• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • Tagged with
  • 8
  • 8
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Methods and algorithms for solving linear systems of equations on massively parallel computers / Méthodes et algorithmes pour la résolution des systèmes d'équations linéaires sur les ordinateurs massivement parallèles

Donfack, Simplice 07 March 2012 (has links)
Les processeurs multi-cœurs sont considérés de nos jours comme l'avenir des calculateurs et auront un impact important dans le calcul scientifique. Cette thèse présente une nouvelle approche de résolution des grands systèmes linéaires creux et denses, qui soit adaptée à l'exécution sur les futurs machines pétaflopiques et en particulier celles ayant un nombre important de cœurs. Compte tenu du coût croissant des communications comparé au temps dont les processeurs mettent pour effectuer les opérations arithmétiques, notre approche adopte le principe de minimisation des communications au prix de quelques calculs redondants et utilise plusieurs adaptations pour atteindre de meilleures performances sur les machines multi-cœurs. Nous décomposons le problème à résoudre en plusieurs phases qui sont ensuite mises en œuvre séparément. Dans la première partie, nous présentons un algorithme basé sur le partitionnement d'hypergraphe qui réduit considérablement le remplissage ("fill-in") induit lors de la factorisation LU des matrices creuses non symétriques. Dans la deuxième partie, nous présentons deux algorithmes de réduction de communication pour les factorisations LU et QR qui sont adaptés aux environnements multi-cœurs. La principale contribution de cette partie est de réorganiser les opérations de la factorisation de manière à réduire la sollicitation du bus tout en utilisant de façon optimale les ressources. Nous étendons ensuite ce travail aux clusters de processeurs multi-cœurs. Dans la troisième partie, nous présentons une nouvelle approche d'ordonnancement et d'optimisation. La localité des données et l'équilibrage des charges représentent un sérieux compromis pour le choix des méthodes d'ordonnancement. Sur les machines NUMA par exemple où la localité des données n'est pas une option, nous avons observé qu'en présence de perturbations systèmes (" OS noise"), les performances pouvaient rapidement se dégrader et devenir difficiles à prédire. Pour cela, nous présentons une approche combinant un ordonnancement statique et dynamique pour ordonnancer les tâches de nos algorithmes. Nos résultats obtenues sur plusieurs architectures montrent que tous nos algorithmes sont efficaces et conduisent à des gains de performances significatifs. Nous pouvons atteindre des améliorations de l'ordre de 30 à 110% par rapport aux correspondants de nos algorithmes dans les bibliothèques numériques bien connues de la littérature. / Multicore processors are considered to be nowadays the future of computing, and they will have an important impact in scientific computing. In this thesis, we study methods and algorithms for solving efficiently sparse and dense large linear systems on future petascale machines and in particular these having a significant number of cores. Due to the increasing communication cost compared to the time the processors take to perform arithmetic operations, our approach embrace the communication avoiding algorithm principle by doing some redundant computations and uses several adaptations to achieve better performance on multicore machines.We decompose the problem to solve into several phases that would be then designed or optimized separately. In the first part, we present an algorithm based on hypergraph partitioning and which considerably reduces the fill-in incurred in the LU factorization of sparse unsymmetric matrices. In the second part, we present two communication avoiding algorithms that are adapted to multicore environments. The main contribution of this part is to reorganize the computations such as to reduce bus contention and using efficiently resources. Then, we extend this work for clusters of multi-core processors. In the third part, we present a new scheduling and optimization approach. Data locality and load balancing are a serious trade-off in the choice of the scheduling strategy. On NUMA machines for example, where the data locality is not an option, we have observed that in the presence of noise, performance could quickly deteriorate and become difficult to predict. To overcome this bottleneck, we present an approach that combines a static and a dynamic scheduling approach to schedule the tasks of our algorithms.Our results obtained on several architectures show that all our algorithms are efficient and lead to significant performance gains. We can achieve from 30 up to 110% improvement over the corresponding routines of our algorithms in well known libraries.
2

Résolution des équations intégrales de surface par une méthode de décomposition de domaine et compression hiérarchique ACA : Application à la simulation électromagnétique des larges plateformes / Resolution of surface integral equations by a domain decomposition method and adaptive cross approximation : Application to the electromagnetic simulation of large platforms

Maurin, Julien 25 November 2015 (has links)
Cette étude s’inscrit dans le domaine de la simulation électromagnétique des problèmes de grande taille tels que la diffraction d’ondes planes par de larges plateformes et le rayonnement d’antennes aéroportées. Elle consiste à développer une méthode combinant décomposition en sous-domaines et compression hiérarchique des équations intégrales de frontière. Pour cela, nous rappelons dans un premier temps les points importants de la méthode des équations intégrales de frontière et de leur compression hiérarchique par l’algorithme ACA (Adaptive Cross Approximation). Ensuite, nous présentons la formulation IE-DDM (Integral Equations – Domain Decomposition Method) obtenue à partir d’une représentation intégrale des sous-domaines. Les matrices résultant de la discrétisation de cette formulation sont stockées au format H-matrice (matricehiérarchique). Un solveur spécialement adapté à la résolution de la formulation IE-DDM et à sa représentation hiérarchique a été conçu. Cette étude met en évidence l’efficacité de la décomposition en sous-domaines en tant que préconditionneur des équations intégrales. De plus, la méthode développée est rapide pour la résolution des problèmes à incidences multiples ainsi que la résolution des problèmes basses fréquences / This thesis is about the electromagnetic simulation of large scale problems as the wave scattering from aircrafts and the airborne antennas radiation. It consists in the development of a method combining domain decomposition and hierarchical compression of the surface integral equations. First, we remind the principles of the boundary element method and the hierarchical representation of the surface integral equations with the Adaptive Cross Approximation algorithm. Then, we present the IE-DDM formulation obtained from a sub-domain integral representation. The matrices resulting of the discretization of the formulation are stored in the H-matrix format. A solver especially fitted with the hierarchical representation of the IE-DDM formulation has been developed. This study highlights the efficiency of the sub-domain decomposition as a preconditioner of the integral equations. Moreover, the method is fast for the resolution of multiple incidences and the resolution of low frequencies problems
3

Dense matrix computations : communication cost and numerical stability.

Khabou, Amal 11 February 2013 (has links) (PDF)
Cette thèse traite d'une routine d'algèbre linéaire largement utilisée pour la résolution des systèmes li- néaires, il s'agit de la factorisation LU. Habituellement, pour calculer une telle décomposition, on utilise l'élimination de Gauss avec pivotage partiel (GEPP). La stabilité numérique de l'élimination de Gauss avec pivotage partiel est caractérisée par un facteur de croissance qui est reste assez petit en pratique. Toutefois, la version parallèle de cet algorithme ne permet pas d'atteindre les bornes inférieures qui ca- ractérisent le coût de communication pour un algorithme donné. En effet, la factorisation d'un bloc de colonnes constitue un goulot d'étranglement en termes de communication. Pour remédier à ce problème, Grigori et al [60] ont développé une factorisation LU qui minimise la communication(CALU) au prix de quelques calculs redondants. En théorie la borne supérieure du facteur de croissance de CALU est plus grande que celle de l'élimination de Gauss avec pivotage partiel, cependant CALU est stable en pratique. Pour améliorer la borne supérieure du facteur de croissance, nous étudions une nouvelle stra- tégie de pivotage utilisant la factorisation QR avec forte révélation de rang. Ainsi nous développons un nouvel algorithme pour la factorisation LU par blocs. La borne supérieure du facteur de croissance de cet algorithme est plus petite que celle de l'élimination de Gauss avec pivotage partiel. Cette stratégie de pivotage est ensuite combinée avec le pivotage basé sur un tournoi pour produire une factorisation LU qui minimise la communication et qui est plus stable que CALU. Pour les systèmes hiérarchiques, plusieurs niveaux de parallélisme sont disponibles. Cependant, aucune des méthodes précédemment ci- tées n'exploite pleinement ces ressources. Nous proposons et étudions alors deux algorithmes récursifs qui utilisent les mêmes principes que CALU mais qui sont plus appropriés pour des architectures à plu- sieurs niveaux de parallélisme. Pour analyser d'une façon précise et réaliste
4

Memory-aware Algorithms and Scheduling Techniques for Matrix Computattions / Algorithmes orientés mémoire et techniques d'ordonnancement pour le calcul matriciel

Herrmann, Julien 25 November 2015 (has links)
Dans cette thèse, nous nous sommes penchés d’un point de vue à la foisthéorique et pratique sur la conception d’algorithmes et detechniques d’ordonnancement adaptées aux architectures complexes dessuperordinateurs modernes. Nous nous sommes en particulier intéressésà l’utilisation mémoire et la gestion des communications desalgorithmes pour le calcul haute performance (HPC). Nous avonsexploité l’hétérogénéité des superordinateurs modernes pour améliorerles performances du calcul matriciel. Nous avons étudié lapossibilité d’alterner intelligemment des étapes de factorisation LU(plus rapide) et des étapes de factorisation QR (plus stablenumériquement mais plus deux fois plus coûteuses) pour résoudre unsystème linéaire dense. Nous avons amélioré les performances desystèmes d’exécution dynamique à l’aide de pré-calculs statiquesprenants en compte l’ensemble du graphe de tâches de la factorisationCholesky ainsi que l’hétérogénéité de l’architecture. Nous noussommes intéressés à la complexité du problème d’ordonnancement degraphes de tâches utilisant de gros fichiers d’entrée et de sortiesur une architecture hétérogène avec deux types de ressources,utilisant chacune une mémoire spécifique. Nous avons conçu denombreuses heuristiques en temps polynomial pour la résolution deproblèmes généraux que l’on avait prouvés NP-complet aupréalable. Enfin, nous avons conçu des algorithmes optimaux pourordonnancer un graphe de différentiation automatique sur uneplateforme avec deux types de mémoire : une mémoire gratuite maislimitée et une mémoire coûteuse mais illimitée. / Throughout this thesis, we have designed memory-aware algorithms and scheduling techniques suitedfor modern memory architectures. We have shown special interest in improving the performance ofmatrix computations on multiple levels. At a high level, we have introduced new numerical algorithmsfor solving linear systems on large distributed platforms. Most of the time, these linear solvers rely onruntime systems to handle resources allocation and data management. We also focused on improving thedynamic schedulers embedded in these runtime systems by adding static information to their decisionprocess. We proposed new memory-aware dynamic heuristics to schedule workflows, that could beimplemented in such runtime systems.Altogether, we have dealt with multiple state-of-the-art factorization algorithms used to solve linearsystems, like the LU, QR and Cholesky factorizations. We targeted different platforms ranging frommulticore processors to distributed memory clusters, and worked with several reference runtime systemstailored for these architectures, such as P A RSEC and StarPU. On a theoretical side, we took specialcare of modelling convoluted hierarchical memory architectures. We have classified the problems thatare arising when dealing with these storage platforms. We have designed many efficient polynomial-timeheuristics on general problems that had been shown NP-complete beforehand.
5

Dense matrix computations : communication cost and numerical stability / Calculs pour les matrices denses : coût de communication et stabilité numérique

Khabou, Amal 11 February 2013 (has links)
Cette thèse traite d’une routine d’algèbre linéaire largement utilisée pour la résolution des systèmes li- néaires, il s’agit de la factorisation LU. Habituellement, pour calculer une telle décomposition, on utilise l’élimination de Gauss avec pivotage partiel (GEPP). La stabilité numérique de l’élimination de Gauss avec pivotage partiel est caractérisée par un facteur de croissance qui est reste assez petit en pratique. Toutefois, la version parallèle de cet algorithme ne permet pas d’atteindre les bornes inférieures qui ca- ractérisent le coût de communication pour un algorithme donné. En effet, la factorisation d’un bloc de colonnes constitue un goulot d’étranglement en termes de communication. Pour remédier à ce problème, Grigori et al [60] ont développé une factorisation LU qui minimise la communication(CALU) au prix de quelques calculs redondants. En théorie la borne supérieure du facteur de croissance de CALU est plus grande que celle de l’élimination de Gauss avec pivotage partiel, cependant CALU est stable en pratique. Pour améliorer la borne supérieure du facteur de croissance, nous étudions une nouvelle stra- tégie de pivotage utilisant la factorisation QR avec forte révélation de rang. Ainsi nous développons un nouvel algorithme pour la factorisation LU par blocs. La borne supérieure du facteur de croissance de cet algorithme est plus petite que celle de l’élimination de Gauss avec pivotage partiel. Cette stratégie de pivotage est ensuite combinée avec le pivotage basé sur un tournoi pour produire une factorisation LU qui minimise la communication et qui est plus stable que CALU. Pour les systèmes hiérarchiques, plusieurs niveaux de parallélisme sont disponibles. Cependant, aucune des méthodes précédemment ci- tées n’exploite pleinement ces ressources. Nous proposons et étudions alors deux algorithmes récursifs qui utilisent les mêmes principes que CALU mais qui sont plus appropriés pour des architectures à plu- sieurs niveaux de parallélisme. Pour analyser d’une façon précise et réaliste / This dissertation focuses on a widely used linear algebra kernel to solve linear systems, that is the LU decomposition. Usually, to perform such a computation one uses the Gaussian elimination with partial pivoting (GEPP). The backward stability of GEPP depends on a quantity which is referred to as the growth factor, it is known that in general GEPP leads to modest element growth in practice. However its parallel version does not attain the communication lower bounds. Indeed the panel factorization rep- resents a bottleneck in terms of communication. To overcome this communication bottleneck, Grigori et al [60] have developed a communication avoiding LU factorization (CALU), which is asymptotically optimal in terms of communication cost at the cost of some redundant computation. In theory, the upper bound of the growth factor is larger than that of Gaussian elimination with partial pivoting, however CALU is stable in practice. To improve the upper bound of the growth factor, we study a new pivoting strategy based on strong rank revealing QR factorization. Thus we develop a new block algorithm for the LU factorization. This algorithm has a smaller growth factor upper bound compared to Gaussian elimination with partial pivoting. The strong rank revealing pivoting is then combined with tournament pivoting strategy to produce a communication avoiding LU factorization that is more stable than CALU. For hierarchical systems, multiple levels of parallelism are available. However, none of the previously cited methods fully exploit these hierarchical systems. We propose and study two recursive algorithms based on the communication avoiding LU algorithm, which are more suitable for architectures with multiple levels of parallelism. For an accurate and realistic cost analysis of these hierarchical algo- rithms, we introduce a hierarchical parallel performance model that takes into account processor and network hierarchies. This analysis enables us to accurately predict the performance of the hierarchical LU factorization on an exascale platform.
6

Solving dense linear systems on accelerated multicore architectures / Résoudre des systèmes linéaires denses sur des architectures composées de processeurs multicœurs et d’accélerateurs

Rémy, Adrien 08 July 2015 (has links)
Dans cette thèse de doctorat, nous étudions des algorithmes et des implémentations pour accélérer la résolution de systèmes linéaires denses en utilisant des architectures composées de processeurs multicœurs et d'accélérateurs. Nous nous concentrons sur des méthodes basées sur la factorisation LU. Le développement de notre code s'est fait dans le contexte de la bibliothèque MAGMA. Tout d'abord nous étudions différents solveurs CPU/GPU hybrides basés sur la factorisation LU. Ceux-ci visent à réduire le surcoût de communication dû au pivotage. Le premier est basé sur une stratégie de pivotage dite "communication avoiding" (CALU) alors que le deuxième utilise un préconditionnement aléatoire du système original pour éviter de pivoter (RBT). Nous montrons que ces deux méthodes surpassent le solveur utilisant la factorisation LU avec pivotage partiel quand elles sont utilisées sur des architectures hybrides multicœurs/GPUs. Ensuite nous développons des solveurs utilisant des techniques de randomisation appliquées sur des architectures hybrides utilisant des GPU Nvidia ou des coprocesseurs Intel Xeon Phi. Avec cette méthode, nous pouvons éviter l'important surcoût du pivotage tout en restant stable numériquement dans la plupart des cas. L'architecture hautement parallèle de ces accélérateurs nous permet d'effectuer la randomisation de notre système linéaire à un coût de calcul très faible par rapport à la durée de la factorisation. Finalement, nous étudions l'impact d'accès mémoire non uniformes (NUMA) sur la résolution de systèmes linéaires denses en utilisant un algorithme de factorisation LU. En particulier, nous illustrons comment un placement approprié des processus légers et des données sur une architecture NUMA peut améliorer les performances pour la factorisation du panel et accélérer de manière conséquente la factorisation LU globale. Nous montrons comment ces placements peuvent améliorer les performances quand ils sont appliqués à des solveurs hybrides multicœurs/GPU. / In this PhD thesis, we study algorithms and implementations to accelerate the solution of dense linear systems by using hybrid architectures with multicore processors and accelerators. We focus on methods based on the LU factorization and our code development takes place in the context of the MAGMA library. We study different hybrid CPU/GPU solvers based on the LU factorization which aim at reducing the communication overhead due to pivoting. The first one is based on a communication avoiding strategy of pivoting (CALU) while the second uses a random preconditioning of the original system to avoid pivoting (RBT). We show that both of these methods outperform the solver using LU factorization with partial pivoting when implemented on hybrid multicore/GPUs architectures. We also present new solvers based on randomization for hybrid architectures for Nvidia GPU or Intel Xeon Phi coprocessor. With this method, we can avoid the high cost of pivoting while remaining numerically stable in most cases. The highly parallel architecture of these accelerators allow us to perform the randomization of our linear system at a very low computational cost compared to the time of the factorization. Finally we investigate the impact of non-uniform memory accesses (NUMA) on the solution of dense general linear systems using an LU factorization algorithm. In particular we illustrate how an appropriate placement of the threads and data on a NUMA architecture can improve the performance of the panel factorization and consequently accelerate the global LU factorization. We show how these placements can improve the performance when applied to hybrid multicore/GPU solvers.
7

Contribution à l'analyse mathématique et à la résolution numérique d'un problème inverse de scattering élasto-acoustique

Estecahandy, Elodie 19 September 2013 (has links) (PDF)
La détermination de la forme d'un obstacle élastique immergé dans un milieu fluide à partir de mesures du champ d'onde diffracté est un problème d'un vif intérêt dans de nombreux domaines tels que le sonar, l'exploration géophysique et l'imagerie médicale. A cause de son caractère non-linéaire et mal posé, ce problème inverse de l'obstacle (IOP) est très difficile à résoudre, particulièrement d'un point de vue numérique. De plus, son étude requiert la compréhension de la théorie du problème de diffraction direct (DP) associé, et la maîtrise des méthodes de résolution correspondantes. Le travail accompli ici se rapporte à l'analyse mathématique et numérique du DP élasto-acoustique et de l'IOP. En particulier, nous avons développé un code de simulation numérique performant pour la propagation des ondes associée à ce type de milieux, basé sur une méthode de type DG qui emploie des éléments finis d'ordre supérieur et des éléments courbes à l'interface afin de mieux représenter l'interaction fluide-structure, et nous l'appliquons à la reconstruction d'objets par la mise en oeuvre d'une méthode de Newton régularisée.
8

Contribution à l'analyse mathématique et à la résolution numérique d'un problème inverse de scattering élasto-acoustique / Contribution to the mathematical analysis and to the numerical solution of an inverse elasto-acoustic scattering problem

Estecahandy, Elodie 19 September 2013 (has links)
La détermination de la forme d'un obstacle élastique immergé dans un milieu fluide à partir de mesures du champ d'onde diffracté est un problème d'un vif intérêt dans de nombreux domaines tels que le sonar, l'exploration géophysique et l'imagerie médicale. A cause de son caractère non-linéaire et mal posé, ce problème inverse de l'obstacle (IOP) est très difficile à résoudre, particulièrement d'un point de vue numérique. De plus, son étude requiert la compréhension de la théorie du problème de diffraction direct (DP) associé, et la maîtrise des méthodes de résolution correspondantes. Le travail accompli ici se rapporte à l'analyse mathématique et numérique du DP élasto-acoustique et de l'IOP. En particulier, nous avons développé un code de simulation numérique performant pour la propagation des ondes associée à ce type de milieux, basé sur une méthode de type DG qui emploie des éléments finis d'ordre supérieur et des éléments courbes à l'interface afin de mieux représenter l'interaction fluide-structure, et nous l'appliquons à la reconstruction d'objets par la mise en oeuvre d'une méthode de Newton régularisée. / The determination of the shape of an elastic obstacle immersed in water from some measurements of the scattered field is an important problem in many technologies such as sonar, geophysical exploration, and medical imaging. This inverse obstacle problem (IOP) is very difficult to solve, especially from a numerical viewpoint, because of its nonlinear and ill-posed character. Moreover, its investigation requires the understanding of the theory for the associated direct scattering problem (DP), and the mastery of the corresponding numerical solution methods. The work accomplished here pertains to the mathematical and numerical analysis of the elasto-acoustic DP and of the IOP. More specifically, we have developed an efficient numerical simulation code for wave propagation associated to this type of media, based on a DG-type method using higher-order finite elements and curved edges at the interface to better represent the fluid-structure interaction, and we apply it to the reconstruction of objects with the implementation of a regularized Newton method.

Page generated in 0.7589 seconds