Spelling suggestions: "subject:"high resolution microscopy"" "subject:"igh resolution microscopy""
21 |
Probing the effect of oxygen vacancies in strontium titanate single crystalsRahman, Shams ur January 2014 (has links)
This thesis describes investigations into the role of non-stoichiometry in the surface and bulk properties of SrTiO<sub>3</sub> single crystals. A family of (n×n) reconstructions, where n = 2, 3, 4, 5, 6 are produced by argon ion sputtering of the SrTiO<sub>3</sub> (111) single crystals and subsequent annealing in UHV or in an oxygen rich environment. The sputtering process introduces defects or oxygen vacancies in the surface region of the sample, whilst the annealing gives rise to surface reconstructions. The surface preparation conditions such as sputtering time, annealing temperature and environment are optimized to obtain various reconstructions in a controlled and reproducible manner. High resolution STM images of these reconstructions are also obtained and utilized in the investigation of the surface reactivity. Fullerene molecules are deposited on the reconstructed surfaces to elucidate the surface reactivity through template assisted growth. Fullerene molecules are first deposited with substrate surfaces held at room temperature. Being the most highly reduced among the (n×n) family, the 5×5 reconstruction significantly influenced the growth of fullerenes. Both C<sub>60</sub> and C<sub>70</sub> adsorb as individual molecules and produce clusters with magic numbers. The 4×4 and 6×6 reconstructed surfaces encourage the formation of close-packed structures upon the deposition at room temperature. When the surface covered with fullerenes is heated to a temperature of around 200 °C, epitaxial islands are observed. The 6×6 reconstructed surface appeared to be less reactive than the 4×4. Electrical transport, cathodoluminescence (CL) and electron spin resonance (ESR) experiments are also carried out to investigate the effect of oxygen vacancies on the bulk properties of UHV annealed SrTiO<sub>3</sub> single crystals. Thermal reduction leads to carrier doping of the material, which not only gives rise to electrical conduction but also induces room temperature luminescence. Both the electrical conductivity and CL intensity increases with annealing time. The work presented in this thesis provides insight into the defect driven properties in both the surface and bulk of SrTiO<sub>3</sub> single crystals, which could play an important role in the development of oxide-based electronic devices.
|
22 |
Elemental growth of oxide thin filmsWu, Chen January 2010 (has links)
This thesis reports on the elemental growth of oxide thin films including TiO<sub>x</sub>, BaO<sub>x</sub> and Ba<sub>x</sub>Ti<sub>y</sub>O<sub>z</sub> by Ti/Ba deposition and oxidation. The films were grown on two different substrates, Au(111) and SrTiO₃(001), and studied using a variety of surface characterisation techniques. On the reconstructed Au(111) surface, three different TiO<sub>x</sub> structures were obtained with increasing Ti amounts deposited: a (2 × 2) Ti₂O₃ honeycomb structure, a pinwheel structure that is the result of a Moiré pattern, and a triangular island TiO<sub>1.30</sub> structure. The structures arise from raised Ti coverages and have increased Ti densities. Although Ba deposited on the reconstructed Au(111) has a weak interaction with the substrate, the BaO<sub>x</sub> thin films can grow epitaxially and lift the Au(111) reconstruction. Two well-ordered phases, a (6 × 6) and a (2√3 × 2√3) BaO<sub>x</sub> structure, were obtained which may have octopolar-based surface structures. For Ba & Ti deposition on Au(111), a locally ordered (5 × 5) BaxTiyOz structure was observed in the sub-monolayer regime. What is more interesting is the possible formation of a BaO-TiO surface alloy with short-range ordering achieved by Ba deposition on the (2 × 2) Ti₂O₃-templated Au(111) surface. This is the first time that surface-alloying has been observed for oxides. When Ti is deposited onto the SrTiO₃(001) surface, it is incorporated into the substrate by forming a variety of Ti-rich SrTiO₃ surface reconstructions, such as c(4 × 2), (6 × 2), (9 × 2) and (√5 ×√5)-R26.6°. Ti deposition provides a completely different route to obtaining these reconstructions at much lower anneal temperatures than the previously reported preparation procedures involving sputtering and annealing the SrTiO₃ sample. Anatase islands with (1 × 3) and (1 × 5) periodicities were also formed by increasing the Ti deposition amount and post-annealing. Reconstructed SrTiO₃ substrate surface has a lattice that differs from the bulk crystal and affects the epitaxial growth of BaO, however, a locally ordered BaO<sub>x</sub> structure was observed on the sputtered substrate with a growth temperature of 300 °C. Depositing Ba & Ti on SrTiO₃(001) results in the formation of BaO<sub>x</sub> clusters and the Ti incorporation into the substrate, forming the familiar Ti-rich SrTiO₃ surface reconstructions.
|
23 |
Powder processing of oxide dispersion strengthened steels for nuclear applicationsGorley, Michael January 2014 (has links)
Ferritic ODS steels show improved high temperature strength and irradiation tolerance compared with conventional ferritic steels, and are one of the key potential materials for fusion blanket structural applications. The processing of ODS steels is critical to their subsequent performance; however knowledge of the optimum processing approaches for these alloys is not complete. The microstructural evolution of ODS steels containing Y<sub>2</sub>O<sub>3</sub> and other additions during manufacture has been investigated and the processing conditions optimised based on microstructural and mechanical investigations. Ferritic powders with Y<sub>2</sub>O<sub>3</sub> and other additions were investigated, primarily using analysis on the micro- and nano-scale, with an emphasis on identifying the requirements for homogenization of the Y within the steel matrix. The Y<sub>2</sub>O<sub>3</sub> dispersion and subsequent development of the nano-precipitates during thermal treatment was investigated using in-situ neutron diffraction. The nano-precipitates were resolved at approximately 900◦C after 1hr, with coarsening and/or re-precipitation progressively increasing at higher temperatures. A significantly increased number density of nano-precipitates (∼2x10<sup>23</sup>m−3 to ∼7x10<sup>23</sup>m−3) was established by hot isostatically pressing an Fe-14Cr-3W-0.2Ti0.25Y<sub>2</sub>O<sub>3</sub> alloy at 950◦C compared with more traditional temperatures at 1150◦C, attributed to the increased coarsening and/or re-precipitation of the nano-precipitates at the higher temperatures. The influence of the mechanical alloy (MA)ing conditions on bulk mechanical properties was investigated using four point bend. The highest fracture toughness of ∼55MN/m<sup>3/2</sup> and ultimate strength of ∼1450MPa was achieved under conditions that minimised the mechanical alloying time and increased the average final size of the powders. An Fe-14Cr-3W-0.2Ti-0.25Y<sub>2</sub>O<sub>3</sub> (wt%) ODS alloy manufactured under optimised conditions showed a bi-modal grain structure size distribution and had a comparatively high yield strength of >1200MPa at 20◦C and >330MPa at 700◦C. The grain structure and high yield strength were attributed to the random distribution of 25nm radius of gyration (R<sub>g</sub>) Y, Ti and O rich nano-precipitates randomly dispersed throughout the alloy. Long term thermal ageing (750hr at 1000◦C) reduced the room temperature yield strength and increased the proportion of larger grains in the bi-modal distribution, but high temperature yield strength was remarkably stable.
|
24 |
Untersuchung, Entwicklung und Anwendung reversibel schaltbarer fluoreszierender Proteine / Investigation, improvement and implementation of reversibly switchable fluorescent proteinsAndresen, Martin 22 January 2009 (has links)
No description available.
|
25 |
The irradiation resistance of oxide dispersion strengthened steelsBurrows, Christopher John January 2015 (has links)
Reduced activation oxide dispersion strengthened (ODS) steels are candidate alloys for use in fusion reactor systems and are fabricated by mechanically alloying yttrium oxide to a reduced activation ferritic steel powder. The product is consolidated at high temperature by hot isostatic pressing (HIP), producing a dispersion of nanometre sized oxide particles throughout the ferritic microstructure. These particles have been shown to both improve the high temperature mechanical properties of the alloy and provide trapping sites for helium gas. The use of these particles to sequester helium is of particular significance in the development of a structural ODS steel for fusion reactor systems. A fusion power reactor, based on the ITER design, is expected to produce over 2000 appm transmutant helium in any steel components exposed to the core neutron flux. At these gas concentrations, conventional steels undergo severe swelling and embrittlement, motivating the development of materials capable of managing helium accumulation. This thesis investigates the use of the oxide particle dispersion in sequestering helium introduced by ion implantation. An initial characterisation of a model Fe-14Cr-0.25Y<sub>2</sub>O<sub>3</sub> (wt%) system was completed using high resolution transmission electron microscopy (HRTEM) and atom probe tomography (APT). This demonstrated the efficacy of the production methods and the gas trapping capabilities of the oxide particles via argon gas, introduced during the mechanical alloying process. The subsequent consolidation of a full set of Fe-14Cr-3W-0.2Ti-0.25Y<sub>2</sub>O<sub>3</sub> (wt%) ODS alloys at 1150°C, 1050 °C and 950 °C produced a systematic variation in the density of the particle dispersion. The characterisation of these materials using APT provided an insight into the consistent Y<sub>2</sub>Ti<sub>3</sub>O<sub>5</sub> particle chemistry found in each consolidation, and identified a stoichiometric shift from Y<sub>2</sub>Ti<sub>3</sub>O<sub>5</sub> to YTiO2 following short term annealing periods at 1000°C. Though further work is required, this shift is thought to be consistent with a thermodynamically mediated transition of the metastable clusters to stable oxide particles. Following implantation with 2000 appm helium and examination under TEM, the helium bubble and particle densities were found to be closely correlated thus providing evidence for an association between the particles and the gas bubbles. Controlling the helium bubble density via the particle dispersion demonstrates the potential use of processing temperature in controlling how helium accumulates in an implanted ODS microstructure. The effects of both bubble and particle densities on mechanical properties were investigated further using nanoindentation methods. Significant local variation in the hardness of the ODS steels was found to result from the bimodal grain size distribution of the material. By using only those measurements taken from large grained regions of the ODS, the grain refinement and particle hardening effects could be deconvolved and used to quantify particle hardening using a dispersed barrier model. The significant hardening effects with helium addition observed in the reference alloys were found to be almost entirely absent from the ODS systems, though anomalous softening in the 950°C consolidation indicated a potentially unexpected interaction between the bubble and particle populations. A possible explanation for this anomaly and a proposal for further work to establish its origin is discussed.
|
26 |
Interpretation of the centromere epigenetic mark to maintain genome stabilityDe Rop, Valérie 04 1900 (has links)
No description available.
|
27 |
'Hybrid' non-destructive imaging techniques for engineering materials applicationsBaimpas, Nikolaos January 2014 (has links)
The combination of X-ray imaging and diffraction techniques provides a unique tool for structural and mechanical analysis of engineering components. A variety of modes can be employed in terms of the spatial resolution (length-scale), time resolution (frequency), and the nature of the physical quantity being interrogated. This thesis describes my contributions towards the development of novel X-ray “rich” imaging experimental techniques and data interpretation. The experimental findings have been validated via comparison with other experimental methods and numerical modelling. The combination of fast acquisition rate and high penetration properties of X-ray beams allows the collection of high-resolution 3-D tomographic data sets at submicron resolution during in situ deformation experiments. Digital Volume Correlation analysis tools developed in this study help understand crack propagation mechanisms in quasi-brittle materials and elasto-plastic deformation in co-sprayed composites. For the cases of crystalline specimens where the knowledge of “live” or residual elastic strain distributions is required, diffraction techniques have been advanced. Diffraction Strain Tomography (DST) allows non-destructive reconstruction of the 2-D (in-plane) variation of the out-of-plane strain component. Another diffraction modality dubbed Laue Orientation Tomography (LOT), a grain mapping approach has been proposed and developed based on the translate-rotate tomographic acquisition strategy. It allows the reconstruction of grain shape and orientation within polycrystalline samples, and provides information about intragranular lattice strain and distortion. The implications of this method have been thoroughly investigated. State-of-the-art engineering characterisation techniques evolve towards scrutinising submicron scale structural features and strain variation using the complementarity of X-ray imaging and diffraction. The first successful feasibility study is reported of in operando stress analysis in an internal combustion engine. Finally, further advancement of ‘rich’ imaging techniques is illustrated via the first successful application of Time-of-Flight Neutron Diffraction Strain (TOF-NDST) tomography for non-destructive reconstruction of the complete strain tensor using an inverse eigenstrain formulation.
|
28 |
Imaging the assembly of the Staphylococcal pore-forming toxin alpha-HemolysinThompson, James Russell January 2009 (has links)
Alpha-hemolysin is a pore-forming toxin secreted by pathogenic Staphylococcus aureus. Its spontaneous oligomerization and assembly into a trans-bilayer beta-barrel pore is a model for the assembly of many other pore-forming toxins. It is studied here in vitro as a means to probe general membrane protein oligomerization and lipid bilayer insertion. This thesis details the results of experiments to develop and implement a novel in vitro lipid bilayer system, Droplet-on-Hydrogel Bilayers (DHBs) for the single-molecule imaging of alpha-hemolysin assembly. Chapter 2 describes the development of DHBs and their electrical characterization. Experiments show the detection of membrane channels in SDS-PAGE gels post-electrophoresis and DHBs use as a platform for nanopore stochastic sensing. Chapter 3 describes the engineering and characterization of fluorescently-labelled monomeric alpha-hemolysin for use in protein assembly imaging experiments described in Chapter 6. Chapter 4 describes the characterization of DHB lipid fluidity and suitability for single-molecule studies of membrane protein diffusion. In addition, a novel single-particle tracking algorithm is described. Chapter 5 describes experiments demonstrating simultaneous electrical and fluorescence measurements of alpha-hemolysin pores embedded within DHBs. The first multiple-pore stochastic sensing in a single-lipid bilayer is also described. Chapter 6 describes experiments studying the assembly of alpha-hemolysin monomers in DHBs. Results show that alpha-hemolysin assembles rapidly into its oligomeric state, with no detection of long-lived intermediate states.
|
29 |
Microstructural characterisation of novel nitride nanostructures using electron microscopySevers, John January 2014 (has links)
Novel semiconductor nanostructures possess a range of notable properties that have the potential to be harnessed in the next generation of optical devices. Electron microscopy is uniquely suited to characterising the complex microstructure, the results of which may be related to the growth conditions and optical properties. This thesis investigates three such novel materials: (1) GaN/InGaN core/shell nanowires, (2) n-GaN/InGaN/p-GaN core/multi-shell microrods and (3) Zn<sub>3</sub>N<sub>2</sub> nanoparticles, all of which were grown at Sharp Laboratories of Europe. GaN nanowires were grown by a Ni-catalysed VLS process and were characterised by various techniques before and after InGaN shells were deposited by MOCVD. The majority of the core wires were found to have the expected wurtzite structure and completely defect free – reflected in the strong strain-free photoluminescence peak –with a- and m- axis orientations identified with shadow imaging. A small component, <5%, were found to have the cubic zinc-blende phase and a high density of planar faults running the length of the wires. The deposited shells were highly polycrystalline, partially attributed to a layer of silicon at the core shell interface identified through FIB lift-out of cross section samples, and accordingly the PL was very broad likely due to recombination at defects and grain boundaries. A high throughput method of identifying the core size indirectly via the catalyst particle EDX signal is described which may be used to link the shell microstructure to core size in further studies. An n-GaN/InGaN/p-GaN shell structure was deposited by MOCVD on the side walls of microrods etched from c-axis GaN film on sapphire, which offers the possibility of achieving non-polar junctions without the issues due to non-uniformity found in nanowires. Threading dislocations within the core related to the initial growth on sapphire were shown to be confined to this region, therefore avoiding any harmful effect on the junction microstructure. The shell defect density showed a surprising relationship to core size with the smaller diameter rods having a high density of unusual 'flag' defects in the junction region whereas the larger diameter sample shells appeared largely defect free, suggesting the geometry of the etched core has an impact on the strain in the shell layers. The structure of unusual 'flag' defects in the m-plane junctions was characterised via diffraction contrast TEM, weak beam and atomic resolution ADF STEM and were shown to consist of a basal plane stacking faults meeting a perfect or partial dislocation loop on a pyramidal plane, the latter likely gliding in to resolve residual strain due to the fault formed during growth. Zn<sub>3</sub>N<sub>2</sub> has the required bandgap energy to be utilised as a phosphor with the additional advantage over conventional materials of its constituent elements not being toxic or scarce. The first successful synthesis of Zn<sub>3</sub>N<sub>2</sub> nanoparticles appropriate to this application was confirmed via SAD, EDX and HRTEM, with software developed to fit experimental polycrystalline diffraction patterns to simulated components suggesting a maximum Zn<sub>3</sub>N<sub>2</sub> composition of ~30%. There was an apparent decrease in crystallinity with decreasing particle size evidenced in radial distribution function studies with the smallest particles appearing completely amorphous in 80kV HRTEM images. A rapid change in the particles under the electron beam was observed, characterised by growth of large grains of Zn<sub>3</sub>N<sub>2</sub> and ZnO which increased with increasing acceleration voltage suggesting knock-on effects driving the change. PL data was consistent with the bandgap of Zn<sub>3</sub>N<sub>2</sub> blue shifted from 1.1eV to around 1.8eV, confirming the potential of the material for application as a phosphor.
|
30 |
Advanced materials for plasma facing components in fusion devicesThomas, Gareth James January 2009 (has links)
This thesis describes the design, manufacture and characterisation of thick vacuum plasma sprayed tungsten (W) coatings on steel substrates. Fusion is a potentially clean, sustainable, energy source in which nuclear energy is generated via the release of internal energy from nuclei. In order to fuse nuclei the Coulomb barrier must be breached - requiring extreme temperatures or pressures – akin to creating a ‘star in a box’. Tungsten is a promising candidate material for future fusion reactors due to a high sputtering threshold and melting temperature. However, the large coefficient of thermal expansion mismatch with reactor structural steels such as the low activation steel Eurofer’97 is a major manufacturing and in-service problem. A vacuum plasma spraying approach for the manufacture of tungsten and tungsten/steel graded coatings has been developed successfully. The use of graded coatings and highly textured 3D interface surfi-sculpt substrates has been investigated to allow the deposition of thick plasma sprayed tungsten coatings on steel substrates. Finite element models have been developed to understand the residual stresses that develop in W/steel systems and made use of experimental measurements of coating thermal history during manufacture and elastic moduli measured by nano-indentation. For both the graded and surfi-sculpt coating, the models have been used to understand the mechanism of residual stress redistribution and relief in comparison with simple W on steel coatings, particularly by consideration of stored strain energy. In the case of surfi-sculpt W coatings, the patterned substrate gave rise to regular stress concentrating features, and allowed 2mm thick W coatings to be produced reproducibly without delamination. Preliminary through thickness residual stress measurements were compared to model predictions and provided tentative evidence of significant W coating stress relief by regulated coating segmentation.
|
Page generated in 0.1387 seconds