Spelling suggestions: "subject:"refinement,"" "subject:"derefinement,""
1 |
Efficiency-based hp-refinement for finite element methodsTang, Lei 02 August 2007 (has links)
Two efficiency-based grid refinement strategies are investigated for adaptive finite element
solution of partial differential equations. In each refinement step, the elements are ordered
in terms of decreasing local error, and the optimal fraction of elements to be refined is deter-
mined based on e±ciency measures that take both error reduction and work into account.
The goal is to reach a pre-specified bound on the global error with a minimal amount of
work. Two efficiency measures are discussed, 'work times error' and 'accuracy per computational cost'. The resulting refinement strategies are first compared for a one-dimensional
model problem that may have a singularity. Modified versions of the efficiency strategies
are proposed for the singular case, and the resulting adaptive methods are compared with a
threshold-based refinement strategy. Next, the efficiency strategies are applied to the case
of hp-refinement for the one-dimensional model problem. The use of the efficiency-based
refinement strategies is then explored for problems with spatial dimension greater than
one. The work times error strategy is inefficient when the spatial dimension, d, is larger
than the finite element order, p, but the accuracy per computational cost strategy provides
an efficient refinement mechanism for any combination of d and p.
|
2 |
Efficiency-based hp-refinement for finite element methodsTang, Lei 02 August 2007 (has links)
Two efficiency-based grid refinement strategies are investigated for adaptive finite element
solution of partial differential equations. In each refinement step, the elements are ordered
in terms of decreasing local error, and the optimal fraction of elements to be refined is deter-
mined based on e±ciency measures that take both error reduction and work into account.
The goal is to reach a pre-specified bound on the global error with a minimal amount of
work. Two efficiency measures are discussed, 'work times error' and 'accuracy per computational cost'. The resulting refinement strategies are first compared for a one-dimensional
model problem that may have a singularity. Modified versions of the efficiency strategies
are proposed for the singular case, and the resulting adaptive methods are compared with a
threshold-based refinement strategy. Next, the efficiency strategies are applied to the case
of hp-refinement for the one-dimensional model problem. The use of the efficiency-based
refinement strategies is then explored for problems with spatial dimension greater than
one. The work times error strategy is inefficient when the spatial dimension, d, is larger
than the finite element order, p, but the accuracy per computational cost strategy provides
an efficient refinement mechanism for any combination of d and p.
|
3 |
Nonconforming formulations with spectral element methodsSert, Cuneyt 15 November 2004 (has links)
A spectral element algorithm for solution of the incompressible Navier-Stokes and heat transfer equations is developed, with an emphasis on extending the classical conforming Galerkin formulations to nonconforming spectral elements. The new algorithm employs both the Constrained Approximation Method (CAM), and the Mortar Element Method (MEM) for p-and h-type nonconforming elements. Detailed descriptions, and formulation steps for both methods, as well as the performance comparisons between CAM and MEM, are presented. This study fills an important gap in the literature by providing a detailed explanation for treatment of p-and h-type nonconforming interfaces. A comparative eigenvalue spectrum analysis of diffusion and convection operators is provided for CAM and MEM. Effects of consistency errors due to the nonconforming formulations on the convergence of steady and time dependent problems are studied in detail. Incompressible flow solvers that can utilize these nonconforming formulations on both p- and h-type nonconforming grids are developed and validated. Engineering use of the developed solvers are demonstrated by detailed parametric analyses of oscillatory flow forced convection heat transfer in two-dimensional channels.
|
4 |
Nonconforming formulations with spectral element methodsSert, Cuneyt 15 November 2004 (has links)
A spectral element algorithm for solution of the incompressible Navier-Stokes and heat transfer equations is developed, with an emphasis on extending the classical conforming Galerkin formulations to nonconforming spectral elements. The new algorithm employs both the Constrained Approximation Method (CAM), and the Mortar Element Method (MEM) for p-and h-type nonconforming elements. Detailed descriptions, and formulation steps for both methods, as well as the performance comparisons between CAM and MEM, are presented. This study fills an important gap in the literature by providing a detailed explanation for treatment of p-and h-type nonconforming interfaces. A comparative eigenvalue spectrum analysis of diffusion and convection operators is provided for CAM and MEM. Effects of consistency errors due to the nonconforming formulations on the convergence of steady and time dependent problems are studied in detail. Incompressible flow solvers that can utilize these nonconforming formulations on both p- and h-type nonconforming grids are developed and validated. Engineering use of the developed solvers are demonstrated by detailed parametric analyses of oscillatory flow forced convection heat transfer in two-dimensional channels.
|
5 |
Methods for solving discontinuous-Galerkin finite element equations with application to neutron transportMurphy, Steven 26 August 2015 (has links) (PDF)
We consider high order discontinuous-Galerkin finite element methods for partial differential equations, with a focus on the neutron transport equation. We begin by examining a method for preprocessing block-sparse matrices, of the type that arise from discontinuous-Galerkin methods, prior to factorisation by a multifrontal solver. Numerical experiments on large two and three dimensional matrices show that this pre-processing method achieves a significant reduction in fill-in, when compared to methods that fail to exploit block structures. A discontinuous-Galerkin finite element method for the neutron transport equation is derived that employs high order finite elements in both space and angle. Parallel Krylov subspace based solvers are considered for both source problems and $k_{eff}$-eigenvalue problems. An a-posteriori error estimator is derived and implemented as part of an h-adaptive mesh refinement algorithm for neutron transport $k_{eff}$-eigenvalue problems. This algorithm employs a projection-based error splitting in order to balance the computational requirements between the spatial and angular parts of the computational domain. An hp-adaptive algorithm is presented and results are collected that demonstrate greatly improved efficiency compared to the h-adaptive algorithm, both in terms of reduced computational expense and enhanced accuracy. Computed eigenvalues and effectivities are presented for a variety of challenging industrial benchmarks. Accurate error estimation (with effectivities of 1) is demonstrated for a collection of problems with inhomogeneous, irregularly shaped spatial domains as well as multiple energy groups. Numerical results are presented showing that the hp-refinement algorithm can achieve exponential convergence with respect to the number of degrees of freedom in the finite element space
|
6 |
Methods for solving discontinuous-Galerkin finite element equations with application to neutron transport / Méthodes de résolution d'équations aux éléments finis Galerkin discontinus et application à la neutroniqueMurphy, Steven 26 August 2015 (has links)
Cette thèse traite des méthodes d’éléments finis Galerkin discontinus d’ordre élevé pour la résolution d’équations aux dérivées partielles, avec un intérêt particulier pour l’équation de transport des neutrons. Nous nous intéressons tout d’abord à une méthode de pré-traitement de matrices creuses par blocs, qu’on retrouve dans les méthodes Galerkin discontinues, avant factorisation par un solveur multifrontal. Des expériences numériques conduites sur de grandes matrices bi- et tri-dimensionnelles montrent que cette méthode de pré-traitement permet une réduction significative du ’fill-in’, par rapport aux méthodes n’exploitant pas la structure par blocs. Ensuite, nous proposons une méthode d’éléments finis Galerkin discontinus, employant des éléments d’ordre élevé en espace comme en angle, pour résoudre l’équation de transport des neutrons. Nous considérons des solveurs parallèles basés sur les sous-espaces de Krylov à la fois pour des problèmes ’source’ et des problèmes aux valeur propre multiplicatif. Dans cet algorithme, l’erreur est décomposée par projection(s) afin d’équilibrer les contraintes numériques entre les parties spatiales et angulaires du domaine de calcul. Enfin, un algorithme HP-adaptatif est présenté ; les résultats obtenus démontrent une nette supériorité par rapport aux algorithmes h-adaptatifs, à la fois en terme de réduction de coût de calcul et d’amélioration de la précision. Les valeurs propres et effectivités sont présentées pour un panel de cas test industriels. Une estimation précise de l’erreur (avec effectivité de 1) est atteinte pour un ensemble de problèmes aux domaines inhomogènes et de formes irrégulières ainsi que des groupes d’énergie multiples. Nous montrons numériquement que l’algorithme HP-adaptatif atteint une convergence exponentielle par rapport au nombre de degrés de liberté de l’espace éléments finis. / We consider high order discontinuous-Galerkin finite element methods for partial differential equations, with a focus on the neutron transport equation. We begin by examining a method for preprocessing block-sparse matrices, of the type that arise from discontinuous-Galerkin methods, prior to factorisation by a multifrontal solver. Numerical experiments on large two and three dimensional matrices show that this pre-processing method achieves a significant reduction in fill-in, when compared to methods that fail to exploit block structures. A discontinuous-Galerkin finite element method for the neutron transport equation is derived that employs high order finite elements in both space and angle. Parallel Krylov subspace based solvers are considered for both source problems and $k_{eff}$-eigenvalue problems. An a-posteriori error estimator is derived and implemented as part of an h-adaptive mesh refinement algorithm for neutron transport $k_{eff}$-eigenvalue problems. This algorithm employs a projection-based error splitting in order to balance the computational requirements between the spatial and angular parts of the computational domain. An hp-adaptive algorithm is presented and results are collected that demonstrate greatly improved efficiency compared to the h-adaptive algorithm, both in terms of reduced computational expense and enhanced accuracy. Computed eigenvalues and effectivities are presented for a variety of challenging industrial benchmarks. Accurate error estimation (with effectivities of 1) is demonstrated for a collection of problems with inhomogeneous, irregularly shaped spatial domains as well as multiple energy groups. Numerical results are presented showing that the hp-refinement algorithm can achieve exponential convergence with respect to the number of degrees of freedom in the finite element space
|
7 |
Analyse et développement de méthodes de raffinement hp en espace pour l'équation de transport des neutronsFournier, Damien 10 October 2011 (has links)
Pour la conception des cœurs de réacteurs de 4ème génération, une précision accrue est requise pour les calculs des différents paramètres neutroniques. Les ressources mémoire et le temps de calcul étant limités, une solution consiste à utiliser des méthodes de raffinement de maillage afin de résoudre l'équation de transport des neutrons. Le flux neutronique, solution de cette équation, dépend de l'énergie, l'angle et l'espace. Les différentes variables sont discrétisées de manière successive. L'énergie avec une approche multigroupe, considérant les différentes grandeurs constantes sur chaque groupe, l'angle par une méthode de collocation, dite approximation Sn. Après discrétisation énergétique et angulaire, un système d'équations hyperboliques couplées ne dépendant plus que de la variable d'espace doit être résolu. Des éléments finis discontinus sont alors utilisés afin de permettre la mise en place de méthodes de raffinement dite hp. La précision de la solution peut alors être améliorée via un raffinement en espace (h-raffinement), consistant à subdiviser une cellule en sous-cellules, ou en ordre (p-raffinement) en augmentant l'ordre de la base de polynômes utilisée.Dans cette thèse, les propriétés de ces méthodes sont analysées et montrent l'importance de la régularité de la solution dans le choix du type de raffinement. Ainsi deux estimateurs d'erreurs permettant de mener le raffinement ont été utilisés. Le premier, suppose des hypothèses de régularité très fortes (solution analytique) alors que le second utilise seulement le fait que la solution est à variations bornées. La comparaison de ces deux estimateurs est faite sur des benchmarks dont on connaît la solution exacte grâce à des méthodes de solutions manufacturées. On peut ainsi analyser le comportement des estimateurs au regard de la régularité de la solution. Grâce à cette étude, une stratégie de raffinement hp utilisant ces deux estimateurs est proposée et comparée à d'autres méthodes rencontrées dans la littérature. L'ensemble des comparaisons est réalisé tant sur des cas simplifiés où l'on connaît la solution exacte que sur des cas réalistes issus de la physique des réacteurs.Ces méthodes adaptatives permettent de réduire considérablement l'empreinte mémoire et le temps de calcul. Afin d'essayer d'améliorer encore ces deux aspects, on propose d'utiliser des maillages différents par groupe d'énergie. En effet, l'allure spatiale du flux étant très dépendante du domaine énergétique, il n'y a a priori aucune raison d'utiliser la même décomposition spatiale. Une telle approche nous oblige à modifier les estimateurs initiaux afin de prendre en compte le couplage entre les différentes énergies. L'étude de ce couplage est réalisé de manière théorique et des solutions numériques sont proposées puis testées. / The different neutronic parameters have to be calculated with a higher accuracy in order to design the 4th generation reactor cores. As memory storage and computation time are limited, adaptive methods are a solution to solve the neutron transport equation. The neutronic flux, solution of this equation, depends on the energy, angle and space. The different variables are successively discretized. The energy with a multigroup approach, considering the different quantities to be constant on each group, the angle by a collocation method called Sn approximation. Once the energy and angle variable are discretized, a system of spatially-dependent hyperbolic equations has to be solved. Discontinuous finite elements are used to make possible the development of $hp-$refinement methods. Thus, the accuracy of the solution can be improved by spatial refinement (h-refinement), consisting into subdividing a cell into subcells, or by order refinement (p-refinement), by increasing the order of the polynomial basis.In this thesis, the properties of this methods are analyzed showing the importance of the regularity of the solution to choose the type of refinement. Thus, two error estimators are used to lead the refinement process. Whereas the first one requires high regularity hypothesis (analytical solution), the second one supposes only the minimal hypothesis required for the solution to exist. The comparison of both estimators is done on benchmarks where the analytic solution is known by the method of manufactured solutions. Thus, the behaviour of the solution as a regard of the regularity can be studied. It leads to a hp-refinement method using the two estimators. Then, a comparison is done with other existing methods on simplified but also realistic benchmarks coming from nuclear cores.These adaptive methods considerably reduces the computational cost and memory footprint. To further improve these two points, an approach with energy-dependent meshes is proposed. Actually, as the flux behaviour is very different depending on the energy, there is no reason to use the same spatial discretization. Such an approach implies to modify the initial estimators in order to take into account the coupling between groups. This study is done from a theoretical as well as from a numerical point of view.
|
8 |
Contribution à l'analyse mathématique et à la résolution numérique d'un problème inverse de scattering élasto-acoustique / Contribution to the mathematical analysis and to the numerical solution of an inverse elasto-acoustic scattering problemEstecahandy, Elodie 19 September 2013 (has links)
La détermination de la forme d'un obstacle élastique immergé dans un milieu fluide à partir de mesures du champ d'onde diffracté est un problème d'un vif intérêt dans de nombreux domaines tels que le sonar, l'exploration géophysique et l'imagerie médicale. A cause de son caractère non-linéaire et mal posé, ce problème inverse de l'obstacle (IOP) est très difficile à résoudre, particulièrement d'un point de vue numérique. De plus, son étude requiert la compréhension de la théorie du problème de diffraction direct (DP) associé, et la maîtrise des méthodes de résolution correspondantes. Le travail accompli ici se rapporte à l'analyse mathématique et numérique du DP élasto-acoustique et de l'IOP. En particulier, nous avons développé un code de simulation numérique performant pour la propagation des ondes associée à ce type de milieux, basé sur une méthode de type DG qui emploie des éléments finis d'ordre supérieur et des éléments courbes à l'interface afin de mieux représenter l'interaction fluide-structure, et nous l'appliquons à la reconstruction d'objets par la mise en oeuvre d'une méthode de Newton régularisée. / The determination of the shape of an elastic obstacle immersed in water from some measurements of the scattered field is an important problem in many technologies such as sonar, geophysical exploration, and medical imaging. This inverse obstacle problem (IOP) is very difficult to solve, especially from a numerical viewpoint, because of its nonlinear and ill-posed character. Moreover, its investigation requires the understanding of the theory for the associated direct scattering problem (DP), and the mastery of the corresponding numerical solution methods. The work accomplished here pertains to the mathematical and numerical analysis of the elasto-acoustic DP and of the IOP. More specifically, we have developed an efficient numerical simulation code for wave propagation associated to this type of media, based on a DG-type method using higher-order finite elements and curved edges at the interface to better represent the fluid-structure interaction, and we apply it to the reconstruction of objects with the implementation of a regularized Newton method.
|
Page generated in 0.075 seconds