Spelling suggestions: "subject:"lodge theory"" "subject:"hodge theory""
11 |
ON HODGE CYCLES ON PRODUCTS OF CERTAIN ALGEBRAIC VARIETIESMaria Berardi (15333814) 20 April 2023 (has links)
<p>This dissertation concerns the construction of some examples of complex algebraic varieties giving insight into certain questions in Hodge theory. </p>
|
12 |
Duality and Local Cohomology in Hodge TheoryScott M Hiatt (15347473) 25 April 2023 (has links)
<p>A Hodge module on an algebraic variety may be viewed as a variation of Hodge structure with singularities. Given an irreducible variety $X$, for any polarized variation of Hodge structure $\bold{H}$ on a smooth open subvariety $U\subset X,$ there exists a unique Hodge module $\cM \in HM_{X}(X)$ that extends $\bH.$ Conversely, for any Hodge module $\cM \in HM_{X}(X)$ with strict support on $X,$ there exists a polarized variation of Hodge structure $\bH$ on a smooth open subset $U \subset X$ such that $\cM \vert _{V} \cong \bH.$ In this thesis, we first study the singularities of a Hodge module $\cM \in HM_{X}(X)$ by using Morihiko Saito's theory of $S$-sheaves and duality. Then using local cohomology and the theory of mixed Hodge modules, we study the Hodge structure of $H^{i}(X, DR(\cM))$ when $X$ is a projective variety. Finally, we consider a variation of Hodge structure $\bH$ on $U$ as a Hodge module $\cN \in HM(U)$ on $U,$ and study the local cohomology of the complex $Gr^{F}_{p}DR(j_{!}\cN) \in D^{b}_{coh}(\cO_{X}),$ where $j: U \hookrightarrow X$ is the natural map.</p>
|
13 |
Lefschetz fibrations = Fibrações de Lefschetz / Fibrações de LefschetzCallander, Brian, 1986- 23 August 2018 (has links)
Orientador: Elizabeth Terezinha Gasparim / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-23T08:45:07Z (GMT). No. of bitstreams: 1
Callander_Brian_M.pdf: 1926930 bytes, checksum: 341dd0f9759ced382e138cd14fc4ae2c (MD5)
Previous issue date: 2013 / Resumo: O propósito desta tese é estudar fibrações de Lefschetz simpléticas, nas quais os ciclos evanescentes são subvariedades Lagrangianas das fibras. Para a descrição da teoria de interseção dos ciclos evanescentes utilizamos cohomologia de Floer Lagrangiana, cujo conceito revemos nesta tese. Apresentamos três exemplos principais e de caráteres distintos: (1) twists de Dehn generalizados, (2) o "espelho" da reta projetiva, e (3) uma fibração numa órbita adjunta de sl(3,C). O terceiro destes exemplos é original e utiliza um teorema recente de Gasparim- Grama-San Martin / Abstract: The objective of this thesis is to study symplectic Lefschetz fibrations, in which the vanishing cycles are Lagrangian submanifolds of the fibres. In order to describe the intersection theory of vanishing cycles we use Lagrangian intersection Floer cohomology, which we review. We present three main examples of distinct characters: (1) generalized Dehn twists, (2) the "mirror" of the projective line, and (3) a fibration on an adjoint orbit of sl(3,C). The third of these examples is original and uses a recent theorem of Gasparim- Grama-San Martin / Mestrado / Matematica / Mestre em Matemática
|
14 |
Arithmetic Breuil-Kisin-Fargues modules and several topics in p-adic Hodge theoryHeng Du (10717026) 06 May 2021 (has links)
<div>
<div>
<div>
<p>Let K be a discrete valuation field with perfect residue field, we study the functor from
weakly admissible filtered (φ,N,G<sub>K</sub>)-modules over K to the isogeny category of Breuil-
Kisin-Fargues G<sub>K</sub>-modules. This functor is the composition of a functor defined by Fargues-Fontaine from weakly admissible filtered (φ,N,G<sub>K</sub>)-modules to G<sub>K</sub>-equivariant modifications of vector bundles over the Fargues-Fontaine curve X<sub>FF</sub> , with the functor of Fargues-Scholze that between the category of admissible modifications of vector bundles over X<sub>FF</sub>
and the isogeny category of Breuil-Kisin-Fargues modules. We characterize the essential
image of this functor and give two applications of our result. First, we give a new way of
viewing the p-adic monodromy theorem of p-adic Galois representations. Also we show our
theory provides a universal theory that enable us to compare many integral p-adic Hodge theories at
the A<sub>inf</sub> level.
</p>
</div>
</div>
</div>
|
15 |
Anabelian Intersection TheorySilberstein, Aaron 19 December 2012 (has links)
Let F be a field finitely generated and of transcendence degree 2 over \(\bar{\mathbb{Q}}\). We describe a correspondence between the smooth algebraic surfaces X defined over \(\bar{\mathbb{Q}}\) with field of rational functions F and Florian Pop’s geometric sets of prime divisors on \(Gal(\bar{F}/F)\), which are purely group-theoretical objects. This allows us to give a strong anabelian theorem for these surfaces. As a corollary, for each number field K, we give a method to construct infinitely many profinite groups \(\Gamma\) such that \(Out_{cont} (\Gamma)\) is isomorphic to \(Gal(\bar{K}/K)\), and we find a host of new categories which answer the Question of Ihara/Conjecture of Oda-Matsumura. / Mathematics
|
16 |
Geometric discretization schemes and differential complexes for elasticityAngoshtari, Arzhang 20 September 2013 (has links)
In this research, we study two different geometric approaches, namely, the discrete exterior calculus and differential complexes, for developing numerical schemes for linear and nonlinear elasticity. Using some ideas from discrete exterior calculus (DEC), we present a geometric discretization scheme for incompressible linearized
elasticity. After characterizing the configuration manifold of volume- preserving discrete deformations, we use Hamilton’s principle on this configuration manifold. The discrete Euler-Lagrange equations are obtained without using Lagrange multipliers.
The main difference between our approach and the mixed finite element formulations is that we simultaneously use three different discrete spaces for the displacement field. We test the efficiency and robustness of this geometric scheme using some numerical examples. In particular, we do not see any volume locking and/or checkerboarding of pressure in our numerical examples. This suggests that our choice of discrete solution
spaces is compatible. On the other hand, it has been observed that the linear elastostatics complex can be used to find very efficient numerical schemes. We use some geometric techniques to obtain differential complexes for nonlinear elastostatics.
In particular, by introducing stress functions for the Cauchy and the second Piola-Kirchhoff stress tensors, we show that 2D and 3D nonlinear elastostatics admit separate kinematic and kinetic complexes. We show that stress functions corresponding to the first Piola-Kirchhoff stress tensor allow us to write a complex for 3D nonlinear
elastostatics that similar to the complex of 3D linear elastostatics contains both the kinematics an kinetics of motion. We study linear and nonlinear compatibility equations
for curved ambient spaces and motions of surfaces in R3. We also study the relationship between the linear elastostatics complex and the de Rham complex. The geometric approach presented in this research is crucial for understanding connections
between linear and nonlinear elastostatics and the Hodge Laplacian, which can enable one to convert numerical schemes of the Hodge Laplacian to those for linear and possibly nonlinear elastostatics.
|
17 |
Sur certains aspects géométriques et arithmétiques des variétés de Shimura orthogonales / On some geometrical and arithmetical aspects of orthogonal Shimura varietiesTayou, Salim 17 June 2019 (has links)
Cette thèse a pour objet l'étude de quelques propriétés arithmétiques et géométriques des variétés de Shimura orthogonales. Ces variétés apparaissent naturellement comme espaces de modules de structures de Hodge de type K3. Dans certains cas, elles paramètrent des objets géométriques tels que les surfaces K3 et leurs analogues en dimensions supérieures, les variétés hyperkähleriennes. Ce point de vue modulaire sera notre fil conducteur tout au long de ce mémoire. Ainsi, dans la première partie, on démontre un résultat d'équirépartition du lieu de Hodge dans les variations de structures de Hodge de type K3 au dessus d'une courbe complexe quasi-projective. Dans la deuxième partie, on étudie des analogues arithmétiques du résultat précédent. Un exemple d'énoncés qu'on obtient est le suivant: étant donnée une surface K3 définie sur un corps de nombres et ayant partout bonne réduction, alors sous certaine hypothèse d'approximation, il existe une spécialisation telle que le nombre de Picard géométrique croît strictement. Dans la troisième partie, on relie les problèmes du saut de nombre de Picard dans les familles de surfaces K3 à la question de construction de courbes rationnelles sur ces surfaces. Enfin, on étend un résultat de Bogomolov et Tschinkel. On montre notamment que toute surface K3 définie sur un corps algébriquement clos de caractéristique quelconque et admettant une fibration elliptique non-isotriviale contient une infinité de courbes rationnelles. / This thesis deals with some arithmetical and geometrical aspects of orthogonal Shimura varieties. These varieties appear naturally as moduli spaces of Hodge structures of K3 type. In some cases, they parametrize geometric objects as K3 surfaces and their analogous in higher dimensions, the hyperkähler varieties. This modular point of view will be our guiding principle throughout this dissertation. In the first part, we prove an equidistribution result of the Hodge locus in variations of Hodge structures of K3 type above complex quasi-projective curves. In the second part, we study analogous results in the arithemtic setting. An example of statements we get is the following: given a K3 surface having everywhere good reduction and satisfying an approximation hypothesis, there exists a specialization with strictly increasing geometric Picard rank. In both cases, our methods take advantage of the rich arithmetic, automorphic and geometric structure of orthogonal Shimura varieties as well as the Kuga-Satake construction that links them to moduli spaces of abelian varieties. Finally, we extend a result of Bogomolov and Tschinkel. In particular, we show that any K3 surface defined over an algebraically closed field of arbitrary characteristic and admitting a non-isotrivial elliptic fibration contains infinitely many rational curves.
|
18 |
Hodge-Tate conditions for Landau-Ginzburg models / Landau-Ginzburg模型に対するHodge-Tate条件Shamoto, Yota 26 March 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第20885号 / 理博第4337号 / 新制||理||1623(附属図書館) / 京都大学大学院理学研究科数学・数理解析専攻 / (主査)教授 望月 拓郎, 教授 中島 啓, 教授 小野 薫 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
|
19 |
THE REDUCTION OF CERTAIN TWO DIMENSIONAL SEMISTABLE REPRESENTATIONSYifu Wang (16644759) 07 August 2023 (has links)
<p>Let p be a prime number and F be a finite extension of Q<sub>p</sub>. We established an algorithm to compute the semisimplification of the reduction of some irreducible two dimensional crystalline representations with two parameter {h,a<sub>p</sub>} when v<sub>p</sub>(a<sub>p</sub>) is large enough. We improve the known results when p|h. We also extend the algorithm to the two dimensional semistable and non-crystalline representation. We compute the semi-simplification of the reduction when v<sub>p</sub>(L) large enough and p=2. These results solve the difficulties with the case p=2. The strategies are based on the study of the Kisin modules over O<sub>F</sub> and Breuil modules over S<sub>F</sub>. By the theory of Breuil and Theorem of Colmez-Fontaine, these modules are closely related to semistable representations.</p>
|
20 |
Relative Fontaine-Laffaille Theory over Power Series RingsChristian Lawrence Hokaj (18368760) 16 April 2024 (has links)
<p dir="ltr">Let k be a perfect field of characteristic p > 2. We extend the equivalence of categories between Fontaine-Laffaille modules and Z_p lattices inside crystalline representations with Hodge-Tate weights at most p-2 of Fontaine to the situation where the base ring is the power series ring in d variables over the ring of Witt vectors of k. </p>
|
Page generated in 0.0313 seconds