Spelling suggestions: "subject:"hippocampe"" "subject:"hippocampes""
231 |
Identification des canaux TRPC impliqués dans la potentialisation à long terme des interneurones de la région CA1 de l'hippocampe chez le ratKougioumoutzakis, André 08 1900 (has links)
Le réseau neuronal de l’hippocampe joue un rôle central dans la mémoire en modifiant de façon durable l’efficacité de ses synapses. Dans les interneurones de la couche oriens/alveus (O/A), l’induction de la potentialisation à long terme (PLT) requiert les courants postsynaptiques excitateurs évoqués par les récepteurs métabotropes du glutamate de sous-type 1a (CPSEmGluR1a) et l’entrée subséquente de Ca2+ via des canaux de la famille des transient receptor potential (TRP). Le but de ce projet était d’identifier les canaux TRP responsables des CPSEmGluR1a et d’explorer les mécanismes moléculaires régulant leur ouverture. Nous avons déterminé par des enregistrements électrophysiologiques que les CPSEmGluR1a étaient spécifiques aux interneurones O/A et qu’ils étaient indépendants de la phospholipase C. Nous avons ensuite examiné l’expression des TRPC et leur interaction avec mGluR1a par les techniques de RT-PCR, d’immunofluorescence et de co-immunoprécipitation. Nos résultats montrent que TRPC1 et mGluR1a s’associent dans l’hippocampe et que ces deux protéines sont présentes dans les dendrites des interneurones O/A. En revanche, TRPC4 ne semble s’associer à mGluR1a qu’en système recombinant et leur colocalisation paraît limitée au corps cellulaire. Finalement, nous avons procédé à des enregistrements d’interneurones dans lesquels l’expression des TRPC a été sélectivement supprimée par la transfection d’ARN interférant et avons ainsi démontré que TRPC1, mais non TRPC4, est une sous-unité obligatoire du canal responsable des CPSEmGluR1a. Ces travaux ont permis de mieux comprendre les mécanismes moléculaires à la base de la transmission synaptique des interneurones O/A et de mettre en évidence un rôle potentiel de TRPC1 dans la PLT. / The hippocampal neuronal network plays a crucial role in memory by producing long lasting changes in the efficacy of its synapses. In interneurons of stratum oriens/alveus (O/A), long term potentiation (LTP) induction requires metabotropic glutamate receptor subtype 1a (mGluR1a)-evoked excitatory postsynaptic currents (EPSCs) and subsequent Ca2+ entry through transient receptor potential (TRP) channels. The objectives of this project were to identify the TRP channels that mediate mGluR1a-evoked EPSCs and to explore molecular mechanisms that underlie their activation. Electrophysiological recordings showed that mGluR1a-evoked EPSCs were specifically observed in O/A interneurons and they were phospholipase C-independent. We then examined TRPC expression and their interaction with mGluR1a by RT-PCR, immunofluorescence and co-immunoprecipitation techniques. Our results show that TRPC1 and mGluR1a associate in hippocampus and that both proteins have overlapping distributions in dendrites of O/A interneurons. In contrast, TRPC4 seems to associate with mGluR1a only in recombinant system and their co-localization appears to be limited to the cell body. Finally, we performed recordings of interneurons in which TRPC expression was selectively suppressed by small interfering RNAs and we found that TRPC1, but not TRPC4, is an obligatory subunit of the channel that mediate mGluR1a-evoked EPSCs. This work brought new insight on molecular mechanisms underlying synaptic transmission of O/A interneurons and uncovered a potential role for TRPC1 in LTP.
|
232 |
Expression profile of plasticity-related mRNAs in the cortex and hippocampus of young and aged rats and of 3xTg and wild type miceMoreau, Mireille 12 1900 (has links)
De récents travaux ont mis en évidence que des dysfonctionnements dans l’expression de gènes impliqués dans la plasticité synaptique contribuent aux déclins cognitifs qu’on observe chez les gens âgés et à la progression de la maladie d’Alzheimer. Notre étude avait comme objectif d’étudier le profil d’expression d’ARNm spécifiques impliqués dans la plasticité synaptique chez des rats jeunes et âgés et chez des souris transgéniques 3xTg et WT.
Des expériences en qRT-PCR ont été effectuées dans des extraits de cortex et d’hippocampe de rats jeunes et âgés et de souris 3xTg et WT, respectivement. Les résultats ont démontré une augmentation significative de l’expression d’ARNm MAP1B, Stau2, BDNF, CREB et AGO2 principalement dans l’hippocampe (régions CA1-CA3) des souris 3xTg comparé aux souris WT. Une diminution significative a également été observée pour l’ARNm αCaMKII dans le cortex des souris 3xTg comparé aux souris WT. Contrairement à ces observations, aucun changement n’a été observé pour l’expression de gènes impliqués dans la plasticité synaptique chez les rats âgés comparé aux rats jeunes.
Ces résultats démontrent qu’un dysfonctionnement existe réellement au début de la maladie d’Alzheimer dans l’expression de gènes spécifiques impliqués dans la plasticité synaptique et contribue potentiellement à la progression de la maladie en engendrant un déséquilibre entre la LTP et la LTD. De plus, les différences d’expressions sont particulièrement observées dans l’hippocampe (régions CA1-CA3) ce qui est consistant avec les études sur la progression de la maladie d’Alzheimer puisqu’il est connu que la région CA1 de l’hippocampe est la plus vulnérable à l’apparition de la maladie. Ces résultats permettent une meilleure compréhension des événements moléculaires qui deviennent dérégulés à l’apparition de la maladie d’Alzheimer. / Recent work has demonstrated that dysregulations in the expression profile of plasticity-related genes in specific brain regions contribute to age-related cognitive decline and Alzheimer’s disease. The aim of this study was to determine the expression profile of a subset of plasticity-related mRNAs in different regions of the brain of young and aged rats as well as 3xTg and wild type (WT) mice.
qRT-PCR experiments were performed in extracts of cortex and hippocampus of young and aged rats and of 3xTg and WT mice, respectively. Results demonstrated significant increases in the expression of MAP1B, Stau2, CREB, BDNF, and AGO2 mRNAs, especially in the hippocampus (CA1-CA3 fields) of 3xTg mice compared to WT mice. A significant decrease was also observed in the expression of αCaMKII mRNA in the cortex of 3xTg mice compared to WT mice. On the other hand, no significant changes were observed in the expression of plasticity-related genes in the hippocampus of aged rats compared to young rats.
These results confirm that alterations in gene expression occur at the onset of AD and possibly contribute to the progression of the disease by causing an imbalance between long-term potentiation and long-term depression. In addition, patterns of significant altered gene expression, especially in the hippocampus (CA1-CA3 fields) of 3xTg mice are consistent with the progression of AD whereby the hippocampus (CA1 region) is most vulnerable at the onset of the disease. These results provide a better understanding of the molecular events that first become disturbed in AD.
|
233 |
Mechanisms underlying activation of neural stem cells in the adult central nervous systemGrégoire, Catherine-Alexandra 04 1900 (has links)
À la fin du 19e siècle, Dr. Ramón y Cajal, un pionnier scientifique, a découvert les
éléments cellulaires individuels, appelés neurones, composant le système nerveux. Il a
également remarqué la complexité de ce système et a mentionné l’impossibilité de ces nouveaux
neurones à être intégrés dans le système nerveux adulte. Une de ses citations reconnues : “Dans
les centres adultes, les chemins nerveux sont fixes, terminés, immuables. Tout doit mourir, rien
ne peut être régénérer” est représentative du dogme de l’époque (Ramón y Cajal 1928).
D’importantes études effectuées dans les années 1960-1970 suggèrent un point de vue différent.
Il a été démontré que les nouveaux neurones peuvent être générés à l’âge adulte, mais cette
découverte a créé un scepticisme omniprésent au sein de la communauté scientifique. Il a fallu
30 ans pour que le concept de neurogenèse adulte soit largement accepté. Cette découverte, en
plus de nombreuses avancées techniques, a ouvert la porte à de nouvelles cibles thérapeutiques
potentielles pour les maladies neurodégénératives. Les cellules souches neurales (CSNs) adultes
résident principalement dans deux niches du cerveau : la zone sous-ventriculaire des ventricules
latéraux et le gyrus dentelé de l’hippocampe. En condition physiologique, le niveau de
neurogenèse est relativement élevé dans la zone sous-ventriculaire contrairement à
l’hippocampe où certaines étapes sont limitantes. En revanche, la moelle épinière est plutôt
définie comme un environnement en quiescence.
Une des principales questions qui a été soulevée suite à ces découvertes est : comment
peut-on activer les CSNs adultes afin d’augmenter les niveaux de neurogenèse ? Dans
l’hippocampe, la capacité de l’environnement enrichi (incluant la stimulation cognitive,
l’exercice et les interactions sociales) à promouvoir la neurogenèse hippocampale a déjà été
démontrée. La plasticité de cette région est importante, car elle peut jouer un rôle clé dans la
récupération de déficits au niveau de la mémoire et l’apprentissage. Dans la moelle épinière, des
études effectuées in vitro ont démontré que les cellules épendymaires situées autour du canal
central ont des capacités d’auto-renouvellement et de multipotence (neurones, astrocytes,
oligodendrocytes). Il est intéressant de noter qu’in vivo, suite à une lésion de la moelle épinière,
les cellules épendymaires sont activées, peuvent s’auto-renouveller, mais peuvent seulement
ii
donner naissance à des cellules de type gliale (astrocytes et oligodendrocytes). Cette nouvelle
fonction post-lésion démontre que la plasticité est encore possible dans un environnement en
quiescence et peut être exploité afin de développer des stratégies de réparation endogènes dans
la moelle épinière.
Les CSNs adultes jouent un rôle important dans le maintien des fonctions physiologiques
du cerveau sain et dans la réparation neuronale suite à une lésion. Cependant, il y a peu de
données sur les mécanismes qui permettent l'activation des CSNs en quiescence permettant de
maintenir ces fonctions. L'objectif général est d'élucider les mécanismes sous-jacents à
l'activation des CSNs dans le système nerveux central adulte. Pour répondre à cet objectif, nous
avons mis en place deux approches complémentaires chez les souris adultes : 1) L'activation des
CSNs hippocampales par l'environnement enrichi (EE) et 2) l'activation des CSNs de la moelle
épinière par la neuroinflammation suite à une lésion. De plus, 3) afin d’obtenir plus
d’information sur les mécanismes moléculaires de ces modèles, nous utiliserons des approches
transcriptomiques afin d’ouvrir de nouvelles perspectives.
Le premier projet consiste à établir de nouveaux mécanismes cellulaires et moléculaires
à travers lesquels l’environnement enrichi module la plasticité du cerveau adulte. Nous avons
tout d’abord évalué la contribution de chacune des composantes de l’environnement enrichi à la
neurogenèse hippocampale (Chapitre II). L’exercice volontaire promeut la neurogenèse, tandis
que le contexte social augmente l’activation neuronale. Par la suite, nous avons déterminé l’effet
de ces composantes sur les performances comportementales et sur le transcriptome à l’aide d’un
labyrinthe radial à huit bras afin d’évaluer la mémoire spatiale et un test de reconnaissante
d’objets nouveaux ainsi qu’un RNA-Seq, respectivement (Chapitre III). Les coureurs ont
démontré une mémoire spatiale de rappel à court-terme plus forte, tandis que les souris exposées
aux interactions sociales ont eu une plus grande flexibilité cognitive à abandonner leurs anciens
souvenirs. Étonnamment, l’analyse du RNA-Seq a permis d’identifier des différences claires
dans l’expression des transcripts entre les coureurs de courte et longue distance, en plus des
souris sociales (dans l’environnement complexe).
iii
Le second projet consiste à découvrir comment les cellules épendymaires acquièrent les
propriétés des CSNs in vitro ou la multipotence suite aux lésions in vivo (Chapitre IV). Une
analyse du RNA-Seq a révélé que le transforming growth factor-β1 (TGF-β1) agit comme un
régulateur, en amont des changements significatifs suite à une lésion de la moelle épinière. Nous
avons alors confirmé la présence de cette cytokine suite à la lésion et caractérisé son rôle sur la
prolifération, différentiation, et survie des cellules initiatrices de neurosphères de la moelle
épinière. Nos résultats suggèrent que TGF-β1 régule l’acquisition et l’expression des propriétés
de cellules souches sur les cellules épendymaires provenant de la moelle épinière. / At the end of the 19th century, Dr. Ramón y Cajal, a scientific pioneer, discovered that
the nervous system was composed of individual cellular elements, later called neurons. He also
noticed the complexity of this system and mentioned the impossibility of new neurons to be
integrated into the adult nervous system. One of his famous quotes: “In adult centers the nerve
paths are something fixed, ended, immutable. Everything may die, nothing may be regenerated”
is representative of the prevalent dogma at the time (Ramón y Cajal 1928). Key studies
conducted in the 1960-1970s suggested a different point of view. It was demonstrated that new
neurons could be born during adulthood, but this discovery created an omnipresent skepticism
in the scientific community. It took 30 years for the concept of adult neurogenesis to become
widely accepted. This discovery, along with more advanced techniques, opened doors to
potential therapeutic avenues for neurodegenerative diseases. Adult neural stem cells (NSCs)
reside mainly in two niches in the brain: the subventricular zone of the lateral ventricles and the
dentate gyrus of the hippocampus. Under normal conditions, neurogenesis level is relatively
high in the SVZ whereas some steps are rate-limiting in the hippocampus. In contrast, the spinal
cord is rather defined as a quiescent environment.
One of the main questions that arose from these discoveries is: how do you activate adult
NSCs in order to increase neurogenesis levels? In the hippocampus, environmental enrichment
(including cognitive stimulation, exercise and social interactions) has been shown to promote
hippocampal neurogenesis. The plasticity potential of this region is important as it could play a
crucial role in rescuing learning and memory deficits. In the spinal cord, studies conducted in
vitro demonstrated that ependymal cells found around the central canal have self-renewal and
multipotency capacities (neurons, astrocytes, oligodendrocytes). Interestingly, it turns out that
in vivo, following a spinal cord lesion, ependymal cells become activated, can self-replicate, but
can only give rise to glia cell fate (astrocytes and oligodendrocytes). This new post-injury
function shows that plasticity can still occur in a quiescent environment and could be exploited
to develop endogenous spinal cord repair strategies.
v
As mentioned above, NSCs play important roles in normal brain function and neural
repair following injury. However, little information is known about how a quiescent NSC
becomes activated in order to perform these functions. The general objective of this project was
to investigate the mechanisms underlying activation of neural stem cells in the adult central
nervous system. My specific aims were to address this question using adult mice in two
complementary models: 1) activation of hippocampal NSCs by environmental enrichment, and
2) activation of spinal cord NSCs by injury-induced neuroinflammation. Moreover, 3) to gain
new insights into the molecular mechanisms of these models, we will perform transcriptomics
studies to open new lines of investigation.
The first project is expected to provide us with new insights into the basic cellular and
molecular mechanisms through which environmental enrichment modulates adult brain
plasticity. We first evaluated the contribution of individual environmental enrichment
components to hippocampal neurogenesis (Chapter II). Voluntary exercise promotes
neurogenesis, whereas a social context increases neuronal activation. We then determined the
effect of these components on behavioural performances and transcriptome using an eight-arm
radial maze to assess spatial memory, novel object recognition, and RNA-Seq, respectively
(Chapter III). Runners show stronger spatial short-term memory recall, whereas mice exposed
to social interactions had a better cognitive flexibility to abandon old memory. Surprisingly,
RNA-Seq analysis indicated clear differences in the expression of modified transcripts between
low runners and high runners, as well as for social interacting mice (within the complex
environment).
The second project consists of discovering how ependymal cells acquire NSC properties
in vitro or multipotentiality following lesions in vivo. A RNA-Seq analysis revealed that the
transforming growth factor-β1 (TGF-β1) acts as an upstream regulator of significant changes
following spinal cord injury (Chapter IV). We therefore confirmed the presence of this cytokine
after lesion and investigated its role on proliferation, differentiation, and survival of
neurosphere-initiating cells from the spinal cord. Our results suggest that TGF-β1 regulates the
acquisition and expression of stem cell properties of spinal cord-derived ependymal cells.
|
234 |
Rôle du cortex entorhinal médian dans le traitement des informations spatiales : études comportementales et électrophysiologiques / Role of the medial entorhinal cortex in spatial information processing : behavioral and electrophysiological studiesJacob, Pierre-Yves 24 January 2014 (has links)
Le travail de recherche réalisé au cours de cette thèse s'intéresse à la nature des représentations spatiales formées par le cortex entorhinal médian (CEM). Tout d'abord, nous montrons que le CEM code spécifiquement une information de distance, l'une des composantes nécessaires pour que l'animal puisse réaliser un type de navigation reposant sur les informations idiothétiques, appelé intégration des trajets. Puis, nous observons que le système vestibulaire, une source importante d'informations idiothétiques, influence l'activité thêta du CEM et permet la modulation de ce rythme thêta par la vitesse de déplacement des animaux. Ensuite, nous montrons que l'activité du CEM est nécessaire à la stabilité de l'activité des cellules de lieu. Parallèlement, nous observons que l'activité des cellules grilles du CEM est modifiée par les informations contenues dans l'environnement (allothétiques).Dans leur ensemble, nos résultats montrent que le CEM traite et intègre des informations idiothétiques mais aussi des informations allothétiques. Ces données suggèrent que la carte spatiale du CEM ne fournit pas une métrique universelle reposant sur les informations idiothétiques, mais possède un certain degré de flexibilité en réponse aux changements environnementaux. De plus, cette carte spatiale entorhinale n'est pas requise pour la formation de l'activité spatiale des cellules de lieu, contrairement à ce que suggère l'hypothèse dominante. / The work conducted during my PhD thesis was aimed at understanding the nature of the spatial representation formed by the the medial entorhinal cortex (MEC). First, we show that the MEC codes specifically distance information which is necessary for a type of navigation based on idiothetic cues, called path integration. Then, we observe that the vestibular system, an important source of idiothetic information in the brain, influences the MEC theta rhythm and its modulation by the animal velocity. In addition, we show that MEC activity is necessary for the stability of place cells activity. Finally, we observe that entorhinal grid cells activity is modified by the information available in the environment (allothetic information).Together, our results show that the MEC processes and integrates idiothetic information as well as allothetic information. These data suggest that the entorhinal map is not a universal metric based on idiothetic information, but is flexible and dependant on the information present in the environment. In addition, the entorhinal map is not required for the generation of place cells activity, contrary to the dominant hypothesis.
|
235 |
La relation entre la stratégie de navigation spontanée et la prise de décision et les fonctions exécutivesAumont, Étienne 12 1900 (has links)
No description available.
|
236 |
L’influence de la stratégie de navigation dans un environnement virtuel sur l’activité cérébrale en EEGLaflamme, Hugo 08 1900 (has links)
No description available.
|
237 |
Codes transcriptionnels et expression du gène du récepteur de la GnRH au cours du développement et chez l’adulte / Transcriptionnal codes and expression of the GnRH receptor gene during development and in adultSchang, Anne-Laure 01 June 2011 (has links)
Le récepteur hypophysaire de la GnRH (RGnRH) joue un rôle crucial dans le contrôle de la fonctionde reproduction. Dans le promoteur distal du Rgnrh, j’ai caractérisé un élément de réponsebifonctionnel répondant aux protéines LIM à homéodomaine ISL1/LHX3 et à GATA2. D’autre part,deux motifs TAAT situés dans la région plus proximale confèrent à ce gène la capacité de répondreaux facteurs Paired-like PROP1 et OTX2. Tous ces facteurs, exprimés précocement au cours del’ontogenèse hypophysaire, pourraient participer à l’émergence de l’expression du Rgnrh. Hors del’hypophyse, j’ai découvert que le Rgnrh est exprimé au cours du développement postnatal dansl’hippocampe de rat, où il module la plasticité synaptique. Par ailleurs, j’ai identifié deux nouveauxsites d’expression, la rétine et la glande pinéale. Ces résultats mettent en lumière l’importancefonctionnelle de ce récepteur et de son ligand et les rôles multiples qu’il ont acquis au cours del’évolution des Vertébrés. / In the pituitary, the GnRH receptor (GnRHR) plays a crucial role in the neuroendocrine control ofreproductive function. Within the distal region of the Gnrhr promoter, I have characterized abifunctional response element modulated by the LIM homeodomain proteins ISL1/LHX3 and byGATA2. Besides, in the proximal region of the promoter, two TAAT motifs conferred response toPaired-like factors PROP1 and OTX2. All these factors are expressed during pituitary ontogenesis andcould participate in the onset and regulation of Gnrhr expression. Outside of the pituitary, I havediscovered that the Gnrhr was expressed during postnatal development in the rat hippocampus, whereit modulated synaptic plasticity. Furthermore, I have identified two novel sites of Gnrhr expression, theretina and the pineal gland. Altogether, these data highlight the functional importance of this receptorand its ligand as well as the multiple roles they have acquired during vertebrate evolution.
|
238 |
Enrichissement environnemental, performances cognitives et neurogenèse hippocampique adulte chez un modèle murin du syndrome de Coffin-Lowry / Environmental Enrichment, Cognitive Performances and Adult Hippocampal Neurogenesis in a Murine Coffin Lowry Syndrome ModelLunion, Steeve 09 July 2014 (has links)
Le syndrome de Coffin Lowry est une forme syndromique rare de déficience intellectuelle liée au chromosome X. Ce syndrome est dû à des mutations du gène Rsk2 codant la protéine kinase RSK2 dans la voie de signalisation des MAPK/ERK. La caractérisation phénotypique du modèle murin Rsk2-KO a principalement mis en évidence un retard d’acquisition ainsi qu’un déficit de mémoire spatiale à long terme, suggérant une altération des fonctions hippocampiques. Nous avons montré que les souris Rsk2-KO présentent également des déficits dans une forme d’apprentissage et de mémoire mettant en jeu la fonction de séparation de patterns dépendante du gyrus denté. Plusieurs études montrent que la genèse de nouveaux neurones dans le gyrus denté chez l’adulte constitue une forme de plasticité jouant un rôle important dans l’apprentissage et la mémoire dépendante de l’hippocampe, en particulier dans les tâches spatiales et de séparation de patterns. En raison des déficits observés chez les souris Rsk2-KO, nous nous sommes intéressés à la neurogenèse adulte chez ce modèle murin. Aucune différence de prolifération, de survie ou de maturation n’a été observée dans le gyrus denté des souris Rsk2-KO à l’état basal, ni après une tâche de séparation de patterns. Cependant, nous avons observé un déficit de survie des nouvelles cellules chez les souris Rsk2-KO après apprentissage dans la piscine de Morris. La littérature montre que l’enrichissement environnemental a des effets bénéfiques sur les performances cognitives des rongeurs et est notamment capable d’augmenter la neurogenèse adulte hippocampique. Nous avons donc analysé les effets de l’enrichissement sur les performances comportementales et la neurogenèse adulte des souris Rsk2-KO. Nos résultats montrent qu’un protocole d’enrichissement environnemental de 3 heures par jours durant 24 jours est capable de compenser ou d’améliorer les performances des souris Rsk2-KO dans les tâches de mémoire spatiale et de séparation de patterns et aussi d’augmenter la neurogenèse hippocampique adulte. / The Coffin-Lowry Syndrome is a rare syndromic form of X-linked intellectual disability. This syndrome is caused by mutations of the Rsk2 gene that encodes a protein kinase, RSK2, in the MAPK/ERK signaling pathway. Characterization of the behavioural phenotype of Rsk2-KO mice mainly showed that they display delayed acquisition and long-term deficits in a spatial reference memory task, suggesting an alteration in hippocampal function. Here, we show that Rsk2-KO mice are also deficient in a learning and memory task that involves dentate gyrus-dependent pattern separation function. Several studies showed the formation of new neurons in the adult dentate gyrus by neurogenesis is a form of plasticity that plays a significant role in hippocampal-dependent learning and memory, in particular for spatial learning and memory and pattern separation. As these functions are altered in Rsk2-KO mice, we studied hippocampal adult neurogenesis in these mice. No difference in proliferation, survival and maturation of newborn neurons was found in the dentate gyrus of the mutant mice in basal conditions, nor after a pattern separation task. However, we found a deficit in the survival of newborn cells in Rsk2-KO mice submitted to spatial learning and memory in the Morris water maze task. According to several studies, environmental enrichment in rodents has beneficial effects on cognitive performance and is associated with an enhancement of adult hippocampal neurogenesis. Thus, we assessed the potential effect of environmental enrichment on spatial learning and memory performance and adult hippocampal neurogenesis in Rsk2-KO mice. Our results show that an environmental enrichment protocol of 3h per day during 24 days can rescue or ameliorate spatial learning and memory performance and pattern separation function in Rsk2-KO mice and increase adult hippocampal neurogenesis.
|
239 |
Etude de la dynamique des adhésions neuronales N-cadhérine et L1 dans la croissance axonale et la synaptogenèsePruvost Née Dequidt, Caroline 16 May 2007 (has links) (PDF)
Lors des processus développementaux d'élongation axonale et de synaptogenèse, les protéines d'adhésion telles les cadhérines ou les Ig-CAM jouent des rôles fondamentaux en permettant la formation de contacts entre neurones. Pour étudier la dynamique de ces contacts et leurs rôles dans ces processus, nous avons mis en œuvre des techniques d'imagerie sur des neurones primaires d'hippocampe (clivage thrombine, FRAP, pinces optiques, quantum-dots), ceux-ci étant associés à un système semi-artificiel de microsphères recouvertes de protéines d'adhésion purifiées (N-cadhérine et L1). En utilisant une construction L1 portant une étiquette GFP extracellulaire clivable à la thrombine, j'ai pu précisé l'implication des processus de diffusion membranaire et d'exo- endocytose dans la dynamique des contacts L1-dépendants et obtenir des données quantitatives relatives à l'interaction homophile L1. J'ai également contribué à caractériser la liaison extracellulaire entre N-cadhérine et GluR2, sous-unité des récepteurs AMPA, et l'influence de l'expression de la N-cadhérine sur la mobilité de GluR2. L'interaction entre ces deux protéines pourrait être impliquée dans la formation et/ou la maturation des synapses.
|
240 |
Identification des canaux TRPC impliqués dans la potentialisation à long terme des interneurones de la région CA1 de l'hippocampe chez le ratKougioumoutzakis, André 08 1900 (has links)
Le réseau neuronal de l’hippocampe joue un rôle central dans la mémoire en modifiant de façon durable l’efficacité de ses synapses. Dans les interneurones de la couche oriens/alveus (O/A), l’induction de la potentialisation à long terme (PLT) requiert les courants postsynaptiques excitateurs évoqués par les récepteurs métabotropes du glutamate de sous-type 1a (CPSEmGluR1a) et l’entrée subséquente de Ca2+ via des canaux de la famille des transient receptor potential (TRP). Le but de ce projet était d’identifier les canaux TRP responsables des CPSEmGluR1a et d’explorer les mécanismes moléculaires régulant leur ouverture. Nous avons déterminé par des enregistrements électrophysiologiques que les CPSEmGluR1a étaient spécifiques aux interneurones O/A et qu’ils étaient indépendants de la phospholipase C. Nous avons ensuite examiné l’expression des TRPC et leur interaction avec mGluR1a par les techniques de RT-PCR, d’immunofluorescence et de co-immunoprécipitation. Nos résultats montrent que TRPC1 et mGluR1a s’associent dans l’hippocampe et que ces deux protéines sont présentes dans les dendrites des interneurones O/A. En revanche, TRPC4 ne semble s’associer à mGluR1a qu’en système recombinant et leur colocalisation paraît limitée au corps cellulaire. Finalement, nous avons procédé à des enregistrements d’interneurones dans lesquels l’expression des TRPC a été sélectivement supprimée par la transfection d’ARN interférant et avons ainsi démontré que TRPC1, mais non TRPC4, est une sous-unité obligatoire du canal responsable des CPSEmGluR1a. Ces travaux ont permis de mieux comprendre les mécanismes moléculaires à la base de la transmission synaptique des interneurones O/A et de mettre en évidence un rôle potentiel de TRPC1 dans la PLT. / The hippocampal neuronal network plays a crucial role in memory by producing long lasting changes in the efficacy of its synapses. In interneurons of stratum oriens/alveus (O/A), long term potentiation (LTP) induction requires metabotropic glutamate receptor subtype 1a (mGluR1a)-evoked excitatory postsynaptic currents (EPSCs) and subsequent Ca2+ entry through transient receptor potential (TRP) channels. The objectives of this project were to identify the TRP channels that mediate mGluR1a-evoked EPSCs and to explore molecular mechanisms that underlie their activation. Electrophysiological recordings showed that mGluR1a-evoked EPSCs were specifically observed in O/A interneurons and they were phospholipase C-independent. We then examined TRPC expression and their interaction with mGluR1a by RT-PCR, immunofluorescence and co-immunoprecipitation techniques. Our results show that TRPC1 and mGluR1a associate in hippocampus and that both proteins have overlapping distributions in dendrites of O/A interneurons. In contrast, TRPC4 seems to associate with mGluR1a only in recombinant system and their co-localization appears to be limited to the cell body. Finally, we performed recordings of interneurons in which TRPC expression was selectively suppressed by small interfering RNAs and we found that TRPC1, but not TRPC4, is an obligatory subunit of the channel that mediate mGluR1a-evoked EPSCs. This work brought new insight on molecular mechanisms underlying synaptic transmission of O/A interneurons and uncovered a potential role for TRPC1 in LTP.
|
Page generated in 0.2913 seconds