• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 12
  • 12
  • 1
  • 1
  • 1
  • Tagged with
  • 60
  • 60
  • 17
  • 15
  • 15
  • 11
  • 11
  • 10
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Efeito de não linearidades estruturais na resposta aeroelástica de aerofólios / Effect of structural nonlinearities in the aeroelastic response of airfoils

Pereira, Daniel de Almeida 04 August 2015 (has links)
A aeroelasticidade estuda a interação mútua entre os efeitos aerodinâmicos e estruturais. É sabido que essa relação muitas vezes se comporta de maneira não linear, causando diversos problemas, tais como flutter, oscilações em ciclo limite, bifurcações e caos. Tais fenômenos são difíceis de serem diagnosticados, podendo causar problemas graves à estrutura das aeronaves e também inviabilizar as suas operações. Dentre as principais fontes de não linearidades em sistemas aeroelásticos, pode-se citar as de origem aerodinâmica e estrutural. As de origem estrutural, por sua vez, podem ter caráter distribuído ou concentrado. Sabe-se que os efeitos estruturais concentrados denominados enrijecimento e folga são os de maior impacto na aeroelasticidade não linear. Desse modo, o objetivo desse trabalho é estudar a interação não linear entre duas não linearidades estruturais, ou seja, o enrijecimento associado à rigidez em torção e a folga presente nas articulações das superfícies de controle de seções típicas aeroelásticas. Experimentos em túnel de vento são realizados utilizando um dispositivo que permite variar a intensidade do efeito de enrijecimento e do tamanho da folga na articulação da superfície de comando. O modelo numérico de seção típica aeroelástica também é utilizado e validado com dados experimentais. Análises por meio de diagramas de bifurcação de Hopf e técnicas baseadas em espectros de potência são utilizadas. Todas as respostas aeroelásticas foram caracterizadas através de ferramentas de análise nos domínios do tempo e da frequência, como técnica de reconstrução de espaço de estados e os espectros de alta ordem (HOS), os quais são importantes na identificação dos tipos de acoplamentos não lineares. Resultados indicam que a combinação dos efeitos de enrijecimento e folga são responsáveis pelo comportamento subcrítico das bifurcações de Hopf e que a intensidade do enrijecimento tem influência direta nas amplitudes de ciclo limite. / Aeroelasticity is the field of engineering that deals with the mutual interaction between the aerodynamic and structural dynamics effects. It is known that this relationship often shows nonlinear behavior, causing various problems such as flutter, limit cycle oscillations, bifurcations and chaos. Such phenomena are difficult to predict and can cause serious problems to the aircraft structure and also they can jeopardize their operations. The unsteady aerodynamic and structural dynamics provide the main sources of nonlinearities in aeroelastic systems. Structural nonlinearities can be treated as distributed or concentrated effects. It is know that the nonlinear concentrated structural effects referred as hardening and freeplay have a significant impact on nonlinear aeroelasticity. The objective of this work is to analyze an aeroelastic system under the influence of combined structural nonlinearities, i.e., the hardening nonlinearity in the pitch airfoil motion and the freeplay nonlinearity in the control surface hinge. Wind tunnel experiments are carried out using one device that allows to vary the intensity of the hardening effect and the size of the freeplay gap in the control surface hinge. The numerical model of the typical aeroelastic section is also used and validated with experimental data. All aeroelastic responses are characterized by analytical tools in time and frequency domains. It was used the state space reconstruction technique and the higher order spectral analysis (HOS) to identify types of nonlinear couplings. The results indicate that the combination of hardening and freeplay effects are responsible for inducing the subcritical behavior on the Hopf bifurcations and that the intensity of the stiffness has a direct influence on the limit cycle amplitudes.
32

Efeito de não linearidades estruturais na resposta aeroelástica de aerofólios / Effect of structural nonlinearities in the aeroelastic response of airfoils

Daniel de Almeida Pereira 04 August 2015 (has links)
A aeroelasticidade estuda a interação mútua entre os efeitos aerodinâmicos e estruturais. É sabido que essa relação muitas vezes se comporta de maneira não linear, causando diversos problemas, tais como flutter, oscilações em ciclo limite, bifurcações e caos. Tais fenômenos são difíceis de serem diagnosticados, podendo causar problemas graves à estrutura das aeronaves e também inviabilizar as suas operações. Dentre as principais fontes de não linearidades em sistemas aeroelásticos, pode-se citar as de origem aerodinâmica e estrutural. As de origem estrutural, por sua vez, podem ter caráter distribuído ou concentrado. Sabe-se que os efeitos estruturais concentrados denominados enrijecimento e folga são os de maior impacto na aeroelasticidade não linear. Desse modo, o objetivo desse trabalho é estudar a interação não linear entre duas não linearidades estruturais, ou seja, o enrijecimento associado à rigidez em torção e a folga presente nas articulações das superfícies de controle de seções típicas aeroelásticas. Experimentos em túnel de vento são realizados utilizando um dispositivo que permite variar a intensidade do efeito de enrijecimento e do tamanho da folga na articulação da superfície de comando. O modelo numérico de seção típica aeroelástica também é utilizado e validado com dados experimentais. Análises por meio de diagramas de bifurcação de Hopf e técnicas baseadas em espectros de potência são utilizadas. Todas as respostas aeroelásticas foram caracterizadas através de ferramentas de análise nos domínios do tempo e da frequência, como técnica de reconstrução de espaço de estados e os espectros de alta ordem (HOS), os quais são importantes na identificação dos tipos de acoplamentos não lineares. Resultados indicam que a combinação dos efeitos de enrijecimento e folga são responsáveis pelo comportamento subcrítico das bifurcações de Hopf e que a intensidade do enrijecimento tem influência direta nas amplitudes de ciclo limite. / Aeroelasticity is the field of engineering that deals with the mutual interaction between the aerodynamic and structural dynamics effects. It is known that this relationship often shows nonlinear behavior, causing various problems such as flutter, limit cycle oscillations, bifurcations and chaos. Such phenomena are difficult to predict and can cause serious problems to the aircraft structure and also they can jeopardize their operations. The unsteady aerodynamic and structural dynamics provide the main sources of nonlinearities in aeroelastic systems. Structural nonlinearities can be treated as distributed or concentrated effects. It is know that the nonlinear concentrated structural effects referred as hardening and freeplay have a significant impact on nonlinear aeroelasticity. The objective of this work is to analyze an aeroelastic system under the influence of combined structural nonlinearities, i.e., the hardening nonlinearity in the pitch airfoil motion and the freeplay nonlinearity in the control surface hinge. Wind tunnel experiments are carried out using one device that allows to vary the intensity of the hardening effect and the size of the freeplay gap in the control surface hinge. The numerical model of the typical aeroelastic section is also used and validated with experimental data. All aeroelastic responses are characterized by analytical tools in time and frequency domains. It was used the state space reconstruction technique and the higher order spectral analysis (HOS) to identify types of nonlinear couplings. The results indicate that the combination of hardening and freeplay effects are responsible for inducing the subcritical behavior on the Hopf bifurcations and that the intensity of the stiffness has a direct influence on the limit cycle amplitudes.
33

Étude d’équations à retard appliquées à la régulation de la production de plaquettes sanguines / Study of delay differential equations with applications to the regulation of blood platelet production

Boullu, Lois 21 November 2018 (has links)
L’objectif de cette thèse est d’étudier, à l’aide de modèles mathématiques, le mécanisme de régulation qui permet au corps de maintenir une quantité optimale de plaquettes sanguines. Le premier chapitre présente le contexte biologique et mathématique. Dans un second chapitre, un modèle pour la mégacaryopoïèse est introduit qui suppose une régulation ponctuelle par le nombre de plaquettes du taux de différentiation des cellules souches vers la lignée mégacaryocytaire et du nombre de plaquettes produites par mégacaryocyte. Nous montrons que la dynamique de ce modèle est régie par une équation différentielle à retard x'(t) = -?x(t)+f(x(t))g(x(t-t)), et nous obtenons ensuite de nouvelles conditions suffisantes pour la stabilité et l’oscillation des solutions de cette équation. Dans le troisième chapitre, nous analysons un second modèle pour la mégacaryopoïèse qui considère cette fois-ci une régulation opérée en continu uniquement via la vitesse de maturation des mégacaryoblastes. L’analyse de stabilité nécessite d’adapter un cadre pré-existant aux cas où le paramètre de bifurcation n’est pas le retard, et permet de montrer que l’augmentation du taux de mort des mégacaryoblastes conduit à l’apparition de solutions périodiques, en accord avec les observations cliniques de la thrombopénie cyclique amégacaryocytaire. Le dernier chapitre est consacré l’analyse de stabilité d’une équation différentielle à deux retards qui apparait notamment dans le cadre de la mégacaryopoïèse lorsque l’on considère que les plaquettes ont une durée de vie limitée / The object of this thesis is the study, using mathematical models, of the regulation mechanism maintaining an optimal quantity of blood platelets. The first chapter presents the biological and mathematical context of the thesis. In a second chapter, we introduce a model for megakaryopoiesis assuming a regulation by the platelet quantity of both the differentiation rate of stem cells to the platelet cell line and the amount of platelets produced by each megakaryocyte. We show that the dynamic of this model corresponds to a delay differential equation x'(t) = -?x(t) + f(x(t))g(x(t - t)), and we obtain for this equation new sufficient conditions for stability and for the oscillation of solutions. In a third chapter, we analyze a second model for megakaryopoiesis in which the regulation is continuous through the maturation speed of megakaryocyte progenitors. The stability analysis requires to adapt a pre-existing framework to problems where the bifurcation parameter is not the delay, and allows to show that increasing the death rate of megakaryocyte progenitors leads to the onset of periodic solutions, in agreement with clinical observation of amegakaryocytic cyclical thrombocytopenia. The last chapter covers a differential equation with two delays that appears among others in a model of platelet production which considers that platelet death can both age-independent and age-dependent
34

Oscillatory Dynamics of the Actin Cytoskeleton

Westendorf, Christian 28 November 2012 (has links)
No description available.
35

Análise da dinâmica de um sistema vibrante não ideal de dois graus de liberdade

Cauz, Luiz Oreste [UNESP] 25 July 2005 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:26:56Z (GMT). No. of bitstreams: 0 Previous issue date: 2005-07-25Bitstream added on 2014-06-13T20:35:11Z : No. of bitstreams: 1 cauz_lo_me_sjrp.pdf: 1991139 bytes, checksum: c18750cde05438df23eec43208d0eb54 (MD5) / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / Neste trabalho apresentamos um estudo da dinâmica de um sistema vibrante não ideal, composto por um motor e uma mola, conhecido como vibrador centrífugo. O objetivo deste estudo é mostrar a diferença de comportamento do sistema, quando consideramos molas duras (coeficiente de elasticidade cúbica positivo) ou molas suaves (coeficiente de elasticidade cúbica negativo). Para mola dura foi analisada a estabilidade dos pontos de equilíbrio, e mostrada por meio da teoria de variedade central e do teorema de Bezout a existência da bifurcação de Hopf. Para mola suave, þe mostrada a existência de uma órbita heteroclínica conectando dois pontos de sela. Usando o método clássico de Melnikov, é discutida a existência ou não do comportamento caótico para um determinado nível de energia e para certos valores do coeficiente de amortecimento. Toda a análise é acompanhada de simulações numéricas para a confirmação dos resultados. / In this work we present a study of the dynamics of a non-ideal vibrating system, composed by a motor and a spring, which is known as centrifugal vibrator. The purpose of this study is to show the difference of behavior of the system when we consider hard springs (positive coefficient of cubical elasticity) or soft springs (negative coefficient of cubical elasticity). For hard spring the stability of the fixed point was analyzed, and by means of the Central Manifolds Theory and the Bezout theorem the existence of the Hopf Bifurcation is shown. For soft spring, it is shown the existence of a heteroclinic orbit connecting two saddle points. Using the classical Melnikov method it is discussed the existence, or not, of the chaotic behavior for some energy level and certain values of the damping coefficient. All the analysis is followed by numerical simulations to confirm the results.
36

Ciclos limites e a equação de van der Pol /

Cardin, Pedro Toniol. January 2008 (has links)
Orientador: Paulo Ricardo da Silva / Banca: Luis Fernando Mello / Banca: João Carlos Ferreira Costa / Resumo: Nesta dissertação estudamos critérios para determinar a existência, a não existência e a unicidade de ciclos limites de campos de vetores planares. Mais especificamente, estudamos equações de Lienard Äx + f(x; _ x) _ x + g(x) = 0; onde f e g satisfazem determinadas hip¶oteses. Em particular estudamos a equa»c~ao de van der Pol Äx + "(x2 ¡ 1) _ x + x = 0; a qual é conhecida da teoria dos circuitos elétricos. Provamos a existência e a unicidade de ciclos limites para estas equações. Por fim estudamos a equação de van der Pol com o parâmetro" " 1 e o fenômeno canard que ocorre ao considerarmos um parâmetro adicional ®: As técnicas utilizadas s~ao as usuais de Análise Assintótica. / Abstract: In this work we study the existence, the non existence and the uniqueness of limit cycles of planar vector felds. More specifically, we study Lienard equations Äx+f(x; _ x) _ x+g(x) = 0; where f and g satisfy some hypothesis. In particular we study the van der Pol equation Äx + "(x2 ¡ 1) _ x + x = 0; which is knew of the circuit theory. We prove the existence and the uniqueness of limit cycles for these equations. In the last part we study the van der Pol equation with the parameter " " 1 and the canard phenomenon which appears when we consider an additional parameter ®: The techniques employed are the usual in the Asymptotic Analysis. / Mestre
37

Análise da dinâmica de um sistema vibrante não ideal de dois graus de liberdade /

Cauz, Luiz Oreste. January 2005 (has links)
Orientador: Masayoshi Tsuchida / Banca: Márcio José Horta Dantas / Banca: Manoel Ferreira Borges Neto / Resumo: Neste trabalho apresentamos um estudo da dinâmica de um sistema vibrante não ideal, composto por um motor e uma mola, conhecido como vibrador centrífugo. O objetivo deste estudo é mostrar a diferença de comportamento do sistema, quando consideramos molas duras (coeficiente de elasticidade cúbica positivo) ou molas suaves (coeficiente de elasticidade cúbica negativo). Para mola dura foi analisada a estabilidade dos pontos de equilíbrio, e mostrada por meio da teoria de variedade central e do teorema de Bezout a existência da bifurcação de Hopf. Para mola suave, þe mostrada a existência de uma órbita heteroclínica conectando dois pontos de sela. Usando o método clássico de Melnikov, é discutida a existência ou não do comportamento caótico para um determinado nível de energia e para certos valores do coeficiente de amortecimento. Toda a análise é acompanhada de simulações numéricas para a confirmação dos resultados. / Abstract: In this work we present a study of the dynamics of a non-ideal vibrating system, composed by a motor and a spring, which is known as centrifugal vibrator. The purpose of this study is to show the difference of behavior of the system when we consider hard springs (positive coefficient of cubical elasticity) or soft springs (negative coefficient of cubical elasticity). For hard spring the stability of the fixed point was analyzed, and by means of the Central Manifolds Theory and the Bezout theorem the existence of the Hopf Bifurcation is shown. For soft spring, it is shown the existence of a heteroclinic orbit connecting two saddle points. Using the classical Melnikov method it is discussed the existence, or not, of the chaotic behavior for some energy level and certain values of the damping coefficient. All the analysis is followed by numerical simulations to confirm the results. / Mestre
38

Modèle épidémiologique compartimental à délai pour le virus de la dengue

Bérubé, François 12 1900 (has links)
La dengue est une infection virale qui touche de 100 à 400 millions d'individus chaque année. Selon l'OMS, « la dengue sévère est l’une des principales maladies graves et causes de décès dans certains pays d’Asie et d’Amérique latine ». Il est justifiable de modéliser la propagation de cette maladie dans une population à l'aide de modèles mathématiques compartimentaux. Les travaux de Forshey et al. sur la fièvre dengue semblent indiquer la possibilité qu'une infection à la dengue ne donne pas une immunité à long terme contre les différents sérotypes du virus, et qu'une réinfection homotypique à la dengue serait commune. Nous étudions un modèle SIRS de la dengue qui prend en compte cette perte d'immunité via un système d'équations différentielles à délai. Nous caractérisons les états stationnaires et leur stabilité en termes des différents paramètres considérés, notamment les taux de reproduction de base associés à chacun des sérotypes de la dengue. Nous étudions les bifurcations du système en ses principaux paramètres, notamment les bifurcations de Hopf émergeant de la présence d'un délai dans le système d'équations différentielles. Des simulations numériques du modèle sont présentées afin de représenter les différents régimes du modèle à l'étude. / Dengue is a viral infection affecting from 100 to 400 million people each year. According to the WHO, "severe dengue is a leading cause of serious illness and death in some Asian and Latin American countries". This justifies the modelling of this illness's propagation in a population using mathematical compartmental models. Results of Forshey et al. on dengue fever seem to indicate the possibility that a dengue infection does not yield a long term immunity against the different dengue serotypes, and that an homotypical reinfection could be common. We study a SIRS model for the dengue virus that takes into account this loss of immunity via a system of delay differential equations. We characterize the stationary states and their stability in terms of the different parameters considered, in particular the basic reproduction ratios associated to each dengue serotype. We study the system's bifurcations in its main parameters, especially the Hopf bifurcations arising from the presence of a delay in the system of differential equations. Numerical simulations of the model are presented to represent the model's different regimes.
39

Système dynamique stochastique de certains modèles proies-prédateurs et applications. / Stochastic dynamics of some predator-prey systems and applications

Slimani, Safia 10 December 2018 (has links)
Ce travail est consacré à l’étude de la dynamique d’un système proie-prédateur de type Leslie-Gower défini par un système d’équations différentielles ordinaires (EDO) ou d’équations différentielles stochastiques (EDS), ou par des systèmes couplés d’EDO ou d’EDS. L’objectif principal est de faire l’analyse mathématique et la simulation numérique des modèles construits. Cette thèse est divisée en deux parties : La première partie est consacrée à un système proie-prédateur où les proies utilisent un refuge, le modèle est donné par un système d’équations différentielles ordinaires ou d’équations différentielles stochastiques. Le but de cette partie est d’étudier l’impact du refuge ainsi que la perturbation stochastique sur le comportement des solutions du système. Dans la deuxième partie, nous considérons un système proie-prédateur couplé en réseau. Il s’agit d’étudier comment des couplages plus ou moins forts entre plusieurs systèmes affectent l’existence et la position des points d’équilibre, et la stabilité de ces systèmes. / This work is devoted to the study of the dynamics of a predator-prey system of Leslie-Gower type defined by a system of ordinary differential equations (EDO) or stochastic differential equations (EDS), or by coupled systems of EDO or EDS. The main objective is to do mathematical analysis and numerical simulation of the models built. This thesis is divided into two parts : The first part is dedicated to a predator-prey system where the prey uses a refuge, the model is given by a system of ordinary differential equations or stochastic differential equations. The purpose of this part is to study the impact of the refuge as well as the stochastic perturbation on the behavior of the solutions of the system. In the second part, we consider a networked predator-prey system. We show that symmetric couplings speed up the convergence to a stationary distribution.
40

Reaction-diffusion Equations with Nonlinear and Nonlocal Advection Applied to Cell Co-culture / Équation de réaction-diffusion avec advection non-linéaire et non-locale appliquée à la co-culture cellulaire

Fu, Xiaoming 19 November 2019 (has links)
Cette thèse est consacrée à l’étude d’une classe d’équations de réaction-diffusion avec advection non-locale. La motivation vient du mouvement cellulaire avec le phénomène de ségrégation observé dans des expérimentations de co-culture cellulaire. La première partie de la thèse développe principalement le cadre théorique de notre modèle, à savoir le caractère bien posé du problème et le comportement asymptotique des solutions dans les cas d'une ou plusieurs espèces.Dans le Chapitre 1, nous montrons qu'une équation scalaire avec un noyau non-local ayant la forme d'une fonction étagée, peut induire des bifurcations de Turing et de Turing-Hopf avec le nombre d’ondes dominant aussi grand que souhaité. Nous montrons que les propriétés de bifurcation de l'état stable homogène sont intimement liées aux coefficients de Fourier du noyau non-local.Dans le Chapitre 2, nous étudions un modèle d'advection non-local à deux espèces avec inhibition de contact lorsque la viscosité est égale à zéro. En employant la notion de solution intégrée le long des caractéristiques, nous pouvons rigoureusement démontrer le caractère bien posé du problème ainsi que la propriété de ségrégation d'un tel système. Par ailleurs, dans le cadre de la théorie des mesures de Young, nous étudions le comportement asymptotique des solutions. D'un point de vue numérique, nous constatons que sous l'effet de la ségrégation, le modèle d'advection non-locale admet un principe d'exclusion.Dans le dernier Chapitre de la thèse, nous nous intéressons à l'application de nos modèles aux expérimentations de co-culture cellulaire. Pour cela, nous choisissons un modèle hyperbolique de Keller-Segel sur un domaine borné. En utilisant les données expérimentales, nous simulons un processus de croissance cellulaire durant 6 jours dans une boîte de pétri circulaire et nous discutons de l’impact de la propriété de ségrégation et des distributions initiales sur les proportions de la population finale. / This thesis is devoted to the study for a class of reaction-diffusion equations with nonlocal advection. The motivation comes from the cell movement with segregation phenomenon observed in cell co-culture experiments. The first part of the thesis mainly develops the theoretical framework of our model, namely the well-posedness and asymptotic behavior of solutions in both single-species and multi-species cases.In Chapter 1, we show a single scalar equation with a step function kernel may display Turing and Turing-Hopf bifurcations with the dominant wavenumber as large as we want. We find the bifurcation properties of the homogeneous steady state is closed related to the Fourier coefficients of the nonlocal kernel.In Chapter 2, we study a two-species nonlocal advection model with contact inhibition when the viscosity equals zero. By employing the notion of the solution integrated along the characteristics, we rigorously prove the well-posedness and segregation property of such a hyperbolic nonlocal advection system. Besides, under the framework of Young measure theory, we investigate the asymptotic behavior of solutions. From a numerical perspective, we find that under the effect of segregation, the nonlocal advection model admits a competitive exclusion principle.In the last Chapter, we are interested in applying our models to a cell co-culturing experiment. To that aim, we choose a hyperbolic Keller-Segel model on a bounded domain. By utilizing the experimental data, we simulate a 6-day process of cell growth in a circular petri dish and discuss the impact of both the segregation property and initial distributions on the finial population proportions.

Page generated in 0.0876 seconds