Spelling suggestions: "subject:"high resolution,"" "subject:"igh resolution,""
271 |
Magnetic and Chemical Structures in Stellar AtmospheresKochukhov, Oleg January 2003 (has links)
We present an investigation of the magnetic field geometries and inhomogeneous distribution of chemical elements in the atmospheres of peculiar A and B stars. Our study combines high-quality spectroscopic and spectropolarimetric stellar observations with the development and application of novel techniques for theoretical interpretation of the shapes and variability of stellar line profiles. In particular, we extend the method of Doppler imaging to the analysis of spectra in the four Stokes parameters, making it possible to derive detailed and reliable stellar magnetic maps simultaneously with the imaging chemical inhomogeneities. The magnetic Doppler imaging is applied to study of magnetic topologies and distributions of chemical elements in the peculiar stars α2 CVn and 53 Cam. We found that the magnetic field geometry of 53 Cam is considerably more complex than a low-order multipolar topology, commonly assumed for magnetic A and B stars. Our Doppler imaging analysis also led to a discovery and study of spots of enhanced mercury abundance in the atmosphere of α And, a star where the presence of a global magnetic field is unlikely. The ESO 3.6-m telescope is used to collect unique, very high spectral- and time-resolution observations of rapidly oscillating peculiar A (roAp) stars and to reveal line profile variations due to stellar pulsations. We present a detailed characterization of the spectroscopic pulsational behaviour and demonstrate a remarkable diversity of pulsations in different spectral lines. The outstanding variability of the lines of rare-earth elements is used to study propagation of pulsation waves through the stellar atmospheres and identify pulsation modes. This analysis led to a discovery of a non-axisymmetric character of pulsations in roAp stars. Our study of chemical stratification in the atmosphere of the roAp star γ Equ provides a compelling evidence for significant variation of the chemical composition with depth. We find a combined effect of extreme chemical anomalies and a growth of pulsation amplitude in the outermost atmospheric layers to be the most likely origin of the high-amplitude pulsational variations of the lines of rare-earth elements. Observations of cool magnetic CP stars are obtained with the ESO Very Large Telescope and are used for empirical investigation of the anomalies in the atmospheric temperature structure. We show that the core-wing anomaly of the hydrogen Balmer lines observed in some cool CP stars can be attributed to a hot layer at an intermediate atmospheric depth.
|
272 |
High resolution spectroscopy of BeB₂H₈ and C₂H₆Al-Kahtani, Abdullah A. 02 December 1991 (has links)
Graduation date: 1992
|
273 |
Study of Chip-Level EMI Based on Near-Field Measurement TechniquesHsieh, Hsin-Feng 08 August 2012 (has links)
This thesis proposed a near-field electromagnetic interference measurement framework to obtain sensitivity and spatial resolution of the characteristic parameters of magnetic probe based on International Electrotechnical Commission proposed for integrated circuits electromagnetic radiation measurement standards IEC 61967-6 : magnetic probe method. Using cross-coupled planar microwave bandpass filter which is realized by glass fiber board (FR4) for near-field measurement and electromagnetic simulation in comparsion. Nowadays, integrated circuits has become an important source of energy of overall electromagnetic interference in electronic systems. Finally, do near-field scanning measurement for a 64-pin wire-bond quad flat nonlead (WB-QFN) package and the voltage-controlled oscillator chip in 0.18 £gm CMOS technology by using high scanning resolution of microprobe. Then observes the chip-level and package-level electromagnetic interference, and achieve chip-level of near-field electromagnetic interference measurement techniques.
|
274 |
Using high resolution satellite imagery to map aquatic macrophytes on multiple lakes in northern Indiana /Gidley, Susan Lee. January 2009 (has links)
Thesis (M.S.)--Indiana University, 2009. / Department of Geography, Indiana University-Purdue University Indianapolis (IUPUI). Advisor(s): Jeffrey S. Wilson, Lenore P. Tedesco, Daniel P. Johnson. Includes vitae. Includes bibliographical references (leaves 71-77).
|
275 |
3D STED Microscopy with Pulsed and Continuous Wave Lasers / 3D STED Mikroskopie mit gepulsten und DauerstrichlasernHarke, Benjamin 02 April 2008 (has links)
No description available.
|
276 |
Shotgun lipidomics of metabolic disorders by high resolution mass spectrometrySchuhmann, Kai 18 December 2012 (has links) (PDF)
The characterization of lipids is performed by mass spectrometry based on structure specific fragments or by accurate mass measurements of intact precursor ions. The latter method, termed ’top-down lipidomics’, is due to its robustness, simplicity and speed a valuable tool for medical research to elucidate the molecular background of lipid metabolic disorders.
The current thesis aims to improve the established lipidomics methods.
Therefore, a new top-down lipidomics method was introduced that increased the analysis throughput, lipidome coverage and accuracy of quantification, compared to previous approaches, by rapid successive acquisition of high resolution Fourier transform mass spectra in positive and negative ion modes. Furthermore, the characterization of molecular lipid species by utilizing high energy collisional dissociation was achieved on Orbitrap instruments. The mass accuracy of acquired MS/MS spectra increased the confidence in identification for unusual very-long chain polyunsaturated phosphatidylcholine species and a new lipid class, the maradolipids. Beyond that, effort was made to enhance the accuracy and comparability of MS/MS based bottom-up lipidomics data. In this respect, lipids with varying degree of unsaturation were analyzed and revealed discrete fragmentation properties.
The technical refined lipidomics methods allowed insight into the lipid composition of lipoproteins and changes of the blood plasma induced by apheresis. Lipidomics screening of blood plasma uncovered an altered lipid pattern in consequence of impaired glucose metabolism and type 2 diabetes. The lipidomics characterization of islet allowed their quality assessment.
|
277 |
Ultrasound-assisted Interactions of Natural Killer Cells with Cancer Cells and Solid TumorsChristakou, Athanasia January 2014 (has links)
In this Thesis, we have developed a microtechnology-based method for culturing and visualizing high numbers of individual cells and cell-cell interactions over extended periods of time. The foundation of the device is a silicon-glass multiwell microplate (also referred as microchip) directly compatible with fluorescence microscopy. The initial microchip design involved thousands of square wells of sizes up to 80 µm, for screening large numbers of cell-cell interactions at the single cell level. Biocompatibility and confinement tests proved the feasibility of the idea, and further investigation showed the conservation of immune cellular processes within the wells. Although the system is very reliable for screening, limitations related to synchronization of the interaction events, and the inability to maintain conjugations for long time periods, led to the development of a novel ultrasonic manipulation multiwell microdevice. The main components of the ultrasonic device is a 100-well silicon-glass microchip and an ultrasonic transducer. The transducer is used for ultrasonic actuation on the chip with a frequency causing half-wave resonances in each of the wells (2.0-2.5 MHz for wells with sizes 300-350 µm). Therefore, cells in suspension are directed by acoustic radiation forces towards a pressure node formed in the center of each well. This method allows simultaneous aggregation of cells in all wells and sustains cells confined within a small area for long time periods (even up to several days). The biological target of investigation in this Thesis is the natural killer (NK) cells and their functional properties. NK cells belong to the lymphatic group and they are important factors for host defense and immune regulation. They are characterized by the ability to interact with virus infected cells and cancer cells upon contact, and under suitable conditions they can induce target cell death. We have utilized the ultrasonic microdevice to induce NK-target cell interactions at the single cell level. Our results confirm a heterogeneity within IL-2 activated NK cell populations, with some cells being inactive, while others are capable to kill quickly and in a consecutive manner. Furthermore, we have integrated the ultrasonic microdevice in a temperature regulation system that allows to actuate with high-voltage ultrasound, but still sustain the cell physiological temperature. Using this system we have been able to induce formation of up to 100 solid tumors (HepG2 cells) in parallel without using surface modification or hydrogels. Finally, we used the tumors as targets for investigating NK cells ability to infiltrate and kill solid tumors. To summarize, a method is presented for investigating individual NK cell behavior against target cells and solid tumors. Although we have utilized our technique to investigate NK cells, there is no limitation of the target of investigation. In the future, the device could be used for any type of cells where interactions at the single cell level can reveal critical information, but also to form solid tumors of primary cancer cells for toxicology studies. / <p>QC 20150113</p>
|
278 |
A Methodology For Detection And Evaluation Of Lineaments From Satellite ImageryKocal, Arman 01 August 2004 (has links) (PDF)
The discontinuities play an important role both in design and development stages of many geotechnical engineering projects. Because of that considerable time and capital should be spent to determine discontinuity sets by conventional methods. This thesis present the results of the studies associated with the application of the Remote Sensing (RS) and the development of a methodology in accurately and automatically detecting the discontinuity sets. For detection of the discontinuities, automatic lineament analysis is performed by using high resolution satellite imagery for identification of rock discontinuities. The study area is selected as an Andesite quarry area in Gö / lbaSi, Ankara, Turkey. For the high resolution data 8-bit Ikonos Precision Plus with 1 meter resolution orthorectified image is used. The automatic lineament extraction process is carried out with LINE module of PCI Geomatica v8.2. In order to determine the most accurate parameters of LINE, an accuracy assessment is carried out. To be the reference of the output, manual lineament extraction with directional filtering in four principal directions (N-S, E-W, NE-SW, NW-SE) is found to be
the most suitable method. For the comparison of automatic lineament extraction and manual lineament extraction processes, LINECOMP program is coded in java environment. With the written code, a location and length based accuracy
assessment is carried out. After the accuracy assesssment, final parameters of automatically extracted lineaments for rock discontinuity mapping for the study area are determined. Besides these, field studies carried out in the study area are
also taken into consideration.
|
279 |
Comparison Of Different Spatial Resolution Images For Polygon-based Crop MappingOzdarici, Asli 01 September 2005 (has links) (PDF)
Polygon-based classification applied on the unitemporal SPOT4 XS, SPOT5 XS, IKONOS XS, QuickBird XS and QuickBird Pansharpaned (PS) images is described. The study site is an agricultural area located near Karacabey, Turkey covering an area of about 95 km2. The objective was to assess the effect of the spatial resolution on the polygon-based classification of agricultural crops. Both the post-polygon and pre-polygon classifications were carried out. In the post-polygon classification, first, the images were classified on per-pixel basis through a Maximum Likelihood classifier. Then, for each field, the model class was computed and the field was assigned the label of the model class. In the pre-polygon classification, first, the mean values were calculated for each field. Then, the per-pixel Maximum Likelihood Classification was carried out using the mean bands.
The post-polygon classification of the SPOT4 XS and SPOT5 XS images produced an overall accuracy of 76,1% and 81,4%, respectively. The IKONOS XS image provided the highest overall accuracy of 88,6%. On the other hand, the QuickBird XS and QuickBird PS images provided the overall accuracies of 83,7% and 85,8%, respectively. For the pre-polygon classification, the overall accuracies of the SPOT4 XS and SPOT5 XS images were computed to be 65,2% and 69,8%, respectively. Similar to the post-polygon classification, the IKONOS image provided the highest overall accuracy of 81,8% while the SPOT5 XS image revealed slightly better results than the SPOT4 XS image. The overall accuracies of the QuickBird XS and PS images were found to be 78,6% and 82,1%, respectively.
|
280 |
High-Resolution Nanostructuring for Soft X-Ray Zone-Plate OpticsReinspach, Julia January 2011 (has links)
Diffractive zone-plate lenses are widely used as optics in high-resolution x-ray microscopes. The achievable resolution in such microscopes is presently not limited by the x-ray wavelength but by limitations in zone-plate nanofabrication. Thus, for the advance of high-resolution x-ray microscopy, progress in zone-plate nanofabrication methods are needed. This Thesis describes the development of new nanofabrication processes for improved x-ray zone-plate optics. Cold development of the electron-beam resist ZEP7000 is applied to improve the resolution of soft x-ray Ni zone plates. The influence of developer temperature on resist contrast, resolution, and pattern quality is investigated. With an optimized process, Ni zone plates with outermost zone widths down to 13 nm are demonstrated. To enhance the diffraction efficiency of Ni zone plates, the concept of Ni-Ge zone plates is introduced. The applicability of Ni-Ge zone plates is first demonstrated in a proof-of-principle experiment, and then extended to cold-developed Ni zone plates with outermost zone widths down to 13 nm. For 15-nm Ni-Ge zone plates a diffraction efficiency of 4.3% at a wavelength of 2.88 nm is achieved, which is about twice the efficiency of state-of-the-art 15-nm Ni zone plates. To further increase both resolution and diffraction efficiency of soft x-ray zone plates, a novel fabrication process for W zone plates is developed. High resolution is provided by salty development of the inorganic electron-beam resist HSQ, and cryogenic RIE in a SF6 plasma is investigated for high-aspect-ratio W structuring. We demonstrate W zone plates with 12-nm outermost zone width and a W height of 90 nm, resulting in a 30% increase in theoretical diffraction efficiency compared to 13-nm efficiency-enhanced Ni-Ge zone plates. In addition to soft x-ray zone plates, some lenses for hard x-ray free-electron-laser applications were also fabricated during this Thesis work. Fabrication processes for the materials W, diamond, and Pt were developed. We demonstrate Pt and W-diamond zone plates with 100-nm outermost zone width and respective diffraction efficiencies of 8.2% and 14.5% at a photon energy of 8 keV. / QC 20111114
|
Page generated in 0.0956 seconds