• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 13
  • 4
  • 3
  • 1
  • Tagged with
  • 45
  • 45
  • 20
  • 19
  • 12
  • 12
  • 9
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Nanotubes de carbone et de nitrure de bore sous haute pression / Carbon nanotubes and boron nitride nanotubes under high pressure

Silva Santos, Silvio Domingos 14 December 2017 (has links)
Dans ce travail de thèse nous avons étudié la stabilité structurale à très haute pression de nanotubes de carbone et de nitrure de bore à la fois in situ et après cycle de pression. Nous essayons de cette manière une première approche pour déterminer le rôle de paramètres comme la composition (C or BN), nombre de parois ou diamètre dans la limite de stabilité de la structure des nanotubes.Les deux premiers chapitres de la thèse nous permettent de faire une introduction aux aspects fondamentaux relatifs aux propriétés des nanotubes de carbone, suivie d’une présentation des méthodes de synthèse ainsi que des techniques expérimentales utilisées dans cette thèse. Les trois chapitres suivants permettent de présenter l’évolution structurale des trois systèmes étudiés: a) Des nanotubes de carbone monoparois de faible diamètre enrichis en chiralité (6,5), b) nanotubes de carbone triple-parois, et c) des nanotubes de nitrure de bore à parois multiple. Les pressions maximales de ces études ont été de 80, 72 et 50 GPa respectivement. Le collapse radial de la structure et la stabilité tubulaire des nano-objets ont été au centre de nos recherches. En particulier, les nanotubes de carbone à simple parois de chiralité (6,5) peuvent être préservés jusqu’à 50 GPa, pression à la quelle a lieu une transformation irréversible. De leur côté, les nanotubes à 3 parois ont pu être détectés jusqu’à environ 60 GPa, présentant en suite une transformation irréversible à 72 GPa. Enfin, les nanotubes de nitrure de bore ont montré une plus faible stabilité mécanique face à leurs analogues carbonés. De plus ils présentent une évolution vers toute une variété de morphologies, parmi lesquelles certaines ont été observées pour la première fois dans ce travail de thèse / This thesis work focuses on the structural stability of well-characterized carbon and boron nitride nanotubes under very high pressures both including their in situ study as well as after the pressure cycle. We try to provide in this way a first approach to determine the role of parameters as composition (C or BN), number of walls or diameter on the limit stability of nanotube structures.In the two first chapters, we provide a basic description of the theoretical aspects related to carbon nanotubes, we address their main synthesis methods as well as the experimental techniques used in this thesis to study these systems. In the three following chapters, we describe the structural evolution of three systems i) low diameter (6,5) chirality enriched single wall nanotubes ii) triple-wall carbon nanotubes and iii) multiwall boron nitride nanotubes. The maximum pressure attained in these studies were of 80, 72 and 50 GPa respectively.Both the radial collapse of the structure and the mechanical stability of the tubular structure under very high pressure are addressed in the study. In particular, after their collapse, the low-diameter (6,5) single walled carbon nanotubes can be preserved up to 50 GPa and above this value the tubes undergo an irreversible structural transformation. On its side, the triple wall systems could be detected up to ~ 60 GPa but their transformed irreversibly at 72 GPa. Finally boron nitride tubes have a low mechanical stability when compared with their carbon counterparts. Under high pressures they present transformations at different pressures to a variety of structural morphologies, some of them having been detected for the first time in this work
42

Traitement à haute pression et haute température de déchets de métaux lourds vers de nouveaux matériaux stables / High pressure and high temperature treatment of heavy metal waste, towards new stable materials

Karnis, Aurélie 08 October 2009 (has links)
Les REFIOM (Résidus d'Epuration des Fumées d'Incinération des Ordures Ménagères) issus de l'incération des déchets ménagers contiennent des métaux lourds comme le plomb ou le cadmium et sont en France uniquement stockés en centre d'enfouissement technique de classe 1 pour dangereux, en étant stabilisés par une vitrification. Afin de trouver des solutions pour le stockage ou la valorisation à long terme des REFIOM sans danger pour l'environnement, nous avons ciblé les vitrocéramiques et les céramiques frittées à hautes températures et hautes pressions. Nous avons utilisé des méthodes de la minéralogie physique par l'intermédiaire de synthèses à hautes températures, de synthèses à hautes températures et à hautes pressions en autoclave à chauffage externe, d'observations en microscopie électronique à balayage, de microanalyses chimiques EDX (Energy Dispersive X-Ray spectrometry), d'analyses en microsondes, de caractérisation structurale par diffraction de rayons X et d'expériences de lixiviation dynamique. Nous avons mis au point des protocoles de synthèses et d'analyses. Par ce biais, nous constatons pour les vitrocéramiques que le plomb ou le cadmium sont incorporés dans des cristallites et dans des nouvelles phases cristallines, eux-mêmes englobés dans une matrice vitreuse. Cette voie dite "double barrière" (cristaux + verre) semble prometteuses pour l'immobilisation du plomb et du cadmium (au regard des analyses EDX et des expériences de lixiviation). Pour les céramiques frittées, comme pour les SYNROC (SYNthetic ROCk) synthétisées pour les déchets nucléaires, de nouvelles phases cristallines incorporant Pb et Cd sont observées et seraient a priori résistantes pour le stockage de ces éléments toxiques. Dans ces deux cas de nouveaux matériaux capables d'incorporer massivement du plomb et du cadmium ont été mis en évidence. Des tests de durabilité permettront d'envisager une valorisation éventuelle de tels matériaux / MSWI 5Municipal Solide Waste Incinerator) fly ashes from the incineration of domestic waste contain heavy metals such as lead or cadmium. In France, these fly ashes are only stored under vitrified forms in class-1 type landfills for hazardous waste. In order to find solutions for long-term storage or valorization of the MSWI fly ashes, we studied glass-ceramics and sintered ceramics at high pressures and/or hight temperature. We used methods of mineral physics to : synthetize at high temperature, synthetize at higt temperature and high pressure using autoclaves with external heating system, observe by electron microcopy, make EDX (Energy Dispersive X-Ray spectrometry) chemical microanalysis, make microprobe analysis, structurally characterize and perform leaching test. We established experimental protocols for the synthesis and analysis of produced materials. For glass-ceramics, we observe that lead and cadmium are incorporated inside expected crystallites and new crystal phases, themselves embedded by a glassy matrix. This so-called "double barrier" (crystals + glass) is a promising way towards a substainable of lead and cadmium (after EDX analysis and leaching experiements). For sintered ceramics, as for the SYNROC (SYNthetic ROCk) with nuclear waste, new crystal phases incorporating Pb and Cd are found and might display a high resistant for the storage of these toxic elements. In both cases, new materials incorporating large amounts of lead and cadmium were formed. Durability tests may give new ways for a valorization of such materials
43

Electrical resistivity of YbRh2Si2 and EuT2Ge2 (T = Co, Cu) at extreme conditions of pressure and temperature

Dionicio, Gabriel Alejandro 15 December 2006 (has links)
This investigation address the effect that pressure, p, and temperature, T, have on 4f-states of the rare-earth elements in the isostructural YbRh2Si2, EuCo2Ge2, and EuCu2Ge2 compounds. Upon applying pressure, the volume of the unit cell reduces, enforcing either the enhancement of the hybridization of the 4f-localized electrons with the ligand or a change in the valence state of the rare-earth ions. Here, we probe the effect of a pressure-induced lattice contraction on these system by means of electrical resistivity, from room temperature down to 100 mK. At ambient pressure, the electrical resistivity of YbRh2Si2 shows a broad peak at 130 K related to the incoherent scattering on the ground state and the excited crystalline electrical field (CEF) levels. At T_N = 70 mK, YbRh2Si2 undergoes a magnetic phase transition. Upon applying pressure up to p_1 = 4 GPa , T_N increases monotonously while the peak in the electrical resistivity is shifted to lower temperatures. For p < p_1 a different behavior is observed; namely, T_N depends weakly on the applied pressure and a decomposition of the single peak in the electrical resistivity into several shoulders and peaks occurs. Above p_2 = 9 GPa, the electrical resistivity is significantly reduced for T < 50 K and this process is accompanied by a sudden enhancement of T_N. Thus, our results confirm the unexpected behavior of the magnetization as function of pressure reported by Plessel et al. The small value of the magnetic ordering temperature for p < p_2 and the strength of the mechanism that leads to the peaks and shoulders in the electrical resistivity suggest that the f-electrons are still screened by the conduction electrons. Therefore, the observed behavior for pressures lower than p_2 might be a consequence of the competition of two different types of magnetic fluctuations (seemingly AFM and FM). Furthermore, the results suggest that a sudden change of the CEF scheme occurs at pressures higher than p_1, which would have an influence on the ground state. Additionally, a comparison of the pressure dependent features in the electrical resistivity of YbRh2Si2 with similar maxima in other isostructural YbT2X2 (T = transition metal; X = Si or Ge) compounds was performed. For the comparison, a simple relation that considers the Coqblin-Schrieffer model and the hypothesis of Lavagna et al. is proposed. A systematic behavior is observed depending on the transition metal; namely, it seems that the higher the atomic radii of the T-atom the smallest the pressure dependence of the maximum in the electrical resistivity, suggesting a weaker coupling of localized- and conduction-electrons. It is also observed that an increase in the density of conduction electrons reduces the pressure dependence of the characteristic Kondo temperature. The mechanism responsible for the sudden enhancement of T_N in YbRh2Si2 at about p_2 is still unknown. However two plausible scenarios are discussed. The Eu-ions in EuCo2Ge2 and EuCu2Ge2 have a divalent character in the range 100 mK < T < 300 K. Therefore, these systems order magnetically at T_N = 23 K and T_N = 12 K, respectively. The studies performed on EuCo2Ge2 and EuCu2Ge2 as a function of pressure suggest that a change to a non-magnetic trivalent state of the Eu-ions might occur at zero temperature for pressures higher than 3 GPa and 7 GPa, respectively. A common and characteristic feature on EuCo2Ge2 and EuCu2Ge2 is the absence of a clear first order transition from the divalent to the trivalent state of the Eu-ions at finite temperature for p > 3 GPa and for p > 7 GPa, respectively. In other isostructural Eu-based compounds, a discontinuous and abrupt change in the thermodynamic and transport properties associated to the valence transition of the Eu-ions is typically observed at finite temperatures. In contrast, the electrical resistivity of EuCo2Ge2 and EuCu2Ge2 changes smoothly as a function of pressure and temperature. The analysis of the the electrical resistivity of EuCo2Ge2 suggest that a classical critical point might be close to the AFM-ordered phase, being a hallmark of this compound. The overall temperature dependence of the the electrical resistivity of EuCo2Ge2 changes significantly at 3 GPa; therefore, it seems that the system suddenly enters to a T-dependent valence-fluctuating regime. Additionally, the pressure-dependent electrical-resistivity isotherms show a step-like behavior. Thus, it is concluded that discontinuous change of the ground state might occur at 3 GPa. The electrical resistivity of EuCu2Ge2 at high pressure is characterized by a negative logarithmic T-dependence in the pressure range 5 GPa < p < 7 GPa for T > T_N and by a broad peak in the pressure dependent residual resistivity, whose maximum is located at 7.3 GPa. The first behavior resembles the incoherent scattering process typical for an exchange coupling mechanism between the localized electrons and the ligand. This and the peak effect in the local 4f susceptibility observed in NMR measurements are consistent with such a coupling mechanism. Thus, it would be for the first time that a dense Eu-based compound like EuCu2Ge2 show such a behavior. Combining the results of the experiment performed at high pressures on EuCu2Ge2 with the studies performed in the EuCu2(Ge1-xSix)2 series, a crossover from an antiferromagnetically ordered state into a Fermi-liquid state for pressures higher than 7.3 GPa may be inferred from the analysis. Therefore, it may be possible that the sudden depopulation of 4f-level occur mediated by quantum fluctuation of the charge due to a strong Coulomb repulsion between the localized-electrons and the ligand. This phenomenon would explain the broad peak in the residual resistivity. To our knowledge, this would be the first Eu-based compound, isostructural to ThCr2Si2, that show such a transition as function of pressure at very low temperatures.
44

Laser ultrasonics in a diamond anvil cell for investigation of simple molecular compunds at ultrahigh pressures / Ultrasons laser dans les cellules à enclume de diamant pour l'étude des composés moléculaires simples à ultrahautes pressions

Nikitin, Sergey 19 January 2015 (has links)
Le travail que j’ai effectué durant ce doctorat est dédié à l’utilisation de l’ultrason des lasers sous haute pression physique. La recherche est construite en utilisant les récentes techniques de mesure de laser ultrasonique dans une enclume de diamant, conduisant à l’exploration de la propagation du son et de sa détermination suivant la vitesse de l’onde acoustique sous ultra-hautes pressions. La diffusion Brillouin a été appliquée ici pour déterminer l’épaisseur de la glace polycristalline compressée dans l’enclume à diamant sous pressions de mégabars. La technique permet d’examiner les caractéristiques des dimensions des inhomogénéités élastiques et la texture de la glace polycristalline, de ce fait ce processus est commun pour les surfaces de l’enclume à diamant avec des sous micromètres de résolution spatiale via les mesures des variations résolues dans le temps sur la vitesse de propagation du pouls acoustique voyageant dans l’échantillon compressé. Ceci a été appliqué pour mesurer la vitesse acoustique dans du H2O à l’état de glace jusqu’à 84 Gpa. La technique d’imagerie développée contient, pour chaque cristallite (ou groupe de cristallites) dans un ensemble homogène chimique transparent, des informations utiles sur son orientation ainsi que sur sa valeur élastique modulée par rapport à la direction de la propagation du son. Cela répand les bases pour une application réussite sur la déformation de solides sous haut-développement de modèles micromécaniques sous la pression à mégabars. Pour une plus longue durée, ce genre d’expériences répandus sur les minéraux de la terre et avec des températures basses ou hautes, assurerait un progrès important dans la compréhension de la construction de la cape terrestre, son évolution ainsi que celle d’autres planètes. / This PhD research work is devoted to the use of laser ultrasound in high-pressure physics. The research is done using the recently established technique of laser ultrasonic measurements in a diamond anvil cell which allows investigation of the sound propagation and determination of the acoustic wave velocities at ultrahigh pressures. Time domain Brillouin scattering was applied here to depth-profiling of polycrystalline aggregate of ice compressed in a diamond anvil cell to megabar pressures. The technique allowed examination of characteristic dimensions of elastic inhomogeneities and texturing of polycrystalline ice in the direction, normal to the diamond anvil surfaces with sub-micrometer spatial resolution via time-resolved measurements of variations in the propagation velocity of the acoustic pulse travelling in the compressed sample. It was applied to measure the acoustic velocities in H2O ice up to 84 Gpa. The developed imaging technique provides, for each crystallite (or a group of crystallites) in chemically homogeneous transparent aggregate, usable information on its orientation as well as on the value of the elastic modulus along the direction of the sound propagation. This extends the basis for a successful application of highly developed micromechanical models of solids deformation at mbar pressure. On long term, such experiments extended to earth’s minerals and high or low temperatures would insure a significant progress in understanding of convection of the earth’s mantle and thus evolution of this and other planets.
45

Numerical study of hot jet ignition of hydrocarbon-air mixtures in a constant-volume combustor

Karimi, Abdullah January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Ignition of a combustible mixture by a transient jet of hot reactive gas is important for safety of mines, pre-chamber ignition in IC engines, detonation initiation, and in novel constant-volume combustors. The present work is a numerical study of the hot-jet ignition process in a long constant-volume combustor (CVC) that represents a wave-rotor channel. The mixing of hot jet with cold mixture in the main chamber is first studied using non-reacting simulations. The stationary and traversing hot jets of combustion products from a pre-chamber is injected through a converging nozzle into the main CVC chamber containing a premixed fuel-air mixture. Combustion in a two-dimensional analogue of the CVC chamber is modeled using global reaction mechanisms, skeletal mechanisms, and detailed reaction mechanisms for four hydrocarbon fuels: methane, propane, ethylene, and hydrogen. The jet and ignition behavior are compared with high-speed video images from a prior experiment. Hybrid turbulent-kinetic schemes using some skeletal reaction mechanisms and detailed mechanisms are good predictors of the experimental data. Shock-flame interaction is seen to significantly increase the overall reaction rate due to baroclinic vorticity generation, flame area increase, stirring of non-uniform density regions, the resulting mixing, and shock compression. The less easily ignitable methane mixture is found to show higher ignition delay time compared to slower initial reaction and greater dependence on shock interaction than propane and ethylene. The confined jet is observed to behave initially as a wall jet and later as a wall-impinging jet. The jet evolution, vortex structure and mixing behavior are significantly different for traversing jets, stationary centered jets, and near-wall jets. Production of unstable intermediate species like C2H4 and CH3 appears to depend significantly on the initial jet location while relatively stable species like OH are less sensitive. Inclusion of minor radical species in the hot-jet is observed to reduce the ignition delay by 0.2 ms for methane mixture in the main chamber. Reaction pathways analysis shows that ignition delay and combustion progress process are entirely different for hybrid turbulent-kinetic scheme and kinetics-only scheme.

Page generated in 0.0642 seconds