• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 12
  • 12
  • 1
  • 1
  • 1
  • Tagged with
  • 60
  • 60
  • 17
  • 15
  • 15
  • 11
  • 11
  • 10
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

A predator-prey model in the chemostat with Ivlev functional response

Bolger, Tedra 09 1900 (has links)
It has been shown that the classical Rosenzweig-MacArthur predator-prey model is sensitive to the functional form of the predator response. To see if this sensitivity remains in the highly controlled environment of the chemostat, we use a predator-prey model with three trophic levels and a Holling type II predator response function. We first focus on the analysis of the model using an Ivlev functional response. Local and global dynamics are studied, with global stability of the coexistence equilibrium point obtained under certain conditions. Bifurcation analysis reveals the existence of a stable periodic orbit that appears via a super-critical Hopf bifurcation. The uniqueness of this periodic orbit is explored. Finally, we make comparisons between the dynamics of the model with Ivlev response and Monod response, both of which have nearly identical graphs. The same sensitivity to functional form is observed in the chemostat as in the classical model. / Thesis / Master of Science (MSc)
22

Nonlinear Investigation of the Use of Controllable Primary Suspensions to Improve Hunting in Railway Vehicles

Mohan, Anant 10 July 2003 (has links)
Hunting is a very common instability exhibited by rail vehicles operating at high speeds. The hunting phenomenon is a self excited lateral oscillation that is produced by the forward speed of the vehicle and the wheel-rail interactive forces that result from the conicity of the wheel-rail contours and the friction-creep characteristics of the wheel-rail contact geometry. Hunting can lead to severe ride discomfort and eventual physical damage to wheels and rails. A comprehensive study of the lateral stability of a single wheelset, a single truck, and the complete rail vehicle has been performed. This study investigates bifurcation phenomenon and limit cycles in rail vehicle dynamics. Sensitivity of the critical hunting velocity to various primary and secondary stiffness and damping parameters has been examined. This research assumes the rail vehicle to be moving on a smooth, level, and tangential track, and all parts of the rail vehicle to be rigid. Sources of nonlinearities in the rail vehicle model are the nonlinear wheel-rail profile, the friction-creep characteristics of the wheel-rail contact geometry, and the nonlinear vehicle suspension characteristics. This work takes both single-point and two-point wheel-rail contact conditions into account. The results of the lateral stability study indicate that the critical velocity of the rail vehicle is most sensitive to the primary longitudinal stiffness. A method has been developed to eliminate hunting behavior in rail vehicles by increasing the critical velocity of hunting beyond the operational speed range. This method involves the semi-active control of the primary longitudinal stiffness using the wheelset yaw displacement. This approach is seen to considerably increase the critical hunting velocity. / Master of Science
23

Dynamique non linéaire des poutres en composite en mouvement de rotation / Nonlinear vibrations of composite rotating beams

Bekhoucha, Ferhat 25 June 2015 (has links)
Le travail présenté dans ce manuscrit est une contribution à l’étude des vibrations non-linéaires des poutres isotropes et en composite, en mouvement de rotation. Le modèle mathématique utilisé est basé sur la formulation intrinsèque et géométriquement exacte de Hodges, dédiée au traitement des poutres ayant des grands déplacements et de petites déformations. La résolution est faite dans le domaine fréquentiel suite à une discrétisation spatio-temporelle, en utilisant l’approximation de Galerkin et la méthode de l’équilibrage harmonique, avec des conditions aux limites correspondantes aux poutres encastrées-libres. Le systéme dynamique final est traité par des méthodes de continuation : la méthode asymptotique numérique et la méthode pseudo-longueur d’arc. Des algorithmes basés sur ces méthodes de continuation ont été développés et une étude comparative de convergence a été menée. Cette étude a cerné les aspects : statique, analyse modale linéaire, vibrations libres non-linéaires et les vibrations forcées non-linéaires des poutres rotatives. Ces algorithmes de continuations ont été testés pour le calculs des courbes de réponse sur des cas traités dans la littérature. La résonance interne et la stabilité des solutions obtenues sont étudiées / The work presented in this manuscript is a contribution to the non-linear vibrations of the isotropic beams and composite rotating beams study. The mathematical model used is based on the intrinsic formulation and geometrically exact of Hodges, developped for beams subjected to large displacements and small deformations. The resolution is done in the frequency domain after a spatial-temporal dicretisation, by using the Galerkin approximation and the the harmonic balance method, with boundary conditions corresponding to the clamped-free. The final dynamic system is treated by continuation methods : asymptotic numerical method and the pseudo-arc length method, whose algorithms based on these continuation methods were developed and a convergence study was carried out. This study surround the aspects : statics, linear modal analysis, non-linear free vibrations and the non-linear forced vibrations of the rotating beams. These continuation algorithms were tested for the response curves calculations on cases elaborated in the literature. Internal resonance and the stability of the solutions obtained are studied
24

Stability and Hopf Bifurcation Analysis of Hopfield Neural Networks with a General Distribution of Delays

Jessop, Raluca January 2011 (has links)
We investigate the linear stability and perform the bifurcation analysis for Hopfield neural networks with a general distribution of delays, where the neurons are identical. We start by analyzing the scalar model and show what kind of information can be gained with only minimal information about the exact distribution of delays. We determine a mean delay and distribution independent stability region. We then illustrate a way of improving on this conservative result by approximating the true region of stability when the actual distribution is not known, but some moments or cumulants of the distribution are. We compare the approximate stability regions with the stability regions in the case of the uniform and gamma distributions. We show that, in general, the approximations improve as more moments or cumulants are used, and that the approximations using cumulants give better results than the ones using moments. Further, we extend these results to a network of n identical neurons, where we examine the stability of a symmetrical equilibrium point via the analysis of the characteristic equation both when the connection matrix is symmetric and when it is not. Finally, for the scalar model, we show under what conditions a Hopf bifurcation occurs and we use the centre manifold technique to determine the criticality of the bifurcation. When the kernel represents the gamma distribution with p=1 and p=2, we transform the delay differential equation into a system of ordinary differential equations and we compare the centre manifold computation to the one we obtain in the ordinary differential case.
25

Differential Equations With Discontinuities And Population Dynamics

Arugaslan Cincin, Duygu 01 June 2009 (has links) (PDF)
In this thesis, both theoretical and application oriented results are obtained for differential equations with discontinuities of different types: impulsive differential equations, differential equations with piecewise constant argument of generalized type and differential equations with discontinuous right-hand sides. Several qualitative problems such as stability, Hopf bifurcation, center manifold reduction, permanence and persistence are addressed for these equations and also for Lotka-Volterra predator-prey models with variable time of impulses, ratio-dependent predator-prey systems and logistic equation with piecewise constant argument of generalized type. For the first time, by means of Lyapunov functions coupled with the Razumikhin method, sufficient conditions are established for stability of the trivial solution of differential equations with piecewise constant argument of generalized type. Appropriate examples are worked out to illustrate the applicability of the method. Moreover, stability analysis is performed for the logistic equation, which is one of the most widely used population dynamics models. The behaviour of solutions for a 2-dimensional system of differential equations with discontinuous right-hand side, also called a Filippov system, is studied. Discontinuity sets intersect at a vertex, and are of the quasilinear nature. Through the B&amp / #8722 / equivalence of that system to an impulsive differential equation, Hopf bifurcation is investigated. Finally, the obtained results are extended to a 3-dimensional discontinuous system of Filippov type. After the existence of a center manifold is proved for the 3-dimensional system, a theorem on the bifurcation of periodic solutions is provided in the critical case. Illustrative examples and numerical simulations are presented to verify the theoretical results.
26

Stability and Hopf Bifurcation Analysis of Hopfield Neural Networks with a General Distribution of Delays

Jessop, Raluca January 2011 (has links)
We investigate the linear stability and perform the bifurcation analysis for Hopfield neural networks with a general distribution of delays, where the neurons are identical. We start by analyzing the scalar model and show what kind of information can be gained with only minimal information about the exact distribution of delays. We determine a mean delay and distribution independent stability region. We then illustrate a way of improving on this conservative result by approximating the true region of stability when the actual distribution is not known, but some moments or cumulants of the distribution are. We compare the approximate stability regions with the stability regions in the case of the uniform and gamma distributions. We show that, in general, the approximations improve as more moments or cumulants are used, and that the approximations using cumulants give better results than the ones using moments. Further, we extend these results to a network of n identical neurons, where we examine the stability of a symmetrical equilibrium point via the analysis of the characteristic equation both when the connection matrix is symmetric and when it is not. Finally, for the scalar model, we show under what conditions a Hopf bifurcation occurs and we use the centre manifold technique to determine the criticality of the bifurcation. When the kernel represents the gamma distribution with p=1 and p=2, we transform the delay differential equation into a system of ordinary differential equations and we compare the centre manifold computation to the one we obtain in the ordinary differential case.
27

Periodic Forcing of a System near a Hopf Bifurcation Point

Zhang, Yanyan 17 December 2010 (has links)
No description available.
28

Complex Dynamics and Bifurcations of Predator-prey Systems with Generalized Holling Type Functional Responses and Allee Effects in Prey

Kottegoda, Chanaka 15 September 2022 (has links)
No description available.
29

Shear-flow instabilities in closed flow / Instabilités dans les écoulements de cisaillement dans un milieu confiné

Lemée, Thomas 12 March 2013 (has links)
Cette étude se concentre sur la compréhension de la physique des instabilités dans différents écoulements de cisaillement, particulièrement la cavité entraînée et la cavité thermocapillaire, où l'écoulement d'un fluide incompressible est assuré soit par le mouvement d’une ou plusieurs parois, soit par des contraintes d’origine thermique.Un code spectral a été validé sur le cas très étudié de la cavité entrainée par une paroi mobile. Il est démontré dans ce cas que l'écoulement transit d'un régime stationnaire à un instationnaire au-delà d'une valeur critique du nombre de Reynolds. Ce travail est le premier à donner une interprétation physique de l'évolution non monotonique du nombre de Reynolds critique en fonction du facteur d'aspect. Lorsque le fluide est entraîné par deux parois mobiles, la cavité entraînée possède un plan de symétrie particulièrement sensible. Des solutions asymétriques peuvent être observés en plus de la solution symétrique au-dessus d'une certaine valeur du nombre de Reynolds. La transition oscillatoire entre la solution symétrique et les solutions asymétriques est expliquée physiquement par les forces en compétition. Dans le cas asymétrique, l'évolution de la topologie permet à l'écoulement de rester stationnaire avec l'augmentation du nombre de Reynolds. Lorsque l'équilibre est perdu une instabilité se manifeste par l'apparition d'un régime oscillatoire dans l'écoulement asymétrique.Dans une cavité thermocapillaire rectangulaire avec une surface libre, Smith et Davis prévoient deux types d'instabilités convectives thermiques: des rouleaux longitudinaux stationnaires et des ondes hydrothermales instationnaires. L'apparition de ses instabilités a été mis en évidence à plusieurs reprises expérimentalement et numériquement. Alors que les applications impliquent souvent plus d'une surface libre, il semble qu'il y ait peu de connaissances sur l'écoulement thermocapillaire entraînée avec deux surfaces libres. Un film liquide libre soumis à des contraintes thermocapillaires possède un plan de symétrie particulier comme dans le cas de la cavité entrainée par deux parois mobiles. Une étude de stabilité linéaire avec deux profils de vitesse pour le film liquide libre est présentée avec différents nombres de Prandtl. Au-delà d'un nombre de Marangoni critique, il est découvert que ces états de base sont sensibles à quatre types d'instabilités convectives thermiques qui peuvent conserver ou briser la symétrie du système. Les mécanismes qui permettent de prédire ces instabilités sont également découverts et interpréter en fonction de la valeur du nombre de Prandtl du fluide. La comparaison avec les travaux de Smith et Davis est faite. Une simulation numérique directe permet de valider les résultats obtenus avec l'étude de stabilité de linéaire. / This study focuses on the understanding of the physics of different instabilities in driven cavities, specifically the lid-driven cavity and the thermocapillarity driven cavity where flow in an incompressible fluid is driven either due to one or many moving walls or due to surface stresses that appear from surface tension gradients caused by thermal gradients. A spectral code is benchmarked on the well-studied case of the lid-cavity driven by one moving wall. In this case, It is shown that the flow transit form a steady regime to unsteady regime beyond a critical value of the Reynolds number. This work is the first to give a physical interpretation of the non-monotonic evolution of the critical Reynolds number versus the size of the cavity. When the fluid is driven by two facing walls moving in the same direction, the cavity possesses a plane of symmetry particularly sensitive. Thus, asymmetrical solutions can be observed in addition to the symmetrical solution above a certain value of the Reynolds number. The oscillatory transition between the symmetric solution and asymmetric solutions is explained physically by the forces in competition. In the asymmetric case, the change of the topology allows the flow to remain steady with increasing the Reynolds number. When the equilibrium is lost, an instability manifests by the appearance of an oscillatory regime in the asymmetric flow. In a rectangular cavity thermocapillary with a free surface, Smith and Davis found two types of thermal convective instabilities: steady longitudinal rolls and unsteady hydrothermal waves. The appearance of its instability has been highlighted repeatedly experimentally and numerically. While applications often involve more than a free surface, it seems that there is little knowledge about the thermocapillary driven flow with two free surfaces. A free liquid film possesses a particular plane of symmetry as in the case of the two-sided lid-driven cavity. A linear stability analysis for the free liquid film with two velocity profiles is presented with various Prandtl numbers. Beyond a critical Marangoni number, it is observed that these basic states are sensitive to four types of thermal convective instabilities, which can keep or break the symmetry of the system. Mechanisms that predict these instabilities are discovered and interpreted according to the value of the Prandtl number of the fluid. Comparison with the work of Smith and Davis is made. A direct numerical simulation is done to validate the results obtained with the linear stability analysis.
30

Étude d’équations à retard appliquées à la régulation de la production de plaquettes sanguines

Boullu, Loïs 11 1900 (has links)
No description available.

Page generated in 0.0894 seconds