• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • 2
  • 1
  • Tagged with
  • 15
  • 15
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An experimental and a theoretical investigation of rotor pitch damping using a model rotor

Sotiriou, C. P. January 1990 (has links)
No description available.
2

Guidage des ondes d'ordre élevé dans les composites : application au dégivrage en vol des pales d'hélicoptères / High-order wave propagation in composite waveguides : application to in-flight de-icing of helicopter rotor blades

Droz, Christophe 12 October 2015 (has links)
Lorsqu’un hélicoptère opère dans des conditions givrantes extrêmes, l’accumulation de glace sur les pales peut considérablement impacter les performances de l’appareil. De nombreuses recherches portant sur le développement d’un système de dégivrage à faible consommation et moindre coût ont été initiées ces dernières années. Dans cette thèse, une technique ondulatoire de protection contre la formation de glace sur les surfaces des pales d’hélicoptères est étudiée. La stratégie proposée repose sur l’utilisation d’ondes guidées d’ordre élevé spécifiques pour créer des cisaillements dépassant la force d’adhésion surfacique d’un profil de glace. Des essais ont d’abord été menés pour réaliser le modèle E.F. d’un tronçon de pale, puis une stratégie de réduction de modèle est développée pour la Méthode des Éléments Finis Ondulatoires. Cette formulation s’appuie sur la projection des vecteurs d’état sur une base réduite, constituée des formes d’ondes progressives. Elle permet de réaliser des analyses ondulatoires large-bande dans les structures complexes, 1D ou 2D périodiques. Les ondes guidées sont d’abord examinées dans la pale d’hélicoptère, puis les effets de localisation et de conversion des ondes sont interprétés dans divers guides d’ondes 1D et 2D. Les interactions de ces ondes d’ordre élevé avec les profils d’accrétion de glace, ainsi qu’avec plusieurs types de singularités structurelles, sont analysées au moyen d’une Méthode des Matrices de Diffusion. Une formulation ondulatoire temporelle est ensuite proposée pour l’analyse rapide de la propagation d’un train d’ondes dans les guides d’ondes couplés. Enfin, un réseau d’actionneurs est conçu pour la génération de trains d’ondes d’ordre élevé, et des validations temporelles sont réalisées dans une plaque composite ainsi que dans une pale de Super Puma. / When helicopters fly through extreme conditions, ice can aggregate on their blades and seriously affect the aircraft performances. Recently, an increasing research effort was devoted to the development of affordable low power de-icing solutions. In this thesis, a wave-based approach is adopted to prevent and/or remove ice aggregates from the surfaces of helicopter rotor blades. The de-icing strategy uses specific high-order guided waves to exceed the shear adhesion strength of ice accretion profiles. Experiments are conducted in order to update the FE model of a realistic rotor blade, then a Model Order Reduction strategy is developed for the Wave Finite Element Method. It involves a projection of the state vectors on a reduced basis of propagating waves shapes, and enables broadband wave analysis in structurally advanced 1D and 2D periodic structures. Guided wave propagation is studied within a helicopter rotor blade, and wave localization and conversion effects are discussed in various 1D and 2D composite waveguides. The interactions of high-order waves with ice aggregates and other types of structural singularities are also examined by means of a Diffusion Matrix Method. Then, time-domain propagation in coupled waveguides subjected to a wave pulse is analysed through a computationally efficient wave-based formulation. Finally, a smart actuator network is designed for the generation of high-order wave pulses and validations are conducted in a composite plate and a Super Puma rotor blade using time simulation.
3

Předběžný návrh malého dvoumístného vrtulníku / Preliminary Design of a Small Two Seat Helicopter

Junas, Milan January 2016 (has links)
The thesis deals the preliminary draft of the small two-seat helicopter with a piston engine. The aim of the thesis is not to propose a helicopter across the extent of the problems. Therefore we have chosen only selected issues which can be managed in the range of work. The introduction is focused on defining the general requirements imposed on proposed helicopter, formulating the basic conceptual and structural design according to the building regulation the relevant category. These ranges create a based assumption for right evaluation of the statistical analysis of the helicopters of the same or very near parameters category. Subsequently, there were defined the basic parameters of the proposed helicopter which make possible to solve the performance characteristics in the vertical and backward flight. The work is also focused on design of the rotor head of main rotor for the proposed helicopter, the definition of load acting on the rotor head, waving analysis and calculation of centrifugal forces acting on the main rotor blades. The design of the rotor head and also the helicopter as a whole will be graphically processed in the program Dassault Systemes Catia.
4

Structural Health Monitoring Of Composite Helicopter Rotor Blades

Pawar, Prashant M 05 1900 (has links)
Helicopter rotor system operates in a highly dynamic and unsteady aerodynamic environment leading to severe vibratory loads on the rotor system. Repeated exposure to these severe loading conditions can induce damage in the composite rotor blade which may lead to a catastrophic failure. Therefore, an interest in the structural health monitoring (SHM) of the composite rotor blades has grown markedly in recent years. Two important issues are addressed in this thesis; (1) structural modeling and aeroelastic analysis of the damaged rotor blade and (2) development of a model based rotor health monitoring system. The effect of matrix cracking, the first failure mode in composites, is studied in detail for a circular section beam, box-beam and two-cell airfoil section beam. Later, the effects of further progressive damages such as debonding/delamination and fiber breakage are considered for a two-cell airfoil section beam representing a stiff-inplane helicopter rotor blade. It is found that the stiffness decreases rapidly in the initial phase of matrix cracking but becomes almost constant later as matrix crack saturation is reached. Due to matrix cracking, the bending and torsion stiffness losses at the point of matrix crack saturation are about 6-12 percent and about 25-30 percent, respectively. Due to debonding/delamination, the bending and torsion stiffness losses are about 6-8 percent and about 40-45 percent after matrix crack saturation, respectively. The stiffness loss due to fiber breakage is very rapid and leads to the final failure of the blade. An aeroelastic analysis is performed for the damaged composite rotor in forward flight and the numerically simulated results are used to develop an online health monitoring system. For fault detection, the variations in rotating frequencies, tip bending and torsion response, blade root loads and strains along the blade due to damage are investigated. It is found that peak-to-peak values of blade response and loads provide a good global damage indicator and result in considerable data reduction. Also, the shear strain is a useful indicator to predict local damage. The structural health monitoring system is developed using the physics based models to detect and locate damage from simulated noisy rotor system data. A genetic fuzzy system (GFS) developed for solving the inverse problem of detecting damage from noise contaminated measurements by hybridizing the best features of fuzzy logic and genetic algorithms. Using the changes in structural measurements between the damaged and undamaged blade, a fuzzy system is generated and the rule-base and membership functions optimized by genetic algorithm. The GFS is demonstrated using frequency and mode shape based measurements for various beam type structures such as uniform cantilever beam, tapered beam and non-rotating helicopter blade. The GFS is further demonstrated for predicting the internal state of the composite structures using an example of a composite hollow circular beam with matrix cracking damage mode. Finally, the GFS is applied for online SHM of a rotor in forward flight. It is found that the GFS shows excellent robustness with noisy data, missing measurements and degrades gradually in the presence of faulty sensors/measurements. Furthermore, the GFS can be developed in an automated manner resulting in an optimal solution to the inverse problem of SHM. Finally, the stiffness degradation of the composite rotor blade is correlated to the life consumption of the rotor blade and issues related to damage prognosis are addressed.
5

hp-Adaptive Discontinuous Galerkin Finite Element In Time For Rotor Dynamics Problem

Gudla, Pradeep Kumar 07 1900 (has links) (PDF)
No description available.
6

Application of the Filtered-X LMS Algorithm for Disturbance Rejection in Time-Periodic Systems

Fowler, Leslie Paige 03 May 1996 (has links)
Extensive disturbance rejection methods have been established for time-invariant systems. However, the development of these techniques has not focused on application to time-periodic systems in particular until recently. The filtered-X LMS algorithm is regarded as the best disturbance rejection technique for aperiodic systems by many, as has been proven in the acoustics industry for rejecting unwanted noise. Since this is essentially a feedforward approach, we might expect its performance to be good with respect to time-periodic systems in which the disturbance frequency is already known. The work presented in this thesis is an investigation of the performance of the filtered-X LMS algorithm for disturbance rejection in time-periodic systems. Two cases are examined: a generalized linear, time-periodic system and the helicopter rotor blade in forward flight. Results for the generalized system show that the filtered-X LMS algorithm does converge for time-periodic disturbance inputs and can produce very small errors. For the helicopter rotor blade system the algorithm is shown to produce very small errors, with a 96%, or 14 dB, reduction in error from the open-loop system. The filtered-X LMS disturbance rejection technique is shown to provide a successful means of rejecting timeperiodic disturbances for time-periodic systems. / Master of Science
7

Aeroelastic Analysis And Optimization Of Composite Helicopter Rotor With Uncertain Material Properties

Murugan, M Senthil January 2009 (has links)
Incorporating uncertainties in the aeroelastic analysis increases the confidence levels of computational predictions and reduces the need for validation with experimental or flight test data. Helicopter rotor blades, which play a dominant role in the overall vehicle performance, are routinely made of composites. The material properties of composites are uncertain because of the variations in manufacturing process and other effects while in service, maintenance and storage. Though nominal values are listed, they are seldom accurate. In this thesis, the effect of uncertainty in composite material properties on the computational predictions of cross-sectional properties, natural frequencies, blade tip deflections, vibratory loads and aeroelastic stability of a four-bladed composite helicopter rotor is studied. The effect of material uncertainty is studied with the composite rotor blades modeled as components of soft-inplane as well as stiff-inplane hingeless helicopter rotors. Aeroelastic analysis based on finite elements in space and time is used to evaluate the helicopter rotor blade response in hover and forward flight. Uncertainty analysis is performed with direct Monte Carlo simulations based on a sufficient number of random samples of material properties. It is found that the cross-sectional stiffness parameters and natural frequencies of rotor blades show considerable scatter from their baseline predictions. The uncertainty impact on the rotating natural frequencies depends on the level of centrifugal stiffening of each mode. The propagation of material uncertainty into aeroelastic response causes large deviations from the baseline predictions. The magnitudes of 4/rev vibratory loads show deviations of 10 to 600 percent from their baseline predictions. The aeroelastic stability in hover and forward flight conditions also show considerable uncertainty in the predictions. In addition to the effects of material uncertainty, various factors influencing the propagation of material uncertainty are studied with the first-order based reliability methods. The numerical results have shown the need to consider the uncertainties in the helicopter aeroelastic analysis for reliable computational predictions. Uncertainty quantification using direct Monte Carlo simulation is accurate but computationally expensive. The application of response surface methodologies to reduce the computational cost of uncertainty analysis is studied. Response surface approximations of aeroelastic outputs are developed in terms of the composite material properties. Monte Carlo simulations are then performed using these computationally less expensive response surface models. The results of this study show that the metamodeling techniques can effectively reduce the computational cost of uncertainty analysis of composite rotor blades. In the last part of the thesis, an aeroelastic optimization method to minimize the vibration level is developed with due consideration to material uncertainty. Second-order polynomial response surfaces are used to approximate the objective function which smooths out the local minima or numerical noise in the design space. The aeroelastic optimization is carried out with the nominal values of composite material properties and the performance of final design is found to be optimum even for the perturbed values of material properties.
8

Helicopter Vibration Reduction Using Single Crystal And Soft Piezoceramic Shear Induced Active Blade Twist

Thakkar, Dipali 04 1900 (has links) (PDF)
No description available.
9

Suivi numérique des bifurcations pour l'analyse paramétrique de la dynamique non-linéaire des rotors / Numerical tracking of bifurcations for parametric analysis of nonlinear rotor dynamics

Xie, Lihan 03 March 2016 (has links)
Au cœur des moyens de transport, de transformation d'énergie, et de biens d'équipements, les machines tournantes peuvent avoir des comportements dynamiques complexes dus à de multiples sources de non linéarités liées aux paliers hydrodynamiques, à la présence de fissures, aux touches rotor-stator, ... Des phénomènes comme les décalages fréquentiels et donc de vitesses critiques, les cycles d'hystérésis avec sauts d'amplitudes, le changement brutal du contenu fréquentiel des réponses, sont des expressions de ces comportements. Résoudre les équations du mouvement induites par des modélisations avec des éléments finis de type poutre ou volumique, pour calculer les réponses à des sollicitations diverses (comme le balourd ou le poids propre), est réalisable avec des méthodes d'intégration pas à pas dans le temps mais au prix de temps de calcul prohibitifs. Cela devient particulièrement préjudiciable au stade du pré-dimensionnement où il est nécessaire de réaliser rapidement des études paramétriques. Aussi une alternative intéressante est de mettre en {\oe}uvre une méthode numérique, à la fois générale et efficace pour analyser la réponse non linéaire des rotors en régime stationnaire. La démarche proposée combine, dans un premier temps, la méthode de la balance harmonique (HBM) et la technique de bascule Temps-Fréquence (AFT) afin d'obtenir rapidement dans le domaine fréquentiel les réponses périodiques des rotors à grand nombre de degrés de liberté apportés par les éléments finis volumiques. Puis, l'association à la méthode de continuation par pseudo-longueur d'arc aboutit à établir continûment l'ensemble des solutions d'équilibre dynamique sur la plage de vitesse de rotation. Enfin la stabilité dynamique locale de la solution périodique est analysée grâce à des indicateurs de bifurcation basés sur l'évolution des exposants de Floquet. Ainsi sont détectées les bifurcations de branches de solutions périodiques de type point limite, point de branchement et notamment Neimark-Sacker. Leur localisation est déterminée précisément en résolvant un système augmenté constitué de l'équation du mouvement et d'une équation supplémentaire caractérisant le type de bifurcation considéré. En déclarant un paramètre du système (coefficient de frottement, jeu rotor/stator, amplitude de l'excitation,...) comme nouvelle variable, l'utilisation de la technique de continuation conjointement avec le système augmenté détermine directement le cheminement des bifurcations en fonction de ce paramètre sur la nappe des réponses non linéaires. Les suivis de bifurcations délimitent les zones de fonctionnement spécifiques, extraient efficacement l'essentiel du comportement dynamique et offrent ainsi une nouvelle approche pour dimensionner de façon efficace les systèmes notamment en rotation. Nombre des développements réalisés sont implantés dans le code de calcul Cast3M. / Generally speaking, the rotating systems utilized in the energy production have a small rotor-stator gap, are able to run during long periods, and are mounted on hydrodynamic bearings. Rotor-stator interactions in case of blade loss, crack propagation due to fatigue, and a variable stiffness due to the nonlinear restoring forces of the bearings can make the rotordynamics nonlinear and the responses complicated: significant amplitude and frequency shifts are introduced, sub- and super-harmonics appear, and hysteresis occurs. It is of great importance to understand, predict and control this complicated dynamics. Due to the large number of DOFs and the broad range of study frequency, the computation time for solving the equations of motion by a temporal integration method can be quite prohibitive. It becomes particularly disadvantageous at the design stage where a parametrical study need to be quickly performed. An alternative numerical method, which is general and effective at the same time, is proposed in order to analyse the nonlinear response of the rotors at steady state. Firstly, the periodic responses of nonlinear rotors are calculated in the frequency domain by combining harmonic balance method (HBM) and alternating frequency-time (AFT). With the help of continuation method, all dynamic equilibrium solutions of nonlinear systems are determined for the range of study frequency. Then, Floquet exponents which are the eigenvalues of Jacobian are sought for stability analysis of periodic solutions. Then the local stability of the periodic solution is analysed through the bifurcation indicators which are based on the evolution of Floquet exponents. The bifurcations of periodic solution branch, such as limit point, branch point, and Neimark-Sacker bifurcation, are thus detected. By declaring a system parameter (friction coefficient, rotor / stator gap, excitation amplitude, ...) as a new variable, applying once again the continuation method to the augmented system determines directly the bifurcation's evolution as a function of this parameter. Thus, parametric analysis of the nonlinear dynamic behaviour is achieved, the stability boundary or the regime change boundary is directly determined. Numerous developments are implemented in the calculation code Cast3M.
10

Hybrid modular models for the dynamic study of high-speed thin -rimmed/-webbed gears / Modèles modulaires hybrides pour l'étude dynamique à haute-vitesse des engrenages à voile-minces

Guilbert, Bérengère 08 December 2017 (has links)
Ces travaux de thèse ont été réalisés grâce à une collaboration entre Safran Helicopter Engines (anciennement Turbomeca) et le Laboratoire de Mécanique des Contacts et des Structures (LaMCoS) de l’INSA de Lyon (UMR CNRS 5259). Les boîtes de transmission par engrenages des moteurs d’hélicoptères convoient la puissance mécanique du turbomoteur aux accessoires (pompes, démarreur) et au rotor. Leur conception dépend des nécessités des équipements embarqués, en particulier l’allègement pour réduire la consommation en carburant. Les engrenages haute vitesse de la transmission sont allégés grâce à des enlèvements de matière dans les corps sous la denture, les voiles-minces. Un modèle dynamique d’engrenages a été développé pendant ce projet de recherche. Son approche modulaire permet l’inclusion conjointe des sollicitations dues aux vibrations de l’engrenage et de la nouvelle flexibilité des voiles-minces. Il dérive d’un modèle à paramètres concentrés, comprenant des arbres en poutre, des paliers et carters sous forme de raideurs additionnelles et un élément d’engrenage rigide inclus par son nœud central. Hypothèse est faite que tous les contacts sont situés sur les lignes de contact du plan d’action. Ces lignes sont discrétisées selon des tranches-minces dans les dents et la déviation normale des cellules est recalculée à chaque pas de temps selon la déflexion de la denture. Le nouveau modèle remplace l’engrenage rigide par une modélisation EF du pignon et/ou de la roue condensée sur les nœuds de jante. Une interface lie les raideurs du plan d’action discrétisé aux éléments finis du corps d’engrenage. L’élément prend donc en compte à la fois les sollicitations de l’engrenage et le comportement statique et modal des corps flexibles en dynamique. Des comparaisons sont faites avec des données numériques et expérimentales. Elles attestent de la capacité du nouveau modèle à prédire le comportement dynamique des engrenages flexibles à hauts régimes de rotation. Ces résultats intègrent entre autres des données locales et globales en dynamique. Finalement, le modèle est utilisé sur les deux cas académiques validés pour visualiser les effets des corps flexibles plus en détails. Un premier focus sera fait sur la déflexion statique due aux charges d’engrènement et sur l’optimisation sur le fonctionnement dynamique possible. Puis, les impacts des sollicitations de l’engrènement sur le voile en rotation seront étudiés. Enfin, le pignon et la roue seront affinés, afin de visualiser l’optimisation massique possible et son impact sur la dynamique de l’engrenage. / The research work presented in this manuscript was conducted in the Contact and Structural Mechanics Laboratory (LaMCoS) at INSA Lyon, in partnership with Safran Helicopter Engines (formerly-Turbomeca). In helicopters, the power from the turboshaft is transmitted to the rotor and the various accessories (pumps, starters etc…) via transmission gearboxes. In the context of high-speed, light-weight aeronautical applications, mechanical parts such as gears have to meet somehow contradictory design requirements in terms of reliability and mass reduction thus justifying precise dynamic simulations. The present work focuses on the definition of modular gear dynamic models, capable of integrating both the local phenomena associated with the instant contact conditions between the tooth flanks and the more global aspects related to shafts, bearings and particularly the contributions of light thin-rimmed /-webbed gear bodies. The proposed models rely on combinations of condensed sub-structures, lumped parameter and beam elements to simulate a pinion-gear pair, shafts, bearings and housing. Mesh elasticity is time-varying, possibly non-linear and is accounted for by Winkler foundations derived from a classic thin-slice model. The contact lines in the base plane are therefore discretised into elemental segments which are all attributed a mesh stiffness function and a normal deviation which are updated depending on the pinion and gear angular positions. The main originality in this PhD consists in inserting condensed finite elements models to simulate flexible gear bodies while keeping the simple and faster rigid-body approach for solid gears. To this end, a specific interface has been developed to connect the discretised tooth contact lines to the continuous finite element gear body models and avoid numerical spikes in the tooth load distributions for example. A number of comparisons with numerical and experimental results show that the proposed modelling is sound and can capture most of the quasi-static and dynamic behaviour of single stage reduction units with thin-webbed gears and/or pinions. The model is then applied to the analysis of academic and industrial gears with the objective of analysing the contributions of thin, flexible bodies. Results are presented which highlight the role of centrifugal effects and tooth shape modifications at high speeds. Finally, the possibility to further improve gear web design with regard to mass reduction is investigated and commented upon.

Page generated in 0.0426 seconds