Spelling suggestions: "subject:"highdimensional data"" "subject:"highdimensional mata""
81 |
Sélection de modèles parcimonieux pour l’apprentissage statistique en grande dimension / Model selection for sparse high-dimensional learningMattei, Pierre-Alexandre 26 October 2017 (has links)
Le déferlement numérique qui caractérise l’ère scientifique moderne a entraîné l’apparition de nouveaux types de données partageant une démesure commune : l’acquisition simultanée et rapide d’un très grand nombre de quantités observables. Qu’elles proviennent de puces ADN, de spectromètres de masse ou d’imagerie par résonance nucléaire, ces bases de données, qualifiées de données de grande dimension, sont désormais omniprésentes, tant dans le monde scientifique que technologique. Le traitement de ces données de grande dimension nécessite un renouvellement profond de l’arsenal statistique traditionnel, qui se trouve inadapté à ce nouveau cadre, notamment en raison du très grand nombre de variables impliquées. En effet, confrontée aux cas impliquant un plus grand nombre de variables que d’observations, une grande partie des techniques statistiques classiques est incapable de donner des résultats satisfaisants. Dans un premier temps, nous introduisons les problèmes statistiques inhérents aux modelés de données de grande dimension. Plusieurs solutions classiques sont détaillées et nous motivons le choix de l’approche empruntée au cours de cette thèse : le paradigme bayésien de sélection de modèles. Ce dernier fait ensuite l’objet d’une revue de littérature détaillée, en insistant sur plusieurs développements récents. Viennent ensuite trois chapitres de contributions nouvelles à la sélection de modèles en grande dimension. En premier lieu, nous présentons un nouvel algorithme pour la régression linéaire bayésienne parcimonieuse en grande dimension, dont les performances sont très bonnes, tant sur données réelles que simulées. Une nouvelle base de données de régression linéaire est également introduite : il s’agit de prédire la fréquentation du musée d’Orsay à l’aide de données vélibs. Ensuite, nous nous penchons sur le problème de la sélection de modelés pour l’analyse en composantes principales (ACP). En nous basant sur un résultat théorique nouveau, nous effectuons les premiers calculs exacts de vraisemblance marginale pour ce modelé. Cela nous permet de proposer deux nouveaux algorithmes pour l’ACP parcimonieuse, un premier, appelé GSPPCA, permettant d’effectuer de la sélection de variables, et un second, appelé NGPPCA, permettant d’estimer la dimension intrinsèque de données de grande dimension. Les performances empiriques de ces deux techniques sont extrêmement compétitives. Dans le cadre de données d’expression ADN notamment, l’approche de sélection de variables proposée permet de déceler sans supervision des ensembles de gènes particulièrement pertinents. / The numerical surge that characterizes the modern scientific era led to the rise of new kinds of data united in one common immoderation: the simultaneous acquisition of a large number of measurable quantities. Whether coming from DNA microarrays, mass spectrometers, or nuclear magnetic resonance, these data, usually called high-dimensional, are now ubiquitous in scientific and technological worlds. Processing these data calls for an important renewal of the traditional statistical toolset, unfit for such frameworks that involve a large number of variables. Indeed, when the number of variables exceeds the number of observations, most traditional statistics becomes inefficient. First, we give a brief overview of the statistical issues that arise with high-dimensional data. Several popular solutions are presented, and we present some arguments in favor of the method utilized and advocated in this thesis: Bayesian model uncertainty. This chosen framework is the subject of a detailed review that insists on several recent developments. After these surveys come three original contributions to high-dimensional model selection. A new algorithm for high-dimensional sparse regression called SpinyReg is presented. It compares favorably to state-of-the-art methods on both real and synthetic data sets. A new data set for high-dimensional regression is also described: it involves predicting the number of visitors in the Orsay museum in Paris using bike-sharing data. We focus next on model selection for high-dimensional principal component analysis (PCA). Using a new theoretical result, we derive the first closed-form expression of the marginal likelihood of a PCA model. This allows us to propose two algorithms for model selection in PCA. A first one called globally sparse probabilistic PCA (GSPPCA) that allows to perform scalable variable selection, and a second one called normal-gamma probabilistic PCA (NGPPCA) that estimates the intrinsic dimensionality of a high-dimensional data set. Both methods are competitive with other popular approaches. In particular, using unlabeled DNA microarray data, GSPPCA is able to select genes that are more biologically relevant than several popular approaches.
|
82 |
Identification de biomarqueurs prédictifs de la survie et de l'effet du traitement dans un contexte de données de grande dimension / Identification of biomarkers predicting the outcome and the treatment effect in presence of high-dimensional dataTernes, Nils 05 October 2016 (has links)
Avec la révolution récente de la génomique et la médecine stratifiée, le développement de signatures moléculaires devient de plus en plus important pour prédire le pronostic (biomarqueurs pronostiques) ou l’effet d’un traitement (biomarqueurs prédictifs) de chaque patient. Cependant, la grande quantité d’information disponible rend la découverte de faux positifs de plus en plus fréquente dans la recherche biomédicale. La présence de données de grande dimension (nombre de biomarqueurs ≫ taille d’échantillon) soulève de nombreux défis statistiques tels que la non-identifiabilité des modèles, l’instabilité des biomarqueurs sélectionnés ou encore la multiplicité des tests.L’objectif de cette thèse a été de proposer et d’évaluer des méthodes statistiques pour l’identification de ces biomarqueurs et l’élaboration d’une prédiction individuelle des probabilités de survie pour des nouveaux patients à partir d’un modèle de régression de Cox. Pour l’identification de biomarqueurs en présence de données de grande dimension, la régression pénalisée lasso est très largement utilisée. Dans le cas de biomarqueurs pronostiques, une extension empirique de cette pénalisation a été proposée permettant d’être plus restrictif sur le choix du paramètre λ dans le but de sélectionner moins de faux positifs. Pour les biomarqueurs prédictifs, l’intérêt s’est porté sur les interactions entre le traitement et les biomarqueurs dans le contexte d’un essai clinique randomisé. Douze approches permettant de les identifier ont été évaluées telles que le lasso (standard, adaptatif, groupé ou encore ridge+lasso), le boosting, la réduction de dimension des effets propres et un modèle implémentant les effets pronostiques par bras. Enfin, à partir d’un modèle de prédiction pénalisé, différentes stratégies ont été évaluées pour obtenir une prédiction individuelle pour un nouveau patient accompagnée d’un intervalle de confiance, tout en évitant un éventuel surapprentissage du modèle. La performance des approches ont été évaluées au travers d’études de simulation proposant des scénarios nuls et alternatifs. Ces méthodes ont également été illustrées sur différents jeux de données, contenant des données d’expression de gènes dans le cancer du sein. / With the recent revolution in genomics and in stratified medicine, the development of molecular signatures is becoming more and more important for predicting the prognosis (prognostic biomarkers) and the treatment effect (predictive biomarkers) of each patient. However, the large quantity of information has rendered false positives more and more frequent in biomedical research. The high-dimensional space (i.e. number of biomarkers ≫ sample size) leads to several statistical challenges such as the identifiability of the models, the instability of the selected coefficients or the multiple testing issue.The aim of this thesis was to propose and evaluate statistical methods for the identification of these biomarkers and the individual predicted survival probability for new patients, in the context of the Cox regression model. For variable selection in a high-dimensional setting, the lasso penalty is commonly used. In the prognostic setting, an empirical extension of the lasso penalty has been proposed to be more stringent on the estimation of the tuning parameter λ in order to select less false positives. In the predictive setting, focus has been given to the biomarker-by-treatment interactions in the setting of a randomized clinical trial. Twelve approaches have been proposed for selecting these interactions such as lasso (standard, adaptive, grouped or ridge+lasso), boosting, dimension reduction of the main effects and a model incorporating arm-specific biomarker effects. Finally, several strategies were studied to obtain an individual survival prediction with a corresponding confidence interval for a future patient from a penalized regression model, while limiting the potential overfit.The performance of the approaches was evaluated through simulation studies combining null and alternative scenarios. The methods were also illustrated in several data sets containing gene expression data in breast cancer.
|
83 |
Vysoce výkonné prohledávání a dotazování ve vybraných mnohadimenzionálních prostorech v přírodních vědách / High-performance exploration and querying of selected multi-dimensional spaces in life sciencesKratochvíl, Miroslav January 2020 (has links)
This thesis studies, implements and experiments with specific application-oriented approaches for exploring and querying multi-dimensional datasets. The first part of the thesis scrutinizes indexing of the complex space of chemical compounds, and details a design of high-performance retrieval system for small molecules. The resulting system is then utilized within a wider context of federated search in heterogeneous data and metadata related to the chemical datasets. In the second part, the thesis focuses on fast visualization and exploration of many-dimensional data that originate from single- cell cytometry. Self-organizing maps are used to derive fast methods for analysis of the datasets, and used as a base for a novel data visualization algorithm. Finally, a similar approach is utilized for highly interactive exploration of multimedia datasets. The main contributions of the thesis comprise the advancement in optimization and methods for querying the chemical data implemented in the Sachem database cartridge, the federated, SPARQL-based interface to Sachem that provides the heterogeneous search support, dimensionality reduction algorithm EmbedSOM, design and implementation of the specific EmbedSOM-backed analysis tool for flow and mass cytometry, and design and implementation of the multimedia...
|
84 |
False Discovery Rates, Higher Criticism and Related Methods in High-Dimensional Multiple TestingKlaus, Bernd 09 January 2013 (has links)
The technical advancements in genomics, functional magnetic-resonance
and other areas of scientific research seen in the last two decades
have led to a burst of interest in multiple testing procedures.
A driving factor for innovations in the field of multiple testing has been the problem of
large scale simultaneous testing. There, the goal is to uncover lower--dimensional signals
from high--dimensional data. Mathematically speaking, this means that the dimension d
is usually in the thousands while the sample size n is relatively small (max. 100 in general,
often due to cost constraints) --- a characteristic commonly abbreviated as d >> n.
In my thesis I look at several multiple testing problems and corresponding
procedures from a false discovery rate (FDR) perspective, a methodology originally introduced in a seminal paper by Benjamini and Hochberg (2005).
FDR analysis starts by fitting a two--component mixture model to the observed test statistics. This mixture consists of a null model density and an alternative component density from which the interesting cases are assumed to be drawn.
In the thesis I proposed a new approach called log--FDR
to the estimation of false discovery rates. Specifically,
my new approach to truncated maximum likelihood estimation yields accurate
null model estimates. This is complemented by constrained maximum
likelihood estimation for the alternative density using log--concave
density estimation.
A recent competitor to the FDR is the method of \"Higher
Criticism\". It has been strongly advocated
in the context of variable selection in classification
which is deeply linked to multiple comparisons.
Hence, I also looked at variable selection in class prediction which can be viewed as
a special signal identification problem. Both FDR methods and Higher Criticism
can be highly useful for signal identification. This is discussed in the context of
variable selection in linear discriminant analysis (LDA),
a popular classification method.
FDR methods are not only useful for multiple testing situations in the strict sense,
they are also applicable to related problems. I looked at several kinds of applications of FDR in linear classification. I present and extend statistical techniques related to effect size estimation using false discovery rates and showed how to use these for variable selection. The resulting fdr--effect
method proposed for effect size estimation is shown to work as well as competing
approaches while being conceptually simple and computationally inexpensive.
Additionally, I applied the fdr--effect method to variable selection by minimizing
the misclassification rate and showed that it works very well and leads to compact
and interpretable feature sets.
|
85 |
Nouvelles méthodes pour l’apprentissage non-supervisé en grandes dimensions. / New methods for large-scale unsupervised learning.Tiomoko ali, Hafiz 24 September 2018 (has links)
Motivée par les récentes avancées dans l'analyse théorique des performances des algorithmes d'apprentissage automatisé, cette thèse s'intéresse à l'analyse de performances et à l'amélioration de la classification nonsupervisée de données et graphes en grande dimension. Spécifiquement, dans la première grande partie de cette thèse, en s'appuyant sur des outils avancés de la théorie des grandes matrices aléatoires, nous analysons les performances de méthodes spectrales sur des modèles de graphes réalistes et denses ainsi que sur des données en grandes dimensions en étudiant notamment les valeurs propres et vecteurs propres des matrices d'affinités de ces données. De nouvelles méthodes améliorées sont proposées sur la base de cette analyse théorique et démontrent à travers de nombreuses simulations que leurs performances sont meilleures comparées aux méthodes de l'état de l'art. Dans la seconde partie de la thèse, nous proposons un nouvel algorithme pour la détection de communautés hétérogènes entre plusieurs couches d'un graphe à plusieurs types d'interaction. Une approche bayésienne variationnelle est utilisée pour approximer la distribution apostériori des variables latentes du modèle. Toutes les méthodes proposées dans cette thèse sont utilisées sur des bases de données synthétiques et sur des données réelles et présentent de meilleures performances en comparaison aux approches standard de classification dans les contextes susmentionnés. / Spurred by recent advances on the theoretical analysis of the performances of the data-driven machine learning algorithms, this thesis tackles the performance analysis and improvement of high dimensional data and graph clustering. Specifically, in the first bigger part of the thesis, using advanced tools from random matrix theory, the performance analysis of spectral methods on dense realistic graph models and on high dimensional kernel random matrices is performed through the study of the eigenvalues and eigenvectors of the similarity matrices characterizing those data. New improved methods are proposed and are shown to outperform state-of-the-art approaches. In a second part, a new algorithm is proposed for the detection of heterogeneous communities from multi-layer graphs using variational Bayes approaches to approximate the posterior distribution of the sought variables. The proposed methods are successfully applied to synthetic benchmarks as well as real-world datasets and are shown to outperform standard approaches to clustering in those specific contexts.
|
86 |
Statistical Inference for Change Points in High-Dimensional Offline and Online DataLi, Lingjun 07 April 2020 (has links)
No description available.
|
87 |
Geometry of high dimensional Gaussian dataMossberg, Olof Samuel January 2024 (has links)
Collected data may simultaneously be of low sample size and high dimension. Such data exhibit some geometric regularities consisting of a single observation being a rotation on a sphere, and a pair of observations being orthogonal. This thesis investigates these geometric properties in some detail. Background is provided and various approaches to the result are discussed. An approach based on the mean value theorem is eventually chosen, being the only candidate investigated that gives explicit convergence bounds. The bounds are tested employing Monte Carlo simulation and found to be adequate. / Data som insamlas kan samtidigt ha en liten stickprovsstorlek men vara högdimensionell. Sådan data uppvisar vissa geometriska mönster som består av att en enskild observation är en rotation på en sfär, och att ett par av observationer är rätvinkliga. Den här uppsatsen undersöker dessa geometriska egenskaper mer detaljerat. En bakgrund ges och olika typer av angreppssätt diskuteras. Till slut väljs en metod som baseras på medelvärdessatsen eftersom detta är den enda av de undersökta metoderna som ger explicita konvergensgränser. Gränserna testas sedermera med Monte Carlo-simulering och visar sig stämma.
|
88 |
Adaptive Mixture Estimation and Subsampling PCALiu, Peng January 2009 (has links)
No description available.
|
89 |
Partial EM Procedure for Big-Data Linear Mixed Effects Model, and Generalized PPE for High-Dimensional Data in JuliaCho, Jang Ik 31 August 2018 (has links)
No description available.
|
90 |
Sparse Principal Component Analysis for High-Dimensional Data: A Comparative StudyBonner, Ashley J. 10 1900 (has links)
<p><strong>Background:</strong> Through unprecedented advances in technology, high-dimensional datasets have exploded into many fields of observational research. For example, it is now common to expect thousands or millions of genetic variables (p) with only a limited number of study participants (n). Determining the important features proves statistically difficult, as multivariate analysis techniques become flooded and mathematically insufficient when n < p. Principal Component Analysis (PCA) is a commonly used multivariate method for dimension reduction and data visualization but suffers from these issues. A collection of Sparse PCA methods have been proposed to counter these flaws but have not been tested in comparative detail. <strong>Methods:</strong> Performances of three Sparse PCA methods were evaluated through simulations. Data was generated for 56 different data-structures, ranging p, the number of underlying groups and the variance structure within them. Estimation and interpretability of the principal components (PCs) were rigorously tested. Sparse PCA methods were also applied to a real gene expression dataset. <strong>Results:</strong> All Sparse PCA methods showed improvements upon classical PCA. Some methods were best at obtaining an accurate leading PC only, whereas others were better for subsequent PCs. There exist different optimal choices of Sparse PCA methods when ranging within-group correlation and across-group variances; thankfully, one method repeatedly worked well under the most difficult scenarios. When applying methods to real data, concise groups of gene expressions were detected with the most sparse methods. <strong>Conclusions:</strong> Sparse PCA methods provide a new insightful way to detect important features amidst complex high-dimension data.</p> / Master of Science (MSc)
|
Page generated in 0.0994 seconds