Spelling suggestions: "subject:"high btemperature converter"" "subject:"high btemperature konverter""
1 |
Implementation of high voltage Silicon Carbide rectifiers and switchesBerthou, Maxime 18 January 2012 (has links) (PDF)
In this document, we present ou study about the conception and realization of VMOS and Schottky and JBS Diodes on Silicon Carbide. This work allowed us optimize and fabricate diodes using Tungsten as Schottky barrier on both Schottky and JBS diodes of different blocking capability between 1.2kV and 9kV. Moreover, our study of the VMOS, by considering the overall fabrication process, has permitted to identify the totality of the problems we are facing. Thusly we could ameliorate the devices and try new designs as the VIEMOS or the monolithic integration of temperature and current sensors.
|
2 |
Conception d'un circuit intégré en SiC appliqué aux convertisseur de moyenne puissance / Design of an integrated circuit in SiC applied to medium power converterMogniotte, Jean-François 07 January 2014 (has links)
L’émergence d’interrupteurs de puissance en SiC permet d’envisager des convertisseurs de puissance capables de fonctionner au sein des environnements sévères tels que la haute tension (> 10 kV ) et la haute température (> 300 °C). Aucune solution de commande spécifique à ces environnements n’existe pour le moment. Le développement de fonctions élémentaires en SiC (comparateur, oscillateur) est une étape préliminaire à la réalisation d’un premier démonstrateur. Plusieurs laboratoires ont développé des fonctions basées sur des transistors bipolaires, MOSFETs ou JFETs. Cependant les recherches ont principalement portées sur la conception de fonctions logiques et non sur l’intégration de drivers de puissance. Le laboratoire AMPERE (INSA de Lyon) et le Centre National de Microélectronique de Barcelone (Espagne) ont conçu un MESFET latéral double grille en SiC. Ce composant élémentaire sera à la base des différentes fonctions intégrées envisagées. L’objectif de ces recherches est la réalisation d’un convertisseur élévateur de tension "boost" monolithique et de sa commande en SiC. La démarche scientifique a consisté à définir dans un premier temps un modèle de simulation SPICE du MESFET SiC à partir de caractérisations électriques statique et dynamique. En se basant sur ce modèle, des circuits analogiques tels que des amplificateurs, oscillateurs, paires différentielles, trigger de Schmitt ont été conçus pour élaborer le circuit de commande (driver). La conception de ces fonctions s’avère complexe puisqu’il n’existe pas de MESFETs de type P et une polarisation négative de -15 V est nécessaire au blocage des MESFETs SiC. Une structure constituée d’un pont redresseur, d’un boost régulé avec sa commande basée sur ces différentes fonctions a été réalisée et simulée sous SPICE. L’ensemble de cette structure a été fabriqué au CNM de Barcelone sur un même substrat SiC semi-isolant. L’intégration des éléments passifs n’a pas été envisagée de façon monolithique (mais pourrait être considérée pour les inductances et capacités dans la mesure où les valeurs des composants intégrés sont compatibles avec les processus de réalisation). Le convertisseur a été dimensionné pour délivrer une de puissance de 2.2 W pour une surface de 0.27 cm2, soit 8.14 W/cm2. Les caractérisations électriques des différents composants latéraux (résistances, diodes, transistors) valident la conception, le dimensionnement et le procédé de fabrication de ces structures élémentaires, mais aussi de la majorité des fonctions analogiques. Les résultats obtenus permettent d’envisager la réalisation d’un driver monolithique de composants Grand Gap. La perspective des travaux porte désormais sur la réalisation complète du démonstrateur et sur l’étude de son comportement en environnement sévère notamment en haute température (> 300 °C). Des analyses des mécanismes de dégradation et de fiabilité des convertisseurs intégrés devront alors être envisagées. / The new SiC power switches is able to consider power converters, which could operate in harsh environments as in High Voltage (> 10kV) and High Temperature (> 300 °C). Currently, they are no specific solutions for controlling these devices in harsh environments. The development of elementary functions in SiC is a preliminary step toward the realization of a first demonstrator for these fields of applications. AMPERE laboratory (France) and the National Center of Microelectronic of Barcelona (Spain) have elaborated an elementary electrical compound, which is a lateral dual gate MESFET in Silicon Carbide (SiC). The purpose of this research is to conceive a monolithic power converter and its driver in SiC. The scientific approach has consisted of defining in a first time a SPICE model of the elementary MESFET from electric characterizations (fitting). Analog functions as : comparator, ring oscillator, Schmitt’s trigger . . . have been designed thanks to this SPICE’s model. A device based on a bridge rectifier, a regulated "boost" and its driver has been established and simulated with the SPICE Simulator. The converter has been sized for supplying 2.2 W for an area of 0.27 cm2. This device has been fabricated at CNM of Barcelona on semi-insulating SiC substrate. The electrical characterizations of the lateral compounds (resistors, diodes, MESFETs) checked the design, the "sizing" and the manufacturing process of these elementary devices and analog functions. The experimental results is able to considerer a monolithic driver in Wide Band Gap. The prospects of this research is now to realize a fully integrated power converter in SiC and study its behavior in harsh environments (especially in high temperature > 300 °C). Analysis of degradation mechanisms and reliability of the power converters would be so considerer in the future.
|
3 |
Implementation of high voltage Silicon Carbide rectifiers and switches / Conception et réalisation de composants unipolaires en Carbure de SiliciumBerthou, Maxime 18 January 2012 (has links)
Nous présentons dans ce document, notre étude de la conception et la réalisation de VMOS et de diodes Schottky et JBS en carbure de silicium. Ce travail nous a permis d'optimiser et de fabriquer des diodes utilisant une barrière Schottky en Tungsten de différentes tenues en tension entre 1,2kV et 9kV. De plus, notre étude du VMOS nous a permis d'identifier la totalité des problèmes auxquels nous faisons face. Ainsi, nous avons pu améliorer ces composants tout en essayant de nouveaux designs tels que le VIEMOS et l'intégration monolithique de capteurs de temperature et de courant. / In this document, we present ou study about the conception and realization of VMOS and Schottky and JBS Diodes on Silicon Carbide. This work allowed us optimize and fabricate diodes using Tungsten as Schottky barrier on both Schottky and JBS diodes of different blocking capability between 1.2kV and 9kV. Moreover, our study of the VMOS, by considering the overall fabrication process, has permitted to identify the totality of the problems we are facing. Thusly we could ameliorate the devices and try new designs as the VIEMOS or the monolithic integration of temperature and current sensors.
|
Page generated in 0.1057 seconds