• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 136
  • 28
  • 20
  • 19
  • 10
  • 6
  • 6
  • 5
  • 5
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 285
  • 285
  • 106
  • 68
  • 46
  • 40
  • 39
  • 38
  • 37
  • 35
  • 35
  • 33
  • 32
  • 29
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
271

CHM (Chemo-Hydro-Mechanical) Behavior of Barmer-1 Bentonite in the Context of Deep Geological Repositories for Safe Disposal of Nuclear Waste

Ravi, K January 2013 (has links) (PDF)
Deep geological repository (DGR) for disposal of high-level radioactive waste (HLW) is designed to rely on successive superimposed barrier systems to isolate the waste from the biosphere. This multiple barrier system comprises the natural geological barrier provided by the repository host rock and its surrounding and an engineered barrier system (EBS). The EBS represents the synthetic, engineered materials placed within the natural barrier, comprising array of components such as waste form, waste canisters, buffer materials, backfill and seals. The buffer will enclose the waste canisters from all directions and act as a barrier between canisters and host rock of the repository. It is designed to stabilise the evolving thermo-hydro-mechanical-chemical stresses in the repository over a long period (nearly 1000 years) to retard radionuclides from reaching biosphere. Bentonite clay or bentonite-sand mix have been chosen as buffer materials in EBS design in various countries pursuing deep geological repository method. The bentonite buffer is the most important barrier among the other EBS components for a geological repository. The safety of repository depends to a large extent on proper functioning of buffer over a very long period of time during which it must remain physically, chemically and mineralogically stable. The long term stability of bentonite buffer depends on varying temperature and evolution of groundwater composition of host rocks in a complex way. The groundwater in the vicinity of deep crystalline rock is often characterized by high solute concentrations and the geotechnical engineering response of bentonite buffer could be affected by the dissolved salt concentration of the inflowing ground water. Also during the initial period, radiogenic heat produced in waste canisters would radiate into buffer and the heat generated would lead to drying and some shrinkage of bentonite buffer close to canister. This could alter the dry density, moisture content and in turn the hydro-mechanical properties of bentonite buffer in DGR conditions. India has variety of bentonite deposits in North-Western states of Rajasthan and Gujarat. Previous studies on Indian bentonites suggest that bentonite from Barmer district of Rajasthan (termed as Barmer-1 bentonite) is suitable to serve as buffer material in DGR conditions. Nuclear power agencies of several countries have identified suitable bentonites for use as buffer in DGR through laboratory experiments and large scale underground testing facilities. Physico-chemical, mineralogical and engineering properties of Kunigel VI, Kyungju, GMZ, FoCa clay, MX-80, FEBEX and Avonseal bentonites have been extensively studied by Japan, South Korea, China, Belgium, Sweden, Spain, Canada. It is hence essential to examine the suitability of Barmer-1 bentonite as potential buffer in DGR and compare its physico-chemical and hydromechanical properties with bentonite buffers identified by other countries. The significant factors that impact the long-term stability of bentonite buffer in DGR include variations in moisture content, dry density and pore water chemistry. With a view to address these issues, the hydromechanical response of 70 % Barmer-1 bentonite + 30 % river sand mix (termed bentonite enhanced sand, BES specimens) under varying moisture content, dry density and pore water salt concentration conditions have been examined. The broad scope of the work includes: 1) Characterise the physico-chemical and hydro-mechanical properties of Barmer-1 bentonite from Rajasthan, India and compare its properties with bentonite buffers reported in literature. 2) Examine the influence of variations in dissolved salt concentration (of infiltrating solution), dry density and moisture content of compacted BES specimens on their hydro-mechanical response; the hydro-mechanical properties include, swell pressure, soil water characteristic curve (SWCC), unsaturated hydraulic conductivity, moisture diffusivity and unconfined compression strength. Organization of thesis: After the first introductory chapter, a detailed review of literature is performed to highlight the need for detailed characterisation of physico-chemical and hydromechanical properties of Barmer-1 bentonite for its possible application in DGR in the Indian context. Further, existing literature on hydro-mechanical response of bentonite buffer to changes in physical (degree of saturation/moisture content, dry density) and physico-chemical (solute concentration in pore water) is reviewed to define the scope and objectives of the present thesis in Chapter 2. Chapter 3 presents a detailed experimental programme of the study. Chapter 4 characterises Barmer-1 bentonite for physico-chemical (cation exchange capacity, pore water salinity, exchangeable sodium percentage) and hydro-mechanical properties, such as, swell pressure, saturated permeability, soil water characteristic curve (SWCC) and unconfined compression strength. The properties of Barmer-1 bentonite are compared with bentonite buffers reported in literature and generalized equations for determining swell pressure and saturated permeability coefficient of bentonite buffers are arrived at. Chapter 5 describes a method to determine solute concentrations in the inter-lamellar and free-solutions of compacted BES (bentonite enhanced sand) specimens. The solute concentrations in micro and macro pore solutions are used to examine the role of osmotic flow on swell pressures developed by compacted BES specimens (dry density 1.50-2.00 Mg/m3) inundated with distilled water and NaCl solutions (1000-5000 mg/L). The number of hydration layers developed by the compacted BES specimens on inundation with salt solutions in constant volume swell pressure tests is controlled by cation hydration/osmotic flow. The cation hydration of specimens compacted to dry density of 2.00 Mg/m3 is mainly driven by matric suction prevailing in the clay microtructure as the number of hydration layers developed at wetting equilibrium are independent of the total dissolved solids (TDS) of the wetting solution. Consequently, the swell pressures of specimens compacted to 2.00 Mg/m3 were insensitive to the salt concentration of the inundating solution. The cation hydration of specimens compacted to dry density of 1.50 Mg/m3 is driven by both matric suction (prevailing in the clay micro-structure) and osmotic flow as the number of hydration layers developed at wetting equilibrium is sensitive to the TDS of the wetting solution. Expectedly, the swell pressures of specimens compacted to 1.50 Mg/m3 responded to changes in salt concentration of the inundating solution. The 1.75 Mg/m3 specimens show behaviour that is intermediate to the 1.50 and 2.00 Mg/m3 series specimens. Chapter 6 examines the influence of initial degree of saturation on swell pressures developed by the compacted BES specimens (dry density range: 1.40- 2.00 Mg/m3) on wetting with distilled water from micro-structural considerations. The micro-structure of the bentonite specimens are examined in the compacted and wetted states by performing X-ray diffraction measurements. The initial degree of saturation is varied by adding requisite amount of distilled water to the oven-dried BES mix and compacting the moist mixes to the desired density. The montmorillonite fraction in the BES specimens is responsible for moisture absorption during compaction and development of swell pressure in the constant volume oedometer tests. Consequently, it was considered reasonable to calculate degree of saturation based on EMDD (effective montmorillonite dry density) values and correlate the developed swell pressure values with degree of saturation of montmorillonite voids (Sr,MF). XRD measurements with compacted and wetted specimens demonstrated that if specimens of density series developed similar number of hydration layers on wetting under constant volume condition they exhibited similar swell pressures, as was the case for specimens belonging to 1.40 and 1.50 Mg/m3 series. With specimens belonging to 1.75 and 2.00 Mg/m3 series, greater number of hydration layers were developed by specimens that were less saturated initially (smaller initial Sr,MF) and consequently such specimens developed larger swell pressures. When specimens developed similar number of hydration layers in the wetted state, the compaction dry density determined the swell pressure. Chapter 7 examines the influence of salt concentration of infiltrating solution (sodium chloride concentration ranges from 1000- 5000 mg/L) on SWCC relations, unsaturated permeability and moisture diffusivity of compacted BES specimens. Analysis of the experimental and Brooks and Corey best fit plots revealed that infiltration of sodium chloride solutions had progressively lesser influence on the micro-structure and consequently on the SWCC relations with increase in dry density of the compacted specimens. The micro-structure and SWCC relations of specimens compacted to 1.50 Mg/m3 were most affected, specimens compacted to 1.75 Mg/m3 were less affected, while specimens compacted to 2.00 Mg/m3 were unaffected by infiltration of sodium chloride solutions. Variations in dry density of compacted bentonite impacts the pore space available for moisture flow, while, salinity of wetting fluid impacts the pore structure from associated physico-chemical changes in clay structure. Experimental results showed that the unsaturated permeability coefficient is insensitive to variations in dry density and solute concentration of wetting liquid, while, the effective hydraulic diffusivity is impacted by variations in these parameters. Chapter 8 summarises the major findings of the study.
272

CHM (Chemo-Hydro-Mechanical) Behavior of Barmer-1 Bentonite in the Context of Deep Geological Repositories for Safe Disposal of Nuclear Waste

Ravi, K January 2013 (has links) (PDF)
Deep geological repository (DGR) for disposal of high-level radioactive waste (HLW) is designed to rely on successive superimposed barrier systems to isolate the waste from the biosphere. This multiple barrier system comprises the natural geological barrier provided by the repository host rock and its surrounding and an engineered barrier system (EBS). The EBS represents the synthetic, engineered materials placed within the natural barrier, comprising array of components such as waste form, waste canisters, buffer materials, backfill and seals. The buffer will enclose the waste canisters from all directions and act as a barrier between canisters and host rock of the repository. It is designed to stabilise the evolving thermo-hydro-mechanical-chemical stresses in the repository over a long period (nearly 1000 years) to retard radionuclides from reaching biosphere. Bentonite clay or bentonite-sand mix have been chosen as buffer materials in EBS design in various countries pursuing deep geological repository method. The bentonite buffer is the most important barrier among the other EBS components for a geological repository. The safety of repository depends to a large extent on proper functioning of buffer over a very long period of time during which it must remain physically, chemically and mineralogically stable. The long term stability of bentonite buffer depends on varying temperature and evolution of groundwater composition of host rocks in a complex way. The groundwater in the vicinity of deep crystalline rock is often characterized by high solute concentrations and the geotechnical engineering response of bentonite buffer could be affected by the dissolved salt concentration of the inflowing ground water. Also during the initial period, radiogenic heat produced in waste canisters would radiate into buffer and the heat generated would lead to drying and some shrinkage of bentonite buffer close to canister. This could alter the dry density, moisture content and in turn the hydro-mechanical properties of bentonite buffer in DGR conditions. India has variety of bentonite deposits in North-Western states of Rajasthan and Gujarat. Previous studies on Indian bentonites suggest that bentonite from Barmer district of Rajasthan (termed as Barmer-1 bentonite) is suitable to serve as buffer material in DGR conditions. Nuclear power agencies of several countries have identified suitable bentonites for use as buffer in DGR through laboratory experiments and large scale underground testing facilities. Physico-chemical, mineralogical and engineering properties of Kunigel VI, Kyungju, GMZ, FoCa clay, MX-80, FEBEX and Avonseal bentonites have been extensively studied by Japan, South Korea, China, Belgium, Sweden, Spain, Canada. It is hence essential to examine the suitability of Barmer-1 bentonite as potential buffer in DGR and compare its physico-chemical and hydromechanical properties with bentonite buffers identified by other countries. The significant factors that impact the long-term stability of bentonite buffer in DGR include variations in moisture content, dry density and pore water chemistry. With a view to address these issues, the hydromechanical response of 70 % Barmer-1 bentonite + 30 % river sand mix (termed bentonite enhanced sand, BES specimens) under varying moisture content, dry density and pore water salt concentration conditions have been examined. The broad scope of the work includes: 1) Characterise the physico-chemical and hydro-mechanical properties of Barmer-1 bentonite from Rajasthan, India and compare its properties with bentonite buffers reported in literature. 2) Examine the influence of variations in dissolved salt concentration (of infiltrating solution), dry density and moisture content of compacted BES specimens on their hydro-mechanical response; the hydro-mechanical properties include, swell pressure, soil water characteristic curve (SWCC), unsaturated hydraulic conductivity, moisture diffusivity and unconfined compression strength. Organization of thesis: After the first introductory chapter, a detailed review of literature is performed to highlight the need for detailed characterisation of physico-chemical and hydromechanical properties of Barmer-1 bentonite for its possible application in DGR in the Indian context. Further, existing literature on hydro-mechanical response of bentonite buffer to changes in physical (degree of saturation/moisture content, dry density) and physico-chemical (solute concentration in pore water) is reviewed to define the scope and objectives of the present thesis in Chapter 2. Chapter 3 presents a detailed experimental programme of the study. Chapter 4 characterises Barmer-1 bentonite for physico-chemical (cation exchange capacity, pore water salinity, exchangeable sodium percentage) and hydro-mechanical properties, such as, swell pressure, saturated permeability, soil water characteristic curve (SWCC) and unconfined compression strength. The properties of Barmer-1 bentonite are compared with bentonite buffers reported in literature and generalized equations for determining swell pressure and saturated permeability coefficient of bentonite buffers are arrived at. Chapter 5 describes a method to determine solute concentrations in the inter-lamellar and free-solutions of compacted BES (bentonite enhanced sand) specimens. The solute concentrations in micro and macro pore solutions are used to examine the role of osmotic flow on swell pressures developed by compacted BES specimens (dry density 1.50-2.00 Mg/m3) inundated with distilled water and NaCl solutions (1000-5000 mg/L). The number of hydration layers developed by the compacted BES specimens on inundation with salt solutions in constant volume swell pressure tests is controlled by cation hydration/osmotic flow. The cation hydration of specimens compacted to dry density of 2.00 Mg/m3 is mainly driven by matric suction prevailing in the clay microtructure as the number of hydration layers developed at wetting equilibrium are independent of the total dissolved solids (TDS) of the wetting solution. Consequently, the swell pressures of specimens compacted to 2.00 Mg/m3 were insensitive to the salt concentration of the inundating solution. The cation hydration of specimens compacted to dry density of 1.50 Mg/m3 is driven by both matric suction (prevailing in the clay micro-structure) and osmotic flow as the number of hydration layers developed at wetting equilibrium is sensitive to the TDS of the wetting solution. Expectedly, the swell pressures of specimens compacted to 1.50 Mg/m3 responded to changes in salt concentration of the inundating solution. The 1.75 Mg/m3 specimens show behaviour that is intermediate to the 1.50 and 2.00 Mg/m3 series specimens. Chapter 6 examines the influence of initial degree of saturation on swell pressures developed by the compacted BES specimens (dry density range: 1.40- 2.00 Mg/m3) on wetting with distilled water from micro-structural considerations. The micro-structure of the bentonite specimens are examined in the compacted and wetted states by performing X-ray diffraction measurements. The initial degree of saturation is varied by adding requisite amount of distilled water to the oven-dried BES mix and compacting the moist mixes to the desired density. The montmorillonite fraction in the BES specimens is responsible for moisture absorption during compaction and development of swell pressure in the constant volume oedometer tests. Consequently, it was considered reasonable to calculate degree of saturation based on EMDD (effective montmorillonite dry density) values and correlate the developed swell pressure values with degree of saturation of montmorillonite voids (Sr,MF). XRD measurements with compacted and wetted specimens demonstrated that if specimens of density series developed similar number of hydration layers on wetting under constant volume condition they exhibited similar swell pressures, as was the case for specimens belonging to 1.40 and 1.50 Mg/m3 series. With specimens belonging to 1.75 and 2.00 Mg/m3 series, greater number of hydration layers were developed by specimens that were less saturated initially (smaller initial Sr,MF) and consequently such specimens developed larger swell pressures. When specimens developed similar number of hydration layers in the wetted state, the compaction dry density determined the swell pressure. Chapter 7 examines the influence of salt concentration of infiltrating solution (sodium chloride concentration ranges from 1000- 5000 mg/L) on SWCC relations, unsaturated permeability and moisture diffusivity of compacted BES specimens. Analysis of the experimental and Brooks and Corey best fit plots revealed that infiltration of sodium chloride solutions had progressively lesser influence on the micro-structure and consequently on the SWCC relations with increase in dry density of the compacted specimens. The micro-structure and SWCC relations of specimens compacted to 1.50 Mg/m3 were most affected, specimens compacted to 1.75 Mg/m3 were less affected, while specimens compacted to 2.00 Mg/m3 were unaffected by infiltration of sodium chloride solutions. Variations in dry density of compacted bentonite impacts the pore space available for moisture flow, while, salinity of wetting fluid impacts the pore structure from associated physico-chemical changes in clay structure. Experimental results showed that the unsaturated permeability coefficient is insensitive to variations in dry density and solute concentration of wetting liquid, while, the effective hydraulic diffusivity is impacted by variations in these parameters. Chapter 8 summarises the major findings of the study.
273

Développement d'une nouvelle technologie de cryothérapie Corps Entier / Development of a new technology of whol-body Cryotherapy (WBC) chamber

Bouzigon, Romain 05 December 2016 (has links)
Cette thèse a été effectuée sous le couvert d’une convention CIFRE issue d’une collaboration entre la Société Cryantal (Lognes, France) et les laboratoires universitaires C3S (EA 4660) et MOVE (EA 6314) de Franche-Comté et de Poitiers. Elle a été articulée autour du développement d’une nouvelle technologie de chambre de Cryothérapie Corps Entier (CCE). Le travail mené au cours de ces quatre années a eu pour objectifs : 1) L’identification des besoins technologiques et méthodologiques à partir d’études conduites sur le terrain et de l’analyse de la littérature scientifique ; 2) Le développement d’un prototype de chambre CCE à partir des besoins identifiés ; 3) La validation technologique du prototype en vue de son industrialisation ; 4) D’apporter des perspectives d’évolutions futures pour le développement du prototype afin qu’il devienne une chambre CEE commercialisable. Afin de répondre à ces objectifs, la thèse a été divisée en deux parties distinctes.La première partie met en évidence les applications pratiques et les besoins technologiques afin d’identifier les limites et avantages des différentes méthodes et techniques utilisées en vue du développement d’un nouveau prototype de chambre CCE. Les études conduites sur le terrain dans les conditions réelles de compétition ont montré que la CCE n’était pas vécue comme une contrainte importante par les athlètes et qu’elle leur permettait d’améliorer la qualité de leur sommeil perçu. Nous avons également montré que des individus avec un indice de masse corporel moins élevé supportaient moins bien les expositions au froid extrême en cabine comparé à ceux possédant un indice de masse corporel plus important. La revue de littérature scientifique a mis en évidence le manque crucial de données valides concernant les températures d’exposition dans les chambres et cabines. Elle pointe également pour la première fois, l’ensemble des protocoles d’expositions utilisés à ce jour dans les domaines d’applications relatifs aux pathologies traumatiques et de récupération physique. Elle crée le lien indispensable entre les différents domaines d’utilisation de la CCE et les différentes technologies utilisées.La seconde partie expose l’ensemble du développement technologique du prototype de la nouvelle chambre CCE, sa validation et son optimisation pour pouvoir prétendre à sa commercialisation. Elle comporte une étude scientifique de validation technologique du prototype de chambre de CCE basé sur la variation de la température cutanée des individus exposés. Les résultats ont montré que les variations de température cutanée engendrées par l’exposition avec la nouvelle technologie étaient similaires aux variations rapportées avec les autres technologies existantes. Les mesures préliminaires réalisées sur le prototype ont permis d’apporter des perspectives d’évolutions futures en vue de la commercialisation de la chambre. / This thesis has been completed as part of a CIFRE agreement between the research and development department of the Cryantal Company (Lognes, France) and the C3S (EA4660) and MOVE (EA6314) laboratories from the Universities of Franche-Comté and Poitiers. The aim of the thesis was the development of a new technology of whole-body Cryotherapy (WBC) chamber. The various studies that we conducted centred on : – the identification of technological and methodological requirements from field studies and the analysis of scientific literature; – the development of a WBC chamber prototype according to the identified requirements; – the technological validation of the prototype to its industrialization; and – the evolution of the prototype toward a marketable version. The thesis was divided into two parts. The first part highlights the practical applications and the technological requirements to identify the limits and the advantages of the existing methodologies and technologies in order to develop a new WBC chamber device. Studies performed in the field during competitions showed that WBC is well tolerated by athletes and can be used during heavy competition periods and/or during training periods. We also demonstrated that female athletes with lower body-mass indexes seem to be much more sensitive to cold than female athletes with higher body-mass indexes. The literature review reported a lack of data concerning the actual temperature inside the WBC chamber and cabin. The lack of methodological information for the exposure protocol was also pointed out. It creates the link between the field of application of the WBC and the different technology used. The second part presents the technological development of the new WBC chamber prototype, its validation, and its optimisation in order to be commercialized. This part includes a validation study of the prototype based on the effects of a 3-minute exposure on the skin temperature decrease of exposed individuals. The results showed a similar decrease to those observed with other WBC existing technologies. This is certainly due to the homogeneity of the temperature of exposure and the new technology developed. Preliminary measurements of the prototype allowed for the prospect of the commercialization of this new WBC chamber.
274

3D Navigation with Six Degrees-of-Freedom using a Multi-Touch Display

Ortega, Francisco Raul 07 November 2014 (has links)
With the introduction of new input devices, such as multi-touch surface displays, the Nintendo WiiMote, the Microsoft Kinect, and the Leap Motion sensor, among others, the field of Human-Computer Interaction (HCI) finds itself at an important crossroads that requires solving new challenges. Given the amount of three-dimensional (3D) data available today, 3D navigation plays an important role in 3D User Interfaces (3DUI). This dissertation deals with multi-touch, 3D navigation, and how users can explore 3D virtual worlds using a multi-touch, non-stereo, desktop display. The contributions of this dissertation include a feature-extraction algorithm for multi-touch displays (FETOUCH), a multi-touch and gyroscope interaction technique (GyroTouch), a theoretical model for multi-touch interaction using high-level Petri Nets (PeNTa), an algorithm to resolve ambiguities in the multi-touch gesture classification process (Yield), a proposed technique for navigational experiments (FaNS), a proposed gesture (Hold-and-Roll), and an experiment prototype for 3D navigation (3DNav). The verification experiment for 3DNav was conducted with 30 human-subjects of both genders. The experiment used the 3DNav prototype to present a pseudo-universe, where each user was required to find five objects using the multi-touch display and five objects using a game controller (GamePad). For the multi-touch display, 3DNav used a commercial library called GestureWorks in conjunction with Yield to resolve the ambiguity posed by the multiplicity of gestures reported by the initial classification. The experiment compared both devices. The task completion time with multi-touch was slightly shorter, but the difference was not statistically significant. The design of experiment also included an equation that determined the level of video game console expertise of the subjects, which was used to break down users into two groups: casual users and experienced users. The study found that experienced gamers performed significantly faster with the GamePad than casual users. When looking at the groups separately, casual gamers performed significantly better using the multi-touch display, compared to the GamePad. Additional results are found in this dissertation.
275

Theoretical and experimental study of optical solutions for analog-to-digital conversion of high bit-rate signals / Étude théorique et expérimentale de techniques optiques pour la conversion analogique-numérique de signaux de communication à très haut débit

Nguyen, Trung-Hiên 19 November 2015 (has links)
Les formats de modulation bidimensionnels (i.e. basés sur l’amplitude et la phase de l’onde porteuse) ont gagné depuis peu le domaine des transmissions par fibre optique grâce aux progrès conjoints de l’électronique rapide et du traitement du signal, indispensables pour réaliser les récepteurs opto-électroniques utilisant la détection cohérente des signaux optiques. Pour pallier les limites actuelles en rapidité de commutation des circuits intégrés électroniques, une voie de recherche a été ouverte il y a quelques années, consistant à utiliser des technologies optiques pour faciliter la parallélisation du traitement du signal, notamment dans l’étape d’échantillonnage ultra-rapide du signal rendu possible par des horloges optiques très performantes. Le thème principal de cette thèse concerne l’étude théorique et expérimentale de la fonction de conversion analogique-numérique (ADC) de signaux optiques par un récepteur opto-électronique cohérent, associant les étapes d’échantillonnage optique linéaire, de conversion analogique-numérique et de traitement du signal. Un prototype, utilisant une solution originale pour la source d’échantillonnage, est modélisé, réalisé et caractérisé, permettant la reconstruction temporelle de signaux optiques modulés selon divers formats : NRZ, QPSK, 16-QAM. Les limitations optiques et électroniques du système sont analysées, notamment l’impact sur la reconstruction des signaux de divers paramètres : le taux d’extinction de la source optique, les paramètres de l’ADC (bande passante BW, temps d’intégration et nombre effectif de bits ENOB). Par ailleurs, de nouveaux algorithmes de traitement du signal sont proposés dans le cadre de la transmission optique cohérente à haut débit utilisant des formats de modulation bidimensionnels (amplitude et phase) : deux solutions sont proposées pour la compensation du déséquilibre de quadrature IQ dans les transmissions mono-porteuses: une méthode originale de l’estimation du maximum du rapport signal sur bruit ainsi qu’une nouvelle structure de compensation et d’égalisation conjointes; ces deux méthodes sont validées expérimentalement et numériquement avec un signal 16-QAM. Par ailleurs, une solution améliorée de récupération de porteuse (décalage de fréquence et estimation de la phase), basée sur une décomposition harmonique circulaire de la fonction de maximum de vraisemblance logarithmique, est validée numériquement pour la première fois dans le contexte des transmissions optiques (jusqu’à une modulation de 128-QAM). Enfin les outils développés dans ce travail ont finalement permis la démonstration d’une transmission sur 100 km d’un signal QPSK à 10 Gbaud fortement limité par un bruit de phase non linéaire et régénéré optiquement à l’aide d’un limiteur de puissance préservant la phase basé sur une nanocavité de cristal photonique. / Bi-dimensional modulation formats based on amplitude and phase signal modulation, are now commonly used in optical communications thanks to breakthroughs in the field of electronic and digital signal processing (DSP) required in coherent optical receivers. Photonic solutions could compensate for nowadays limitations of electrical circuits bandwidth by facilitating the signal processing parallelization. Photonic is particularly interesting for signal sampling thanks to available stable optical clocks. The heart of the present work concerns analog-to-digital conversion (ADC) as a key element in coherent detection. A prototype of linear optical sampling using an original solution for the optical sampling source, is built and validated with the successful equivalent time reconstruction of NRZ, QPSK and 16-QAM signals. Some optical and electrical limitations of the system are experimentally and numerically analyzed, notably the extinction ratio of the optical source or the ADC parameters (bandwidth, integration time, effective number of bits ENOB). Moreover, some new DSPs tools are developed for optical transmission using bi-dimensional modulation formats (amplitude and phase). Two solutions are proposed for IQ quadrature imbalance compensation in single carrier optical coherent transmission: an original method of maximum signal-to-noise ratio estimation (MSEM) and a new structure for joint compensation and equalization; these methods are experimentally and numerically validated with 16-QAM signals. Moreover, an improved solution for carrier recovery (frequency offset and phase estimation) based on a circular harmonic expansion of a maximum loglikelihood function is studied for the first time in the context of optical telecommunications. This solution which can operate with any kind of bi-dimensional modulation format signal is numerically validated up to 128-QAM. All the DSP tools developed in this work are finally used in a demonstration of a 10 Gbaud QPSK 100 km transmission experiment, featuring a strong non-linear phase noise limitation and regenerated using a phase preserving and power limiting function based on a photonic crystal nanocavity.
276

Machine learning in complex networks: modeling, analysis, and applications / Aprendizado de máquina em redes complexas: modelagem, análise e aplicações

Thiago Christiano Silva 13 December 2012 (has links)
Machine learning is evidenced as a research area with the main purpose of developing computational methods that are capable of learning with their previously acquired experiences. Although a large amount of machine learning techniques has been proposed and successfully applied in real systems, there are still many challenging issues, which need be addressed. In the last years, an increasing interest in techniques based on complex networks (large-scale graphs with nontrivial connection patterns) has been verified. This emergence is explained by the inherent advantages provided by the complex network representation, which is able to capture the spatial, topological and functional relations of the data. In this work, we investigate the new features and possible advantages offered by complex networks in the machine learning domain. In fact, we do show that the network-based approach really brings interesting features for supervised, semisupervised, and unsupervised learning. Specifically, we reformulate a previously proposed particle competition technique for both unsupervised and semisupervised learning using a stochastic nonlinear dynamical system. Moreover, an analytical analysis is supplied, which enables one to predict the behavior of the proposed technique. In addition to that, data reliability issues are explored in semisupervised learning. Such matter has practical importance and is found to be of little investigation in the literature. With the goal of validating these techniques for solving real problems, simulations on broadly accepted databases are conducted. Still in this work, we propose a hybrid supervised classification technique that combines both low and high orders of learning. The low level term can be implemented by any classification technique, while the high level term is realized by the extraction of features of the underlying network constructed from the input data. Thus, the former classifies the test instances by their physical features, while the latter measures the compliance of the test instances with the pattern formation of the data. Our study shows that the proposed technique not only can realize classification according to the semantic meaning of the data, but also is able to improve the performance of traditional classification techniques. Finally, it is expected that this study will contribute, in a relevant manner, to the machine learning area / Aprendizado de máquina figura-se como uma área de pesquisa que visa a desenvolver métodos computacionais capazes de aprender com a experiência. Embora uma grande quantidade de técnicas de aprendizado de máquina foi proposta e aplicada, com sucesso, em sistemas reais, existem ainda inúmeros problemas desafiantes que necessitam ser explorados. Nos últimos anos, um crescente interesse em técnicas baseadas em redes complexas (grafos de larga escala com padrões de conexão não triviais) foi verificado. Essa emergência é explicada pelas inerentes vantagens que a representação em redes complexas traz, sendo capazes de capturar as relações espaciais, topológicas e funcionais dos dados. Nesta tese, serão investigadas as possíveis vantagens oferecidas por redes complexas quando utilizadas no domínio de aprendizado de máquina. De fato, será mostrado que a abordagem por redes realmente proporciona melhorias nos aprendizados supervisionado, semissupervisionado e não supervisionado. Especificamente, será reformulada uma técnica de competição de partículas para o aprendizado não supervisionado e semissupervisionado por meio da utilização de um sistema dinâmico estocástico não linear. Em complemento, uma análise analítica de tal modelo será desenvolvida, permitindo o entendimento evolucional do modelo no tempo. Além disso, a questão de confiabilidade de dados será investigada no aprendizado semissupervisionado. Tal tópico tem importância prática e é pouco estudado na literatura. Com o objetivo de validar essas técnicas em problemas reais, simulações computacionais em bases de dados consagradas pela literatura serão conduzidas. Ainda nesse trabalho, será proposta uma técnica híbrica de classificação supervisionada que combina tanto o aprendizado de baixo como de alto nível. O termo de baixo nível pode ser implementado por qualquer técnica de classificação tradicional, enquanto que o termo de alto nível é realizado pela extração das características de uma rede construída a partir dos dados de entrada. Nesse contexto, aquele classifica as instâncias de teste segundo qualidades físicas, enquanto que esse estima a conformidade da instância de teste com a formação de padrões dos dados. Os estudos aqui desenvolvidos mostram que o método proposto pode melhorar o desempenho de técnicas tradicionais de classificação, além de permitir uma classificação de acordo com o significado semântico dos dados. Enfim, acredita-se que este estudo possa gerar contribuições relevantes para a área de aprendizado de máquina.
277

Robot řízený mikroprocesorovou jednotkou PIC / Robot Controlled by PIC Microprocessor Unit

Heřman, Petr January 2015 (has links)
This thesis describes design of a cheap robot. It includes implementation of firmware of low level control unit based on microcontroller PIC. The firmware drives motors, gains sensors data and communicates with the high level control unit. Furthermore the thesis presents realisation of connection to the robotic operation system ROS and its standard structures allowing usage of existing packages for the robot teleoperation and displaying sensor data on the remote computer. The thesis finally reports experiments with the robot. The constructed prototype is the model of the robotic lawn mower, however the whole solution has universal usage.
278

Dynamische Anwendungspartitionierung für heterogene adaptive Computersysteme: Dynamische Anwendungspartitionierung für heterogene adaptiveComputersysteme

Rößler, Marko 21 May 2014 (has links)
Die Dissertationsschrift stellt eine Methodik und die Infrastruktur zur Entwicklung von dynamisch verteilbaren Anwendungen für heterogene Computersysteme vor. Diese Computersysteme besitzen vielfältige Rechenwerke, die Berechnungen in den Domänen Software und Hardware realisieren. Als erster Schritt wird ein übergreifendes und integriertes Vorgehen für den Anwendungsentwurf auf Basis eines abstrakten “Single-Source” Ansatzes entwickelt. Durch die Virtualisierung der Rechenwerke wird die preemptive Verteilung der Anwendungen auch über die Domänengrenzen möglich. Die Anwendungsentwicklung für diese Computersysteme bedarf einer durchgehend automatisierten Entwurfsunterstützung. In der Arbeit wird der dazu vorgeschlagene Ansatz formalisiert und eine neuartige Unterbrechungspunktsynthese entwickelt, die ein hinsichtlich Zeit und Fläche optimiertes, präemptives Verhalten für beliebige Anwendungsbeschreibungen generiert. Das Verfahren wird beispielhaft implementiert und mittels einer FPGA- Prototypenplattform mit Linux-basierter Laufzeitumgebung anhand dreier Fallbeispiele unterschiedlicher Komplexität validiert und evaluiert. / This thesis introduces a methodology and infrastructure for the development of dynamically distributable applications on heterogeneous computing systems. Such systems execute computations using resources from both the hardware and the software domain. An integrated approach based on an abstract single-source design entry is developed that allows preemptive partitioning through virtualization of computing resources across the boundaries of differing computational domains. Application design for heterogeneous computing systems is a complex task that demands aid by electronic design automation tools. This work provides a novel synthesis approach for breakpoints that generates preemptive behaviour for arbitrary applications. The breakpoint scheme is computed for a minimal additional resource utilization and given timing constraints. The approach is implemented on an FPGA prototyping platform driven by a Linux based runtime environment. Evaluation and validation of the approach have been carried out using three different application examples.
279

Deep Reinforcement Learning for Autonomous Highway Driving Scenario

Pradhan, Neil January 2021 (has links)
We present an autonomous driving agent on a simulated highway driving scenario with vehicles such as cars and trucks moving with stochastically variable velocity profiles. The focus of the simulated environment is to test tactical decision making in highway driving scenarios. When an agent (vehicle) maintains an optimal range of velocity it is beneficial both in terms of energy efficiency and greener environment. In order to maintain an optimal range of velocity, in this thesis work I proposed two novel reward structures: (a) gaussian reward structure and (b) exponential rise and fall reward structure. I trained respectively two deep reinforcement learning agents to study their differences and evaluate their performance based on a set of parameters that are most relevant in highway driving scenarios. The algorithm implemented in this thesis work is double-dueling deep-Q-network with prioritized experience replay buffer. Experiments were performed by adding noise to the inputs, simulating Partially Observable Markov Decision Process in order to obtain reliability comparison between different reward structures. Velocity occupancy grid was found to be better than binary occupancy grid as input for the algorithm. Furthermore, methodology for generating fuel efficient policies has been discussed and demonstrated with an example. / Vi presenterar ett autonomt körföretag på ett simulerat motorvägsscenario med fordon som bilar och lastbilar som rör sig med stokastiskt variabla hastighetsprofiler. Fokus för den simulerade miljön är att testa taktiskt beslutsfattande i motorvägsscenarier. När en agent (fordon) upprätthåller ett optimalt hastighetsområde är det fördelaktigt både när det gäller energieffektivitet och grönare miljö. För att upprätthålla ett optimalt hastighetsområde föreslog jag i detta avhandlingsarbete två nya belöningsstrukturer: (a) gaussisk belöningsstruktur och (b) exponentiell uppgång och nedgång belöningsstruktur. Jag utbildade respektive två djupförstärkande inlärningsagenter för att studera deras skillnader och utvärdera deras prestanda baserat på en uppsättning parametrar som är mest relevanta i motorvägsscenarier. Algoritmen som implementeras i detta avhandlingsarbete är dubbel-duell djupt Q- nätverk med prioriterad återuppspelningsbuffert. Experiment utfördes genom att lägga till brus i ingångarna, simulera delvis observerbar Markov-beslutsprocess för att erhålla tillförlitlighetsjämförelse mellan olika belöningsstrukturer. Hastighetsbeläggningsgaller visade sig vara bättre än binärt beläggningsgaller som inmatning för algoritmen. Dessutom har metodik för att generera bränsleeffektiv politik diskuterats och demonstrerats med ett exempel.
280

Crest Factor Reduction using High Level Synthesis

Mahmood, Hassan January 2017 (has links)
Modern wireless mobile communication technology has made noticeable improvements from the technologies in the past but is still plagued by poor power efficiency of power amplifiers found in today’s base stations. One of the factors that affect the power efficiency adversely comes from modern modulation techniques like orthogonal frequency division multiplexing which result in signals with high peak to average power ratio, also known as the crest factor. Crest factor reduction algorithms are used to solve this problem. However, the dominant method of hardware description for synthesis has been to start with writing register transfer level code which gives a very fixed implementation that may not be the optimal solution. This thesis project is focused on developing a peak cancellation crest factor reduction system, using a high-level language as the system design language, and synthesizing it using high-level synthesis. The aim is to find out if highlevel synthesis design methodology can yield increased productivity and improved quality of results for such designs as compared to the design methodology that requires the system to be implemented at the register transfer level. Design space exploration is performed to find an optimal design with respect to area. Finally, a few parameters are presented to measure the performance of the system, which helps in tuning it. The results of design space exploration helped in choosing the best possible implementation out of four different configurations. The final implementation that resulted from high-level synthesis had an area comparable to the previous register transfer level implementation. It was also concluded that, for this design, the high-level synthesis design methodology increased productivity and decreased design time. / Användning av högnivåsyntes för reduktion av toppfaktor Det har gjorts noterbara framsteg inom modern trådlös kommunikationsteknik för mobiltelefoni, men tekniken plågas fortfarande av dålig energieffektivitet hos förstärkarna i dagens basstationer. En faktor som påverkar energieffektiviteten negativt är om signaler har en stor skillnad mellan maximal effekt och medeleffekt. Kvoten mellan maximal effekt och medeleffekt kallas för toppfaktor, och en egenskap hos moderna moduleringstekniker, såsom ortogonal frekvensdelningsmodulering, är att de har en hög toppfaktor. Algoritmer för reducering av toppfaktor kan lösa det problemet. Den dominerande metoden för design av hårdvara är att skriva kod i ett hårdvarubeskrivande språk med abstraktionsnivån Register Transfer Level och sedan använda verktyg för att syntetisera hårdvara från koden. Resultatet är en specifik implementation som inte nödvändigtvis är den optimala lösningen. Det här examensarbetet är inriktat på att utveckla ett system för reducering av toppfaktor, baserat på algoritmen Peak Cancellation, genom att skriva kod i ett högnivåspråk och använda verktyg för högnivåsyntes för att syntetisera designen. Syftet är att ta reda på om högnivåsyntes som designmetod kan ge ökad produktivitet och ökad kvalitet, för den här typen av design, jämfört med den klassiska designmetoden med abstraktionsnivån Register Transfer Level. Verktyget för högnivåsyntes användes för att på ett effektivt sätt undersöka olika designalternativ för att optimera kretsytan. I rapporten presenteras ett antal parametrar för att mäta prestandan hos systemet, vilket ger information som kan användas för finjustering. Resultatet av undersökningen av designalternativ gjorde det möjligt att välja den bästa implementationen bland fyra olika konfigurationer. Den slutgiltiga implementationen hade en kretsyta som är jämförbar med en tidigare design som implementerats med hårdvarubeskrivande språk med abstraktionsnivån Register Transfer Level. En annan slutsats är att, för den här designen, så gav designmetoden med högnivåsyntes ökad produktivitet och minskad designtid.

Page generated in 0.055 seconds