of Electrical Engineering at the Linköping institute of technology (LiTH), Linköping, Sweden.</p><p> </p><p>The aim of the project was to study the rotor downwash effects and its influence on the helicopter fuselage. To fulfil this purpose, several CFD calculations were carried out and the aerodynamic forces and moments resulting from the calculations were implemented in an existing simulation model, developed in-house at Saab. The original (existing) model was compared to the updated model by studying step responses in MATLAB, Simulink. For some step commands, the comparisions indicated that the updated model was more damped in yaw compared to the original model for the hovering helicopter. When the helicopter was trimmed for a steady turn, the states in the updated model diverged much faster than the states in the original model for any given step command.</p><p> </p><p> </p><p>In order to investigate the differences between the original helicopter model and the updated model from a controlling perspective, a linear quadratic (LQ) state feedback controller was synthesized to stabilize the vehicle in a steady turn. The LQ method was chosen as it is a modern design technique with good robustness and sensitivity properties and since it is easily implemented in MATLAB.  Before synthesising, a simplification of the helicopter model was made by reducing states and splitting them into lateral and longitudinal ones. Step responses from simulations with the original and the updated model were studied, showing an almost identical behavior.</p><p> </p><p>It can be concluded that the aerodynamic coefficients obtained from the CFD calculations can be used for determining the aerodynamic characteristics of the helicopter. Some further validation is needed though, for example by comparing the results with flight test data. In order to build an aerodynamic data base that covers the whole flight envelop, additional CFD calculations are required.</p><p> </p></p>
120

Fuzzy Control for an Unmanned Helicopter

Kadmiry, Bourhane January 2002 (has links)
<p>The overall objective of the Wallenberg Laboratory for Information Technology and Autonomous Systems (WITAS) at Linköping University is the development of an intelligent command and control system, containing vision sensors, which supports the operation of a unmanned air vehicle (UAV) in both semi- and full-autonomy modes. One of the UAV platforms of choice is the APID-MK3 unmanned helicopter, by Scandicraft Systems AB. The intended operational environment is over widely varying geographical terrain with traffic networks and vehicle interaction of variable complexity, speed, and density.</p><p>The present version of APID-MK3 is capable of autonomous take-off, landing, and hovering as well as of autonomously executing pre-defined, point-to-point flight where the latter is executed at low-speed. This is enough for performing missions like site mapping and surveillance, and communications, but for the above mentioned operational environment higher speeds are desired. In this context, the goal of this thesis is to explore the possibilities for achieving stable ‘‘aggressive’’ manoeuvrability at high-speeds, and test a variety of control solutions in the APID-MK3 simulation environment.</p><p>The objective of achieving ‘‘aggressive’’ manoeuvrability concerns the design of attitude/velocity/position controllers which act on much larger ranges of the body attitude angles, by utilizing the full range of the rotor attitude angles. In this context, a flight controller should achieve tracking of curvilinear trajectories at relatively high speeds in a robust, w.r.t. external disturbances, manner. Take-off and landing are not considered here since APIDMK3 has already have dedicated control modules that realize these flight modes.</p><p>With this goal in mind, we present the design of two different types of flight controllers: a fuzzy controller and a gradient descent method based controller. Common to both are model based design, the use of nonlinear control approaches, and an inner- and outer-loop control scheme. The performance of these controllers is tested in simulation using the nonlinear model of APID-MK3.</p> / Report code: LiU-Tek-Lic-2002:11. The format of the electronic version of this thesis differs slightly from the printed one: this is due mainly to font compatibility. The figures and body of the thesis are remaining unchanged.

Page generated in 0.0455 seconds