• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 65
  • 6
  • 6
  • 6
  • 5
  • 5
  • 2
  • 2
  • 1
  • Tagged with
  • 70
  • 43
  • 22
  • 21
  • 14
  • 13
  • 13
  • 13
  • 11
  • 11
  • 11
  • 10
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Purificação, caracterização bioquímica e potencial de aplicação biotecnológica de uma xilanase halotolerante e termoestável de Colletotrichum graminicola / Purification, biochemical characterization and potential biotechnological applications of a salt- tolerant and thermostable xylanase Colletotrichum graminicola

Sibeli de Carli 04 August 2016 (has links)
A viabilidade econômica da produção de etanol de segunda geração (2G) depende do desenvolvimento de tecnologias eficientes e baratas para a hidrólise da biomassa lignocelulósica. Em particular, o grande consumo de água nas plantas de processamento de biomassa pode inviabilizar o processo. As xilanases são enzimas chave na hidrólise enzimática da xilana para a produção de etanol 2G e atualmente é grande o interesse na identificação de xilanases tolerantes a altas concentrações salinas, bem como aos subprodutos de etapas de pré-tratamento da biomassa, o que permitiria reduzir o volume de água empregado em etapas de lavagem e/ou a substituição da água doce pela água do mar. Neste contexto, os objetivos deste trabalho foram a purificação e caracterização bioquímica e cinética de uma endo-xilanase halotolerante e termoestável produzida por uma linhagem de C. graminicola isolada da floresta Amazônica (Brasil). A enzima pura (Excg1) apresentou massa molecular aparente de 20,0 ± 2,4 kDa em SDS-PAGE e 17,3 ± 1,9 kDa por filtração em gel, sugerindo que a enzima nativa é monomérica. O teor de carboidratos totais de Excg1 foi de 97,0 ± 3,7 % (m/m) e o seu ponto isoelétrico correspondeu a 9,200 ± 0,018. A enzima manteve cerca de 85% da atividade controle na presença de NaCl 0,5 mol/L. Em ausência e presença de NaCl em concentração 0,5 mol/L a temperatura e o pH ótimos de atividade de Excg1 foram 65 ºC e 5,5, respectivamente, enquanto na presença de NaCl 2,5 mol/L o pH ótimo foi alterado para 6,0. Excg1 mostrou-se bastante termoestável a 50ºC, com tempo de meia-vida de 48 h na ausência do substrato. Já na presença de NaCl 2,5 mol/L a termoestabilidade foi substancialmente maior, com atividade residual de 75% após o mesmo intervalo de tempo. Excg1 apresentou excelente estabilidade na faixa de pH de 3,0-10,0 na ausência de sal, mantendo-se também completamente estável entre pH 4,0 e 10,0 na presença de NaCl em concentração 0,5 e 2,5 mol/L. Os parâmetros cinéticos determinados para a hidrólise de xilana Beechwood por Excg1 na ausência de NaCl foram Vmax= 481,3 ± 34,0 U/mg e KM= 3,7 ± 0,3 mg/mL, resultando em eficiência catalítica (kcat/KM) de 36,9 mL/s.mg. Parâmetros muito similares foram determinados na presença de NaCl 0,5 mol/L, porém em presença do sal em concentração 2,5 mol/L ocorreu diminuição da afinidade aparente pelo substrato e redução da velocidade máxima, resultando em eficiência catalítica 2,3 vezes menor. Já a hidrólise de xilana Birchwood em ausência de sal ocorreu com constante de afinidade aparente similar e eficiência catalítica cerca de 18% maior, se comparada à hidrolise de xilana Beechwood na mesma condição. Excg1 foi tolerante a K+, Na+, Pb2+, Ni2+, Zn2+, Mn2+, Mg2+, Co2+, Ca2+ e Sr2+ em concentração 10 mmol/L, além de Cu2+, Al3+, Cr3+ e Fe3+ em concentração 1 mmol/L. Além disso, Excg1 foi tolerante a diferentes solventes orgânicos e a acetato. A análise dos produtos de hidrólise de xilana Beechwood por Excg1 revelou que os produtos principais formados foram xilobiose e xilotriose com uma ramificação de ácido 4-O-metilglucurônico. A presença de NaCl 0,5 mol/L não afetou este padrão de hidrólise e a enzima mostrou também boa tolerância aos produtos de hidrólise. Em conjunto, as propriedades de Excg1 sugeriram bom potencial de aplicação na sacarificação da biomassa lignocelulósica, particularmente em condições de salinidade elevada e/ou em presença de resíduos de etapas de pré-tratamento, o que é potencialmente interessante para viabilizar economicamente processos de produção de etanol 2G. / The economic viability of the production of second-generation (2G) ethanol depends on the development of efficient and inexpensive technologies for the hydrolysis of lignocellulosic biomass. In particular, the large consumption of water in the biomass processing plants can make the process unfeasible. The xylanases are key enzymes in the enzymatic hydrolysis of xylan aiming the production of 2G ethanol and there is currently great interest in identifying xylanases tolerant to high salt concentrations and to the byproducts from biomass pretreatment steps, allowing the reduction of the volume of water used in washing steps and/or the replacement of fresh water by sea water. In this context, the objectives of this work were the purification and the biochemical and kinetic characterization of a salt-tolerant and thermostable endoxylanase produced by a strain of C. graminicola isolated from the Amazon forest (Brazil). The pure enzyme (Excg1) showed apparent molecular mass of 20.0 ± 2.4 kDa by SDS-PAGE and 17.3 ± 1.9 kDa by gel filtration, suggesting that the native enzyme is monomeric. The total carbohydrate content of Excg1 was 97.0 ± 3.7% (m/m) and its isoelectric point corresponded to 9.200 ± 0.018. The enzyme retained approximately 85% of control activity in the presence of 0.5 mol.L-1 NaCl. In the absence and presence of NaCl at 0.5 mol.L-1 concentration, the optimum reaction temperature and pH of Excg1 were 65 ° C and 5.5, respectively, while in the presence of 2.5 mol.L-1 NaCl the optimum pH was altered to 6.0. Excg1 was highly thermostable at 50 °C, with a half-life of 48 h in the absence of substrate. In the presence of 2.5 mol.L-1 NaCl the thermal stability was greatly increased, and a residual activity of 75% was determined after 48 h at 50 ºC. Excg1 showed excellent stability in the pH range from 3.0 to 10.0 in the absence of salt, and was likewise completely stable at pH 4.0-10.0 in the presence of NaCl at the concentrations 0.5 mol.L-1 and 2.5 mol.L-1. The kinetic parameters for the hydrolysis of Beechwood xylan by Excg1 in the absence of salt were Vmax = 481.3 ± 34.0 U.mg-1 and KM = 3.7 ± 0.3 mg.mL-1, with a catalytic efficiency (kcat/KM) of 36.9 mL.s-1.mg-1. Similar parameters were determined in the presence of 0.5 mol.L-1 NaCl, while in the presence of a higher salt concentration (2.5 mol.L-1) decreases in the apparent affinity for the substrate and in the maximum velocity were observed, resulting in a catalytic efficiency 2.3 fold lower. In comparison with Beechwood xylan, the hydrolysis of Birchwood xylan in the absence of salt occurred with similar apparent affinity and catalytic efficiency about 18% greater. Excg1 was tolerant to 10 mmol.L-1 K+, Na+, Pb2+, Ni2+, Zn2+, Mn2+, Mg2+, Co2+, Ca2+ or Sr2+, and also to Cu2+, Al3+, Cr3+ e Fe3+ at 1 mmol.L-1 concentration. Furthermore, the enzyme was tolerant to various organic solvents and acetate. The analysis of Beechwood xylan hydrolysis products by Excg1 revealed that the main products were xylobiose and xylotriose with a 4-O-methylglucuronic acid branch. The presence of 0.5 mol.L-1 NaCl has not affected the hydrolysis pattern and the enzyme showed good tolerance to the hydrolysis products. Altogether, the properties of Excg1 suggested good potential for the saccharification of lignocellulosic biomass, particularly under high salinity conditions and/or in the presence of residues of pre-treatment steps, which is potentially interesting for the economically viable production of 2G ethanol.
62

Pré-tratamento do bagaço de cana-de-açúcar com H2SO4 diluído em reator piloto aquecido por vapor direto / Pre-treatment of sugarcane bagasse with dilute H2SO4 in pilot reactor heated by direct steam

Paula Julião Esteves 29 March 2011 (has links)
O presente trabalho teve como objetivo avaliar como algumas condições de pré-tratamento de bagaço de cana-de-açúcar com H2SO4 diluído influenciam a distribuição granulométrica do bagaço de cana, a composição química dos sólidos pré-tratados e hidrolisados hemicelulósicos, além da digestibilidade enzimática dos sólidos pré-tratados. Para isso, previamente, uma amostra de bagaço de cana-de-açúcar in natura foi caracterizada quanto suas composições percentuais; a distribuição granulométrica de suas fibras também foi avaliada antes e após o pré-tratamento. O pré-tratamento do bagaço com H2SO4 diluído foi realizado em reator piloto, aquecido por vapor direto, com capacidade de 100 L, onde o teor inicial de sólidos foi fixado em 15% (p/p). A temperatura (131,91-168,09 °C), tempo de residência (11,90-48,09 min) e concentração ácida (0,19 - 3,81 p/p) variaram de acordo com um planejamento fatorial 23. Após o pré-tratamento, os bagaços pré-tratados e hidrolisados hemicelulósicos foram caracterizados quanto suas composições químicas. A composição química dos bagaços in natura e pré-tratados, assim como a composição química dos hidrolisados, foi determinada por gravimetria, espectrofotometria e cromatografia líquida de alta eficiência. De acordo com a condição de pré-tratamento, os teores de celulose, hemicelulose e lignina nos bagaços pré-tratados diferiram substancialmente sendo que a maior variação foi observada para hemicelulose (0,14-17,62 %). Os três fatores avaliados no pré-tratamento influenciaram a composição química do bagaço pré-tratado, sendo que a variável com maior poder de influência no teor de celulose, hemicelulose e lignina dos sólidos foi a concentração ácida, seguida da temperatura e tempo de reação. Xilose foi o açúcar predominante nos hidrolisados hemicelulósicos variando de 1,43 a 21,05 g/L, de acordo com o planejamento. A concentração de furfural variou entre 0,08 e 4,68 g/L. Condições severas de pré-tratamento acarretaram na maior remoção de hemicelulose dos bagaços pré-tratados, porém nestas mesmas condições foram encontradas baixas concentrações de xilose e altas concentrações de furfural nos hidrolisados. A concentração de xilose no hidrolisado se mostrou dependente da temperatura e da concentração ácida. A variável com maior influência na formação de furfural foi a temperatura, seguida pela concentração ácida e tempo. A digestibilidade enzimática dos bagaços obtidos de acordo com planejamento experimental em 24 h variou de 25,35 a 63,76%, conforme a composição química dos sólidos. A temperatura de pré-tratamento foi o fator que exerceu maior influência na conversão da celulose dos sólidos. Com o intuito de avaliar o efeito da lavagem dos sólidos na digestibilidade enzimática da celulose, bagaços pré-tratados obtidos nas condições mais branda e severa de pré-tratamento, lavados e não-lavados, foram submetidos à sacarificação enzimática. A sacarificação de bagaços não-lavados foi prejudicada pela presença de inibidores nos hidrolisados hemicelulósicos, variando entre 0- 23,9%, em 72h. As condições de pré-tratamento do bagaço de cana-de-açúcar que maximizam a concentração de xilose no hidrolisado hemicelulósico e a sacarificação enzimática do bagaço pré-tratado são diferentes. O pré-tratamento com H2SO4 diluído acarretou na diminuição do tamanho das partículas do bagaço de cana. / This study aimed to evaluate how certain pretreatment conditions of sugarcane bagasse with dilute H2SO4 influence the size distribution of sugarcane bagasse, the chemical composition of solids pretreated and hemicellulosic hydrolysate, as well the enzymatic digestibility of pretreated solids. For that, previously, a sample of in natura sugarcane bagasse was characterized in terms of chemical composition; the size distribution of fibers was also evaluated before and after the pretreatment. The experiments of pretreatment of bagasse with dilute H2SO4 were conducted in a pilot reactor, heated by direct steam, with a capacity of 100 L, where the initial solids content was fixed at 15% (w / w). The temperature (131.91 to 168.09 ° C), residence time (11.90 to 48.09 min) and acid concentration (0.19 to 3.81 w / w) varied according to a factorial design 2³ . After pretreatment, the pretreated bagasse and hemicellulosic hydrolysates were characterized in terms of their chemical compositions. The chemical composition of in natura and pretreated bagasse , as well the chemical composition of the hydrolysates, was determined by gravimetry, spectrophotometry and high-efficiency liquid chromatography. According to the condition of pretreatment, cellulose, hemicellulose and lignin content in pretreated bagasse differed substantially, and the major variation was observed for hemicellulose content (0.14 to 17.62%).The three factors evaluated in the pretreatment influenced the chemical composition of pretreated bagasse, and the variable with greatest influence on the content of cellulose, hemicellulose and lignin concentration of solids was acid concentration, followed by temperature and reaction time.. Xylose was the predominant sugar in hemicellulose hydrolysates ranging from 1.43 to 21.05 g / L, according to the experimental design. Furfural concentration varied between 0.08 and 4.68 g / L. Severe conditions of pretreatment resulted in greater removal of hemicellulose from pretreated bagasse, but under these conditions were found low concentrations of xylose and high concentrations of furfural in the hydrolysates. The concentration of xylose in the hemicellulosic hydrolyzate were dependet of temperature and acid concentration. The variable with greatest influence on the formation of furfural was temperature, followed by acid concentration and time. The enzymatic digestibility of the pretreated solids, obtained according to experimental design, in 24 h, ranged from 25.35 to 63.76% depending on the chemical composition of solids. The temperature of the pretreatment was the factor that showed greater influence on the conversion of cellulose solids. In order to evaluate the effect of washing the solids in the enzymatic digestibility of cellulose, pretreated bagasses obtained in milder and severe conditions of pretreatment, non-washed and washed solids, were submitted to enzymatic saccharification. Saccharification of non-washed solids was impaired by the presence of inhibitors in hemicellulosic hydrolysates, ranging from 0 to 23.9% in 72h. The pretreatment conditions of sugarcane bagasse that maximize the concentration of xylose in the hemicellulosic hydrolyzate and enzymatic saccharification of pretreated bagasse are different. Pretreatment with dilute H2SO4 resulted in the decrease of particle size of bagasse.
63

Isolamento e seleção de leveduras para fermentação de Xilose / Isolation and selection of yeasts for xylose fermentation

Camila de Souza Varize 27 January 2014 (has links)
A importância atribuída aos biocombustíveis aumentou de forma drástica nos últimos anos, pois além de reduzir a dependência de petróleo e os gastos com energia fóssil, o uso de fontes de energia renováveis resulta também em uma diminuição significativa das emissões de gases tóxicos para a atmosfera. A biomassa de origem vegetal é uma das mais baratas e abundantes matérias-primas renováveis para o desenvolvimento sustentável e é uma fonte promissora para a produção de biocombustíveis. O bioetanol produzido a partir das frações lignocelulósicas, conhecido como etanol de segunda geração, tem um potencial de mercado promissor como biocombustível. No entanto, a tecnologia do processo ainda está em escala de demonstração. Há grande necessidade de melhorias no processo de produção a fim de reduzir o custo de produção. Caso houvesse a utilização total dos açúcares presentes na biomassa vegetal, existiria uma maior rentabilidade e competitividade, tornando esse processo mais viável. Os polissacarídeos constituintes do material lignocelulósico, como hemicelulose e celulose, por uma reação de hidrólise podem ser transformados em açúcares simples, tais como xilose e glicose, que podem ser utilizados como substrato em processos fermentativos. Algumas linhagens de leveduras não pertencentes ao gênero Saccharomyces possuem a capacidade de bioconversão das pentoses (xilose e arabinose), constituintes da fração hemicelulósica, em etanol. Neste contexto, o presente estudo objetivou isolar leveduras de madeira em fase de decomposição para avaliação das mesmas quanto à capacidade de bioconversão da xilose, principal constituinte da fração hemicelulósica, em etanol. Foram obtidas 83 colônias de leveduras do isolamento, sendo que todas foram inoculadas em meio de xilose como fonte de carbono. Somente onze isolados não apresentaram capacidade de produção de etanol a partir de xilose, os isolados que exibiram essa capacidade apresentaram uma variação de 0,60 até 6,58 g L-1 de etanol. Além dos isolados, quinze linhagens pertencentes a espécies de leveduras já conhecidas como fermentadoras de xilose foram avaliadas quanto à produção de etanol. As linhagens pertencentes às espécies Spathaspora passalidarum (HMD1.3) e Candida shehatae (HM52.2) foram as maiores produtoras de etanol e não apresentaram diferenças significativas entre elas. Dentre todos os isolados obtidos, os isolados I38 e I54 não diferiram entre si, e foram os maiores produtores de etanol. O isolado I38 apresentou resultados significativamente maiores do que as linhagens padrão Spathaspora arborariae HM19.1A e Sheffersomyces stipitis NRRLY7124, enquanto o isolado I54 não diferiu da linhagem padrão HM19.1A, mas foi superior à linhagem NRRLY7124. / The importance given to biofuels drastically increased in the last years, because besides reducing oil dependence and spending on fossil energy, the use of renewable energy sources also results in a significant reduction of toxic gas emissions to the atmosphere. Plant biomass is one of the cheapest and most abundant renewable feedstock for sustainable development and is a promising source for biofuel production. Bioethanol produced from lignocellulosic fractions, known as second generation ethanol, have a promising market potential as a biofuel. However, the process technology is still in demonstration scale. There is a great need for improvements in the production process in order to reduce the production cost. If there was a total utilization of sugars in plant biomass, there would be greater profitability and competitiveness, making this process more feasible. The polysaccharides components of lignocellulosic material, such as cellulose and hemicellulose, by hydrolysis reaction can be transformed into simple sugars such as xylose and glucose, which can be used as substrate for fermentation. Some yeast strains not belonging to the genus Saccharomyces have the ability of bioconversion of pentoses (xylose and arabinose), components of the hemicellulose fraction, to ethanol. In this context, the aim of the present study was the isolation of yeasts from decaying wood, to assess their ability in bioconversion of xylose, the main constituent of the hemicellulosic fraction, to ethanol. Eighty-three colonies were obtained from the yeasts isolation, which all were inoculated in media containing xylose as carbon source. Only eleven strains did not showed the ability of ethanol production from xylose, the strains that exhibited this ability varied between 0.60 to 6.58 g L-1 of ethanol. In addition to the isolated strains, fifteen strains belonging to yeast species already known as xylose fermenters were assessed for ethanol production. The strains belonging to the species Spathaspora passalidarum (HMD1.3) and Candida shehatae (HM52.2) were the largest producers of ethanol and showed no significant differences between them. Among all obtained strains from isolation, I38 and I54 did not differed from each other, and were the largest producers of ethanol. The I38 strain showed results significantly higher than the standard strains Spathaspora arborariae HM19.1A and Sheffersomyces stipitis NRRLY7124, while the I54 strain did not differed from the standard strain HM19.1A, but was higher than the strain NRRLY7124.
64

Espectroscopia por FTIR de variedades híbridas de bagaço de cana-de-açucar pré-tratados para produção de etanol celulósico

Rodrigues, Leonarde do Nascimento 24 August 2012 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2017-06-09T14:37:53Z No. of bitstreams: 1 leonardedonascimentorodrigues.pdf: 25854217 bytes, checksum: 453640ec8891f48fcdefadcbf1a37740 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-06-27T13:30:39Z (GMT) No. of bitstreams: 1 leonardedonascimentorodrigues.pdf: 25854217 bytes, checksum: 453640ec8891f48fcdefadcbf1a37740 (MD5) / Made available in DSpace on 2017-06-27T13:30:39Z (GMT). No. of bitstreams: 1 leonardedonascimentorodrigues.pdf: 25854217 bytes, checksum: 453640ec8891f48fcdefadcbf1a37740 (MD5) Previous issue date: 2012-08-24 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / A energia é imprescindível para a economia e para o desenvolvimento do país. A iminente escassez de combustíveis fósseis e as atuais preocupações ambientais têm despertado uma nova corrida para as fontes de energia renovável. No Brasil, o uso do etanol de primeira geração é produzido por meio da fermentação do caldo de cana e o etanol de segunda geração ou etanol celulósico é produzido a partir do bagaço da cana-de-açúcar. O bagaço é normalmente queimado no próprio ambiente onde é produzido para geração de energia no processo de extração do caldo, podendo ser aproveitado para aumentar a produção de etanol celulósico. Neste trabalho, são apresentados resultados com base na utilização da espectroscopia no infravermelho por transformada de Fourier (FTIR) para caracterizar o processo de fragmentação do bagaço, visando à produção de etanol celulósico, a otimização do processo e ao entendimento teórico e experimental da espectroscopia por FTIR. A técnica de FTIR foi utilizada para caracterizar o bagaço pré-tratado de cinco variedades híbridas de cana-de-açúcar e para detectar diferenças entre essas variedades para produção de etanol. As amostras foram dividas da seguinte maneira: (a) Bagaço in natura; (b) Bagaço Extraído; (c) Celulignina; (d) Polpa celulósica. Foram caracterizadas 20 amostras. Em (a), as amostras foram apenas moídas com o objetivo de identificar as características ópticas do bagaço sem tratamento. Em (b), o bagaço foi pré-tratado com água e etanol para extração dos compostos não estruturais. Na etapa (c), o bagaço sofreu hidrólise ácida com ácido sulfúrico para romper a estrutura lignocelulósica e para remover o conteúdo de hemicelulose. Na etapa (d), o bagaço sofreu hidrólise alcalina com hidróxido de sódio para remover o maior conteúdo possível de lignina. Nas vibrações moleculares do bagaço in natura, foram obtidas bandas entre 1000 e 890 cm-1 que identificam a celulose; entre 1200 e 1000 cm-1 para hemicelulose e celulose; 1247 cm-1 para hemicelulose e lignina; entre 1430-1300 cm-1 com sobreposição para bandas de celulose, hemicelulose e lignina; entre 1610-1460 cm-1 para lignina; 1735 cm-1 para hemicelulose; entre 2920-2850 cm-1 para celulose; e entre 3800-3000 cm-1 para características de celulose cristalina. No processo de extração com água e etanol, não houve diferença. A hidrólise ácida foi efetiva na ruptura da estrutura lignocelulósica e na remoção de grande parte da hemicelulose, o que foi determinado pela diminuição ou pelo desaparecimento de algumas bandas. A hidrólise alcalina removeu parte da lignina e foi responsável pelas mudanças na estrutura lignocelulósica, comprovadas pelos deslocamentos de algumas bandas. Concluiu-se que o bagaço de cana pré-tratado com hidrólise ácida e alcalina tem ótimas condições de utilização para hidrólise enzimática e para fermentação a etanol e que as variedades de bagaço respondem de forma semelhante ao pré-tratamento. / Energy is indispensable for the economy and development of the Brazilian State. The imminent fossil fuels scarcity and current environmental concerns has attracted a new race for renewable energy sources. In Brazil, the use of first generation ethanol is produced by sugarcane juice fermentation and the second ethanol generation or cellulosic ethanol is produced from sugarcane bagasse. This residue is burned normaly in the place where is produced for energy generation in the juice extraction process, that can to be utilized for celulosic ethanol. In this context, the work present results based in use of optical Fourier transform infrared spectroscopy (FTIR) to characterize fragmentation process of sugarcane bagasse for ethanol cellulosic production and to otmize this process as well as to understand FTIR spectroscopy theory and experimentation. This technique was utilized to characterize pretreated bagass from five hybrid sugarcane varieties an to detect difference amont these varieties for ethanol production. Samples were divides as follow: (a) bagasse in nature; (b) bagasse extracted; (c) acid hidrolysis; (d) alkaline hidrolysis. 20 samples were characterized. In (a) samplas were only ground with objective to identify bagass optical characteristics no treatment. In (b) bagasse was pretreated with water and ethanol to extract non-structural compounds. In (c) bagasse suffered acid hydrolisis with sulfuric acid to disrupt bagasse lignocellulosic structure and to remove content hemicellulose and step (d) bagasse suffered hidrolisis alkaline with sodium hidroxide to remove most possible content of lignin. In molecular vibrations from in nature bagasse were obtained bands among 1000 and 890 cm-1 that identify cellulose charateristics, 1200 and 1000 cm-1 for hemicellulose and cellulose, 1247 cm-1 for hemicellulose and lignin, 1430 and 1300 cm-1 with superposition of cellulose, hemicellulose and lignin bands, among 1610 and 1460 cm-1 for lignin, 1735 cm-1 for hemicellulose, 2920 and 2850 cm-1 for cellulose and 3800 and 3000 cm-1 for crystalline cellulose characteristics. In the extraction process with water and ethanol were not observed difference. Acid hidrolysis was effective to disrupt lignocellulisic structure and to remove most part of hemicellulose, determined by decrease or disappearance of some bands. Alkaline hidrolysis removed part of lignin and was responsible by changes in the ligninocellusolic structure, provened by some bands displacements. It was concluded that pretreat sugarcane bagasse with acid and alkaline hidrolisis have great conditions of utilization to enzimatic hidrolisis and fermentation to ethanol and that bagasse varieties respond similarly to pretreatment.
65

Extração da hemicelulose do bagaço de cana-de-açúcar para produção de xilo-oligossacarídeos / Extraction of hemicellulose from sugarcane bagasse for xylooligosaccharides production

Michel Brienzo 26 March 2010 (has links)
Hemicelulose extraída do bagaço de cana-de-açúcar foi hidrolisada por enzimas de Thermoascus aurantiacus, Trichoderma reesei e Aspergilus niger para obtenção de xilo-oligossacarídeos (XOs). A hemicelulose foi extraída com hidróxido de sódio na presença de antraquinona, sulfito de sódio ou peróxido de hidrogênio. O uso de antraquinona ou sulfito aumentou o rendimento de extração, porém a hemicelulose apresentou baixa solubilidade em água, propriedade inadequada para a hidrólise enzimática. A extração da hemicellulose com peróxido de hidrogênio em meio alcalino foi otimizada através de um planejamento fatorial completo 24 variando-se a concentração de H2O2 de 2 a 6% (m/v), tempo de reação de 4 a 16 h, temperatura de 20 a 60°C e presença ou não de 0,5% de sulfato de magnésio. No ponto central o rendimento de extração de hemicelulose foi de 94,5% com remoção de mais que 88% da lignina. Um rendimento de 86% de hemicelulose com baixo teor de lignina (5,9%) foi obtido em 6% de peróxido de hidrogênio por 4h a 20°C. Nessa condição a hemicelulose apresentou massa molar de 21.000 g/mol, composição aproximada de 81% xilose, 4% de arabinose, 4% de glicose e 3% de ácidos urônicos, alta solubilidade em água (90 % em massa) e coloração amarelo claro. As enzimas usadas na hidrólise dessa hemicelulose foram produzidas pelo cultivo dos fungos em meio sólido contento farelo de trigo. Em todos os extratos foi observada baixa atividade de endoglucanase e β-xilosidase e elevadas atividades de endo-β-1,4-xilanase. A máxima atividade de xilanase foi produzida por T. aurantiacus (1500 U/g), enquanto A. niger produziu 500 U/g e T. reesei 240 U/g, em 5 dias de cultivo. O perfil de produção de XOs com enzimas de T. aurantiacus e T. reesei foi semelhante, o principal produto foi xilobiose, seguido por xilose, xilotriose, xilotetraose e xilopentaose, sendo esses XOs de cadeia linear. A hidrólise da hemicelulose com enzimas de A. niger produziu exclusivamente xilose, consequência da presença de elevada atividade de β-xilosidase. A velocidade de conversão da hemicelulose em XOs com as enzimas de T. reesei foi maior no início da reação (6 h), diminuindo a partir de 24 h, período em que inicia a produção de xilose. A influência da concentração de substrato e carga de xilanase na conversão da hemicelulose em XOs foi avaliada através de um planejamento experimental 22 com face centrada. A condição otimizada da hidrólise (2,6% substrato e 60 U/g de endo-β-1,4-xilanase) com o extrato de T. aurantiacus resultou em 42% de conversão em XOs. A otimização da hidrólise da hemicelulose com o extrato de T. reesei resultou em uma conversão máxima de 20%, com ótimo de 3,8 % de substrato e 87,5 U/g de endo-β-1,4-xilanase. A eficiência da hidrólise com enzimas de T. aurantiacus foi maior que a obtida com alguns extratos comerciais testados neste trabalho. Além disso, apresentaram capacidade de degradar hemiceluloses de diferentes fontes: bétula e semente de aveia, com composições variadas. Diferenças na composição de açúcares e teor de lignina não interferiram na ação dessas enzimas. A hidrólise enzimática mostrou-se mais apropriada para a produção de XOs do que a auto-hidrólise, que gerou predominantemente xilose e houve formação de furfural. Apesar do curto tempo de reação, a produção de XOs foi menor e há necessidade de purificação para obtenção de um produto final com características desejáveis. / Hemicellulose extracted from sugarcane bagasse was hydrolyzed by enzymes from Thermoascus aurantiacus, Trichoderma reesei and Aspergilus niger to cause the degradation of xylan to xylooligosaccharides (XOs). Hemicellulose was extracted with hydrogen peroxide in the presence of antraquinone, sodium sulphite or hydrogen peroxide. Hemicelluloses extracted with antraquinone or sulphite presented low solubility in water, which is not appropriated to enzymatic hydrolysis. To maximize the hemicellulose yields several extraction conditions were examined applying the 24 factorial design: H2O2 concentration from 2 to 6% (w/v), reaction time from 4 to 16 h, temperature from 20 to 60°C, and magnesium sulfate absence or presence (0.5%, w/v). This approach allowed selection of conditions for the extraction of low and high lignin content hemicellulose. At midpoint the yield of hemicellulose was 94.5% with more than 88% of lignin removed. Hemicellulose in 86% yield with low lignin content (5.9%) was obtained with 6% H2O2 treatment for 4 h and 20°C. This hemicellulose is much lighter in color than samples obtained at the midpoint condition and was found suitable for subsequent enzymatic hydrolysis. The molecular weight of hemicellulose was 21,000 g/mol with composition of aproximately 81% xylose, 4% arabinose, 4% glucose and 3% uronic acids, high water solubility (90 %). Enzymes for hemicellulose hydrolysis were produced by the fungi on wheat bran. Cellulases and hemicellulases were present in all extracts especially the endo-β-1,4-xylanase. The profile of production of XOs obtained on hydrolysis with enzymes from T. aurantiacus and T. reesei was similar, with the main product xylobiose, followed by xylose, xylotriose, xylotetraose and xylopentaose, and these XOs showed linear chain. The hydrolysis of hemicellulose with enzymes of A. niger produced exclusively xylose, a consequence of β-xylosidase content. The rate of conversion of hemicellulose in XOs with enzymes of T. reesei was higher at the beginning of the reaction (6 h), decreasing from 24 h, when starts the production of xylose. The influence of substrate concentration and loading of xylanase in conversion of hemicellulose to XOs was evaluated by an 22 full factorial design with centered face. Optimization of hydrolysis (2.6% substrate and 60 U/g endo-β-1,4-xylanase) with the extract of T. aurantiacus resulted in 42 % conversion XOs. The optimization with the extract of T. reesei resulted in a conversion of hemicellulose up to 20%, with optimal substrate 3.8% and 87.5 U/g endo-β-1,4-xylanase. The efficiency of hydrolysis by enzymes from T. aurantiacus was superior to commercial extracts, and showed ability to degrade hemicelluloses of different compositions (birchwood and oat spelt). The structural differences, such as branches and lignin content did not affect the action of these enzymes. The differences in the efficiency and extent of enzymatic hydrolysis by enzymes of these fungi might have occurred in function of differences in physicochemical properties and specific activity. The enzymatic hydrolysis was more appropriate for production of XOs than autohydrolysis, which generated predominantly xylose and formation of furfural. Despite of short reaction time, the production of XOs was low and purification is needed in order to obtain a final product with desirable characteristics.
66

Extração da hemicelulose do bagaço de cana-de-açúcar para produção de xilo-oligossacarídeos / Extraction of hemicellulose from sugarcane bagasse for xylooligosaccharides production

Brienzo, Michel 26 March 2010 (has links)
Hemicelulose extraída do bagaço de cana-de-açúcar foi hidrolisada por enzimas de Thermoascus aurantiacus, Trichoderma reesei e Aspergilus niger para obtenção de xilo-oligossacarídeos (XOs). A hemicelulose foi extraída com hidróxido de sódio na presença de antraquinona, sulfito de sódio ou peróxido de hidrogênio. O uso de antraquinona ou sulfito aumentou o rendimento de extração, porém a hemicelulose apresentou baixa solubilidade em água, propriedade inadequada para a hidrólise enzimática. A extração da hemicellulose com peróxido de hidrogênio em meio alcalino foi otimizada através de um planejamento fatorial completo 24 variando-se a concentração de H2O2 de 2 a 6% (m/v), tempo de reação de 4 a 16 h, temperatura de 20 a 60°C e presença ou não de 0,5% de sulfato de magnésio. No ponto central o rendimento de extração de hemicelulose foi de 94,5% com remoção de mais que 88% da lignina. Um rendimento de 86% de hemicelulose com baixo teor de lignina (5,9%) foi obtido em 6% de peróxido de hidrogênio por 4h a 20°C. Nessa condição a hemicelulose apresentou massa molar de 21.000 g/mol, composição aproximada de 81% xilose, 4% de arabinose, 4% de glicose e 3% de ácidos urônicos, alta solubilidade em água (90 % em massa) e coloração amarelo claro. As enzimas usadas na hidrólise dessa hemicelulose foram produzidas pelo cultivo dos fungos em meio sólido contento farelo de trigo. Em todos os extratos foi observada baixa atividade de endoglucanase e β-xilosidase e elevadas atividades de endo-β-1,4-xilanase. A máxima atividade de xilanase foi produzida por T. aurantiacus (1500 U/g), enquanto A. niger produziu 500 U/g e T. reesei 240 U/g, em 5 dias de cultivo. O perfil de produção de XOs com enzimas de T. aurantiacus e T. reesei foi semelhante, o principal produto foi xilobiose, seguido por xilose, xilotriose, xilotetraose e xilopentaose, sendo esses XOs de cadeia linear. A hidrólise da hemicelulose com enzimas de A. niger produziu exclusivamente xilose, consequência da presença de elevada atividade de β-xilosidase. A velocidade de conversão da hemicelulose em XOs com as enzimas de T. reesei foi maior no início da reação (6 h), diminuindo a partir de 24 h, período em que inicia a produção de xilose. A influência da concentração de substrato e carga de xilanase na conversão da hemicelulose em XOs foi avaliada através de um planejamento experimental 22 com face centrada. A condição otimizada da hidrólise (2,6% substrato e 60 U/g de endo-β-1,4-xilanase) com o extrato de T. aurantiacus resultou em 42% de conversão em XOs. A otimização da hidrólise da hemicelulose com o extrato de T. reesei resultou em uma conversão máxima de 20%, com ótimo de 3,8 % de substrato e 87,5 U/g de endo-β-1,4-xilanase. A eficiência da hidrólise com enzimas de T. aurantiacus foi maior que a obtida com alguns extratos comerciais testados neste trabalho. Além disso, apresentaram capacidade de degradar hemiceluloses de diferentes fontes: bétula e semente de aveia, com composições variadas. Diferenças na composição de açúcares e teor de lignina não interferiram na ação dessas enzimas. A hidrólise enzimática mostrou-se mais apropriada para a produção de XOs do que a auto-hidrólise, que gerou predominantemente xilose e houve formação de furfural. Apesar do curto tempo de reação, a produção de XOs foi menor e há necessidade de purificação para obtenção de um produto final com características desejáveis. / Hemicellulose extracted from sugarcane bagasse was hydrolyzed by enzymes from Thermoascus aurantiacus, Trichoderma reesei and Aspergilus niger to cause the degradation of xylan to xylooligosaccharides (XOs). Hemicellulose was extracted with hydrogen peroxide in the presence of antraquinone, sodium sulphite or hydrogen peroxide. Hemicelluloses extracted with antraquinone or sulphite presented low solubility in water, which is not appropriated to enzymatic hydrolysis. To maximize the hemicellulose yields several extraction conditions were examined applying the 24 factorial design: H2O2 concentration from 2 to 6% (w/v), reaction time from 4 to 16 h, temperature from 20 to 60°C, and magnesium sulfate absence or presence (0.5%, w/v). This approach allowed selection of conditions for the extraction of low and high lignin content hemicellulose. At midpoint the yield of hemicellulose was 94.5% with more than 88% of lignin removed. Hemicellulose in 86% yield with low lignin content (5.9%) was obtained with 6% H2O2 treatment for 4 h and 20°C. This hemicellulose is much lighter in color than samples obtained at the midpoint condition and was found suitable for subsequent enzymatic hydrolysis. The molecular weight of hemicellulose was 21,000 g/mol with composition of aproximately 81% xylose, 4% arabinose, 4% glucose and 3% uronic acids, high water solubility (90 %). Enzymes for hemicellulose hydrolysis were produced by the fungi on wheat bran. Cellulases and hemicellulases were present in all extracts especially the endo-β-1,4-xylanase. The profile of production of XOs obtained on hydrolysis with enzymes from T. aurantiacus and T. reesei was similar, with the main product xylobiose, followed by xylose, xylotriose, xylotetraose and xylopentaose, and these XOs showed linear chain. The hydrolysis of hemicellulose with enzymes of A. niger produced exclusively xylose, a consequence of β-xylosidase content. The rate of conversion of hemicellulose in XOs with enzymes of T. reesei was higher at the beginning of the reaction (6 h), decreasing from 24 h, when starts the production of xylose. The influence of substrate concentration and loading of xylanase in conversion of hemicellulose to XOs was evaluated by an 22 full factorial design with centered face. Optimization of hydrolysis (2.6% substrate and 60 U/g endo-β-1,4-xylanase) with the extract of T. aurantiacus resulted in 42 % conversion XOs. The optimization with the extract of T. reesei resulted in a conversion of hemicellulose up to 20%, with optimal substrate 3.8% and 87.5 U/g endo-β-1,4-xylanase. The efficiency of hydrolysis by enzymes from T. aurantiacus was superior to commercial extracts, and showed ability to degrade hemicelluloses of different compositions (birchwood and oat spelt). The structural differences, such as branches and lignin content did not affect the action of these enzymes. The differences in the efficiency and extent of enzymatic hydrolysis by enzymes of these fungi might have occurred in function of differences in physicochemical properties and specific activity. The enzymatic hydrolysis was more appropriate for production of XOs than autohydrolysis, which generated predominantly xylose and formation of furfural. Despite of short reaction time, the production of XOs was low and purification is needed in order to obtain a final product with desirable characteristics.
67

Purificação e caracterização bioquímica de uma β-xilosidase halotolerante de Colletotrichum graminicola / Purification and biochemical characterization of a halotolerant ß-xylosidase of Colletotrichum graminicola

Carvalho, Daniella Romano de 07 March 2017 (has links)
A fim de garantir a viabilidade econômica da produção de etanol de segunda geração é necessário o desenvolvimento de tecnologias eficientes para a hidrólise enzimática dos materiais lignocelulósicos. Além disso, o elevado consumo de água pelas biorrefinarias tem despertado grande atenção para a utilização de recursos hídricos não-potáveis, como a água do mar. Assim, atualmente busca-se por enzimas tolerantes a altas concentrações salinas, bem como aos subprodutos gerados e/ou acumulados nas etapas de pré-tratamento da biomassa. Nesse contexto, o objetivo deste trabalho foi a purificação e caracterização cinética e bioquímica de uma ß-xilosidase produzida por uma linhagem do fungo mesófilo Colletotrichum graminicola. A enzima purificada (Bxcg) apresentou conteúdo de carboidratos totais de 54% (m/m), ponto isoelétrico de 4,2 e uma massa molecular aparente de cerca de 130 kDa, que foi reduzida para cerca de 92 kDa após deglicosilação. A enzima mostrou boa tolerância a elevadas concentrações de sal e manteve cerca de 90% da atividade controle na presença de NaCl 0,5 mol L-1 (concentração média de NaCl na água do mar). A temperatura e pH ótimos de reação foram 65 ºC e 4,5, respectivamente, tanto na ausência quanto na presença de NaCl 0,5 mol L-1. Já na presença de NaCl 2,5 mol L-1 o pH ótimo de atividade foi alterado para 5,0. Bxcg permaneceu estável numa ampla faixa pH (4,0 - 7,5) tanto na ausência quanto na presença de sal. A enzima mostrou ótima estabilidade térmica e manteve completamente estável à 50 ºC após 24 horas de incubação. A presença de elevada concentração de NaCl (2,5 mol L-1) resultou num aumento na termoestabilidade da enzima. A atividade enzimática foi tolerante aos íons Ca2+, Sr2+, Co2+, Zn2+, Ni2+, Mn 2+, Mg2+, K+ e Na+. Na ausência de sal, Bxcg hidrolisou p-nitrofenil-?-D-xilopiranosídeo (pNP-XIL) com Vmáx de 348,8 ± 11,5 U mg-1, KM de 0,52 ± 0,02 mmol L-1 e alta eficiência catalítica (kcat/KM = 1432,7 ± 47,3 L mmol-1 s-1). Em presença de sal, a afinidade aparente de Bxcg pelo substrato foi levemente menor e a hidrólise ocorreu com Vmáx menor, resultando em eficiência catalítica cerca de 1,5 de vezes menor, se comparadas as condição de ausência de sal. A enzima apresentou atividade bifuncional de ?-xilosidase/?-L-arabinofuranosidase. Bxcg hidrolisou p-nitrofenil-?-L-arabinopiranosídeo com afinidade aparente cerca de 18 vezes menor (KM = 9,6 ± 0,5 mmol L-1) que a estimada para pNP-XIL e a hidrólise do substrato ocorreu com Vmáx de 148,4 ± 4,4 U mg-1 e eficiência catalítica de 33,1 ± 1,6 L mmol-1 s-1. A enzima foi fortemente inibida por xilose com KI de 3,3 mmol L-1. Bxcg foi capaz de hidrolisar xilooligossacarídeos até xilohexaose, inclusive aqueles com ramificação de ácido 4-O-metilglucurônico. Bxcg e uma endo-xilanase purificada do mesmo microrganismo apresentaram um forte efeito sinérgico (3,1 vezes) para hidrólise de xilana beechwood. A enzima mostrou-se tolerante aos solventes butanol, glicerol, tolueno e acetona, bem como aos surfactantes Triton X-100, Tween 80 e Tween 20, enquanto que o líquido iônico acetato de 1-etil-3-metilimidazólio inibiu fortemente a atividade enzimática. De uma maneira geral, Bxcg apresenta propriedades atraentes para a aplicação em processos de sacarificação da biomassa lignocelulósica, incluindo aqueles conduzidos em elevada salinidade e/ou em presença de compostos residuais gerados ou acumulados nas etapas de pré-tratamento da biomassa / In order to ensure the economic viability of the production of second-generation ethanol, it is necessary the development of efficient technologies for the enzymatic hydrolysis of lignocellulosic materials. In addition, the large consumption of water by biorefineries has attracted great attention for the use of non-potable water resources, such as seawater. Therefore, enzymes tolerant to high salt concentrations and the by-products generated and/or accumulated in the biomass pretreatment steps are widely studied. In this context, the objective of this study was the purification and kinetic and biochemical characterization of a ?-xylosidase produced by a strain of the mesophilic fungus Colletotrichum graminicola. The pure enzyme (Bxcg) showed a total carbohydrate content of 54% (w/w), isoelectric point of 4.2 and an apparent molecular weight of 130 kDa, which was reduced to 92 kDa after deglucosylation. The enzyme showed good tolerance to high salt concentrations and retained aproximately 90% of the control activity in the presence of 0.5 mol L-1 NaCl (NaCl concentration in seawater). The optimum reaction temperature and pH were 65 °C and 4.5, respectively, both in the absence and presence of 0.5 mol L-1 NaCl. In the presence of 2.5 mol L-1 NaCl, the optimum pH was altered to 5.0. Bxcg retained stable over a wide pH range (4.0 - 7.5) both in the absence and presence of salt. The enzyme showed excellent thermal stability and retained completely stable at 50 °C after 24 hours of incubation. The presence of high NaCl concentration (2.5 mol L-1) resulted in an increase in the thermostability of the enzyme. The enzymatic activity was tolerant to Ca2+, Sr2+, Co2+, Zn2+, Ni2+, Mn2+, Mg2+, K+ and Na+. In the absence of salt, Bxcg hydrolyzed p-nitrophenyl-?-D-xylopyranoside (pNP-XIL) with Vmax of 348.8 ± 11.5 U mg-1, KM of 0.52 ± 0.02 mmol L-1 and high catalytic efficiency (kcat/KM = 1432.7 ± 47.3 L mmol-1 s-1). In the presence of salt, the apparent affinity for the substrate was slightly lower and the hydrolysis occurred with smaller Vmax, resulting in catalytic efficiency 1.5 fold lower, when compared to the salt. The enzyme showed bifunctional ?-xylosidase/?-L-arabinofuranosidase activity. Bxcg hydrolyzed p-nitrophenyl-?-L-arabinopyranoside with apparent affinity 18-fold lower (KM = 9.6 ± 0.5 mmol L-1) than that estimated for pNP-XIL and substrate hydrolysis occurred with Vmax of 148.4 ± 4.4 U mg-1 and catalytic efficiency of 33.1 ± 1.6 L mmol-1 s-1. The enzyme was strongly inhibited by xylose with KI of 3.3 mmol L-1. Bxcg was able to hydrolyze xylooligosaccharides from xylohexaose, including those with 4-O-methyl-glucuronic acid branch. Bxcg and a pure endo-xylanase from the same microorganism had a strong synergistic effect (3.1 fold) for hydrolysis of xylan beechwood. The enzyme was tolerant to the butanol, glycerol, toluene and acetone solvents, as well as the Triton X-100, Tween 80 and Tween 20 surfactants, whereas the 1-ethyl-3-methylimidazolium acetate ionic liquid strongly inhibited the enzymatic activity. In summary, Bxcg has attractive properties for application in saccharification processes of the lignocellulosic biomass, particularly under high salinity and/or in the presence of residues of biomass pretreatment steps
68

Otimização da produção de β-xilosidase por Aspergillus fumigatus / Optimization of β-Xylosidase production by aspergillus fumigatus

Vieira, Fabíola Giovanna Nesello 10 June 2014 (has links)
Made available in DSpace on 2017-07-10T19:23:47Z (GMT). No. of bitstreams: 1 Fabiola G_ Nesello Vieira.pdf: 1352690 bytes, checksum: dde9077ce35994c9a408a58112929a03 (MD5) Previous issue date: 2014-06-10 / The abundant lignocellulosic biomass in agro-industrial waste can be reused as an inexpensive substrate for inducing the production of enzymes such as β-xylosidases. The purpose of this study was to analyze the production of β-xylosidase from Aspergillus fumigatus (PC-7S-2 M), isolated from the Atlantic Forest of the Dog Head State Park (Paraná, Brazil) and later identified by morphological and molecular (ITS) methods. The mesophilic fungus was grown at 28 °C in liquid culture media containing Czapeck and 1% of different agroindustrial residues (w/v): passion fruit peel, Ponkan peel, barley brewing residue, soy flakes and ripe banana peel. Inoculants of 105 conidia ml-1 were incubated for 7 days, filtered and assayed for β-xylosidase intracellular activity obtaining a maximum value of 15 U ml-1 of the enzyme in the presence of barley brewing residue after 4 days of cultivation. Then, it was used a Central Composite Rotational Design (CCRD) to optimize the production of β-xylosidase, using barley brewing residue as carbon source at a significance level of p<0.10 which generated a predicted model of 245.04 U ml-1. Model validation provided an average optimized result equal to 229.06 U ml-1 for the enzyme. Thus, the production of β-xylosidase increased in 1,500% over the initially obtained for A. fumigatus in the presence of the barley brewing residue, therefore, achieving 93.47% of the predicted model. This finding emphasizes the availability of A. fumigatus β-xylosidase production with possible applications in several biotechnological process. / A biomassa lignocelulósica abundante nos resíduos agroindustriais, pode ser reutilizada como substrato barato para induzir a produção de enzimas, como β-Xilosidases. O objetivo deste trabalho foi analisar a produção de β-Xilosidase de Aspergillus fumigatus (PC-7S-2 M), isolado da Mata Atlântica do Parque Estadual Cabeça do Cachorro (Paraná, Brasil) e posteriormente identificado por métodos morfológicos e moleculares (ITS). O fungo mesofílico foi cultivado à temperatura de 28 °C em meios líquidos de cultura Czapeck, contendo 1% de diferentes resíduos agroindustriais (w/v): casca de maracujá, casca de pokan, bagaço de cevada, flocos de soja e casca de banana madura. Inóculos de 105 conídios mL-1 foram incubados durante 7 dias, filtrados e submetidos a dosagem de β-Xilosidase intracelular, obtendo-se um valor máximo de 15 U ml-1 para a enzima na presença de bagaço de cevada com 4 dias de cultivo. Assim, utilizou-se um delineamento composto central rotacional (DCCR) para otimizar a produção de -Xilosidase, usando o bagaço de cevada como fonte de carbono em um nível de significância p < 0,10, o qual gerou um modelo predito de 245,04 U ml-1. A validação do modelo forneceu um resultado otimizado médio igual a 229,06 U ml-1 para a enzima. Assim, a produção de β-Xilosidase aumentou em 1.500% em relação à obtida inicialmente para o fungo A. fumigatus na presença de bagaço de cevada como fonte de carbono (15 U ml-1), permitindo, deste modo, alcançar 93,47 % do modelo predito. Este achado ressalta a viabilidade de produção de β-Xilosidase de A. fumigatus com possíveis aplicações em vários processos biotecnológicos.
69

Otimização da produção de &#946;-xilosidase por Aspergillus fumigatus / OPTIMIZATION OF &#946;-XYLOSIDASE PRODUCTION BY Aspergillus fumigatus

Vieira, Fabíola Giovanna Nesello 10 June 2014 (has links)
Made available in DSpace on 2017-05-12T14:47:00Z (GMT). No. of bitstreams: 1 Fabiola G_ Nesello Vieira.pdf: 1352690 bytes, checksum: dde9077ce35994c9a408a58112929a03 (MD5) Previous issue date: 2014-06-10 / The abundant lignocellulosic biomass in agro-industrial waste can be reused as an inexpensive substrate for inducing the production of enzymes such as &#946;-xylosidases. The purpose of this study was to analyze the production of &#946;-xylosidase from Aspergillus fumigatus (PC-7S-2 M), isolated from the Atlantic Forest of the Dog Head State Park (Paraná, Brazil) and later identified by morphological and molecular (ITS) methods. The mesophilic fungus was grown at 28 °C in liquid culture media containing Czapeck and 1% of different agroindustrial residues (w/v): passion fruit peel, Ponkan peel, barley brewing residue, soy flakes and ripe banana peel. Inoculants of 105 conidia ml-1 were incubated for 7 days, filtered and assayed for &#946;-xylosidase intracellular activity obtaining a maximum value of 15 U ml-1 of the enzyme in the presence of barley brewing residue after 4 days of cultivation. Then, it was used a Central Composite Rotational Design (CCRD) to optimize the production of &#946;-xylosidase, using barley brewing residue as carbon source at a significance level of p<0.10 which generated a predicted model of 245.04 U ml-1. Model validation provided an average optimized result equal to 229.06 U ml-1 for the enzyme. Thus, the production of &#946;-xylosidase increased in 1,500% over the initially obtained for A. fumigatus in the presence of the barley brewing residue, therefore, achieving 93.47% of the predicted model. This finding emphasizes the availability of A. fumigatus &#946;-xylosidase production with possible applications in several biotechnological process. / A biomassa lignocelulósica abundante nos resíduos agroindustriais, pode ser reutilizada como substrato barato para induzir a produção de enzimas, como &#946;-Xilosidases. O objetivo deste trabalho foi analisar a produção de &#946;-Xilosidase de Aspergillus fumigatus (PC-7S-2 M), isolado da Mata Atlântica do Parque Estadual Cabeça do Cachorro (Paraná, Brasil) e posteriormente identificado por métodos morfológicos e moleculares (ITS). O fungo mesofílico foi cultivado à temperatura de 28 °C em meios líquidos de cultura Czapeck, contendo 1% de diferentes resíduos agroindustriais (w/v): casca de maracujá, casca de pokan, bagaço de cevada, flocos de soja e casca de banana madura. Inóculos de 105 conídios mL-1 foram incubados durante 7 dias, filtrados e submetidos a dosagem de &#946;-Xilosidase intracelular, obtendo-se um valor máximo de 15 U ml-1 para a enzima na presença de bagaço de cevada com 4 dias de cultivo. Assim, utilizou-se um delineamento composto central rotacional (DCCR) para otimizar a produção de &#61538;-Xilosidase, usando o bagaço de cevada como fonte de carbono em um nível de significância p < 0,10, o qual gerou um modelo predito de 245,04 U ml-1. A validação do modelo forneceu um resultado otimizado médio igual a 229,06 U ml-1 para a enzima. Assim, a produção de &#946;-Xilosidase aumentou em 1.500% em relação à obtida inicialmente para o fungo A. fumigatus na presença de bagaço de cevada como fonte de carbono (15 U ml-1), permitindo, deste modo, alcançar 93,47 % do modelo predito. Este achado ressalta a viabilidade de produção de &#946;-Xilosidase de A. fumigatus com possíveis aplicações em vários processos biotecnológicos.
70

Produção de etanol 2G a partir de hemicelulose de bagaço de cana-de-açúcar utilizando Saccharomyces cerevisiae selvagem e geneticamente modificada imobilizadas

Milessi, Thais Suzane dos Santos 30 March 2017 (has links)
Submitted by Bruna Rodrigues (bruna92rodrigues@yahoo.com.br) on 2017-10-16T11:32:32Z No. of bitstreams: 1 TeseTSSM.pdf: 23662587 bytes, checksum: 4ef26b2b65e46560d905cc700258cd0d (MD5) / Approved for entry into archive by Ronildo Prado (producaointelectual.bco@ufscar.br) on 2017-10-31T16:29:33Z (GMT) No. of bitstreams: 1 TeseTSSM.pdf: 23662587 bytes, checksum: 4ef26b2b65e46560d905cc700258cd0d (MD5) / Approved for entry into archive by Ronildo Prado (producaointelectual.bco@ufscar.br) on 2017-10-31T16:29:42Z (GMT) No. of bitstreams: 1 TeseTSSM.pdf: 23662587 bytes, checksum: 4ef26b2b65e46560d905cc700258cd0d (MD5) / Made available in DSpace on 2017-10-31T16:41:50Z (GMT). No. of bitstreams: 1 TeseTSSM.pdf: 23662587 bytes, checksum: 4ef26b2b65e46560d905cc700258cd0d (MD5) Previous issue date: 2017-03-30 / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / In ethanol production process from hemicellulosic fraction, the use of xylooligomers (XOS) as substrate reduce the contamination risk, favoring its application at industrial scale. Thus, a biocatalyst, containing xylanases, xylose isomerase (XI) and yeast co-immobilized in calcium alginate gel, was developed and XOS simultaneous hydrolysis, isomerization and fermentation (SHIF) process was studied. Firstly, xylanases from Multifect CX XL A03139 (XAS-5), a commercial enzyme preparation, and the recombinant xylanase from Bacillus subtilis (XynA) were selected to compose biocatalyst beads. XAS-5 presented better conversion (78.7%) and higher xylose production in the hydrolysis of beechwood xylan, while XynA showed exclusive endoxylanase activity. The immobilization and stabilization of XynA were performed in chitosan-glutaraldehyde, chitosan-glyoxyl and agarose-glyoxyl. Although the enzyme was efficiently immobilized on all supports, the agarose-glyoxyl-XynA derivative was notable for exhibiting remarkable stabilization under tested conditions (8600 times). Studies of SHIF process were carried out with birchwood xylan, leading to ethanol production (0.160 g/g and 0.092 g/L.h) and xylose accumulation, which indicated XI activity decrease. Further experiments were then performed to to identify possible inhibitors of XI (pH, Ca2+, Mg2+ and xylooligosaccharides). Ca2+ was identified as an inhibitor, while Mg2+ acts as an activator of the enzyme, and both actions are potentiated at acidic pHs. XI is also inhibited by XOS, with a decrease of 31.6% in XI activity in the presence of 7.0 g/L of xylobiose. For this reason, it was decided to evaluate SIF process with a recombinant yeast, capable of expressing XI. In batch runs, GSE16-T18 (T18) yeast encapsulated in alginate gel was capable to ferment xylose efficiently, consuming 40 g/L of xylose in 4 h and producing 14.4 g/L of ethanol, with yield of 0.422 g/g and productivity of 3.61 g/L.h. Calcium alginate gel encapsulation also contributed to protect yeast from the action of inhibitors, such as acetic acid. The encapsulated T18 was able to perform 10 consecutive cycles in repeated batch (yeast extract-peptone medium with 40 g/L of xylose), keeping the same productivity and high yields. It also fermented efficiently sugarcane bagasse hydrolysate, containing 60 g/L of fermentable sugars and high grade of inhibitors. The modified yeast to be more tolerant to acetic acid, GSE16-T18 HAA1, was also studied, exhibiting superior performance in comparison to T18 for hydrolysate fermentations. Continuous experiments were conducted in a fixed bed reactor using the T18-HAA1 yeast immobilized, with different xylose concentrations (40, 60, 80 and 120 g/L) in the feed medium. The reactor was operated up to 15 days, without bacterial contamination, with yield of 0.45 g/g, productivity of 4.8 g/L.h and selectivity of 31 gethanol/gxylitol (60 g/L of xylose in the feed). For the concentrations higher than 60 g/L, the conversion decreased after 4 days of continuous operation, indicating loss of cell viability due to hazardous effect of ethanol when present at 30 g/L or more, as well as limitation of oxygen and nutrients in the system. / No processo de produção de etanol a partir da fração hemicelulósica, a utilização de xilooligômeros como substrato reduz o risco de contaminação, favorecendo o emprego da tecnologia em escala industrial. Para isso, um biocatalisador contendo xilanases, xilose isomerase (XI) e levedura co-imobilizadas em gel de alginato de cálcio foi desenvolvido e o processo de hidrólise, isomerização e fermentação simultâneos (SHIF) de xilooligômeros foi estudado. Primeiramente, as xilanases presentes no produto Multifect CX XL A03139 (XAS- 5) e a xilanase recombinante de Bacillus subtilis (XynA) foram selecionadas para compor os beads do biocatalisador. XAS-5 apresentou melhor conversão (78,7%) e maior produção de xilose na hidrólise da xilana de faia, enquanto XynA apresentou exclusiva atividade de endoxilanase. Realizou-se a imobilização e estabilização da XynA em quitosanaglutaraldeído, quitosana-glioxil e agarose-glioxil. Apesar da enzima ser eficientemente imobilizada nos três suportes, o derivado agarose-glioxil-XynA se destacou por apresentar uma estabilização notável nas condições testadas (8600 vezes). Estudos do processo SHIF foram realizados com xilana de bétula, observando-se produção de etanol (0,160 g/g e 0,092 g/L.h) e acúmulo de xilose, indicando redução da atividade da XI. Realizou-se então, um estudo para identificar possíveis inibidores da XI (pH, Ca2+, Mg2+ e XOS), constatando-se que Ca2+ é um inibidor enquanto Mg2+ é um ativador da enzima, sendo suas ações potencializadas em pHs ácidos. Comprovou-se também que XI é inibida por XOS, observando-se queda da atividade de XI (31,6%) na presença de 7,0 g/L de xilobiose. Desta forma, tornou-se interessante avaliar o processo SIF com uma levedura recombinante, capaz de expressar XI. Em ensaios em batelada, a levedura GSE16-T18 (T18), encapsulada em gel de alginato, mostrou-se eficiente na fermentação de xilose, consumindo 40 g/L de xilose em 4 h e produzindo 14,4 g/L de etanol, com rendimento de 0,422 g/g e produtividade de 3,61 g/L.h. O encapsulamento em gel de alginato de cálcio também protegeu a levedura da ação de inibidores, como o ácido acético. A T18 encapsulada foi capaz de realizar 10 ciclos consecutivos em bateladas repetidas (meio contendo extrato de levedura, peptona e 40 g/L de substrato), mantendo mesma produtividade e elevado rendimento, além de fermentar eficientemente hidrolisado hemicelulósico de bagaço de cana, contendo 60 g/L de açúcares fermentescíveis e alto teor de inibidores. A levedura GSE16-T18 HAA1, modificada geneticamente para ser mais tolerante ao ácido acético, foi também estudada, com resultados superiores a T18 nas fermentações de hidrolisado. Fermentações em modo contínuo foram realizadas em reator de leito fixo utilizando a levedura T18-HAA1 imobilizada, com diferentes concentrações de xilose na alimentação (40, 60, 80 e 120 g/L). O reator foi operado por até 15 dias, sem ocorrência de contaminação por bactérias, com rendimento 0,45 g/g, produtividade em etanol de 4,8 g/L.h e seletividade de 31 getanol/gxilitol (60 g/L de xilose na alimentação). Para as concentrações superiores a 60 g/L, a conversão diminuiu após 4 dias de operação contínua, indicando perda de viabilidade celular devido à ação do etanol quando presente em concentrações acima de 30 g/L e da limitação de oxigênio e nutrientes no sistema.

Page generated in 0.0317 seconds