11 |
HSV-1 Replication in different RAW 264.7 and J774.1 macrophage Phenotypes and Macrophage viability following HSV-1 infectionAlanazi, Yousef Nifaj 03 May 2018 (has links)
No description available.
|
12 |
Molecular Targeting and Enhancing Anticancer Efficacy of Oncolytic HSV-1 to Midkine Expressing TumorsMaldonado, Arturo R. 19 April 2011 (has links)
No description available.
|
13 |
Effects of Myrrh on HSV-1 Using Plaque AssayAlamri, Badrieah Mohammad 01 May 2017 (has links)
No description available.
|
14 |
A role for cytoplasmic PML in the cellular antiviral responseMcNally, Beth Anne 02 December 2005 (has links)
No description available.
|
15 |
Silencing Suppression by Herpes Simplex Virus Type 1Wu, Zetang 05 September 2008 (has links)
No description available.
|
16 |
The role of the TGN in the transport of herpes simplex virus type I capsidsMihai, Constantina January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
|
17 |
Caractérisation de la réponse à l’instabilité des centromères (iCDR) déclenchée par la protéine ICP0 du Virus Herpès Simplex de type 1 (HSV-1) / Characterization of the interphase Centromere Damage Response (iCDR) triggered by the ICP0 protein of Herpes Simplex Virus Type 1 (HSV-1)Sabra, Mirna 26 January 2010 (has links)
L’infection par le virus de l’herpès simplex de type 1 (HSV-1), un virus pathogène humain majeur, engendre la déstabilisation des centromères. Cette déstabilisation est induite par la protéine virale ICP0, et entraîne la dégradation par ICP0, via le protéasome, des protéines CENP-A, -B et CENP-C. Des résultats obtenus au laboratoire ont mis en évidence le phénomène iCDR (pour interphase Centromere Damage Response) qui implique la redistribution de la coïline, fibrillarine et SMN dans ces structures centromériques déstabilisées par ICP0 mais également par des drogues ou des siRNAs dirigés contre des constituants protéiques essentiels pour la stabilité des centromères. Il a été étudié leur interdépendance dans la réponse iCDR. Il a été ainsi démontré que la redistribution de SMN aux centromères déstabilisés est dépendante de : 1) la présence de la coïline aux centromères, et 2) de son interaction, via son domaine TUDOR, avec l’histone H3 méthylée sur la lysine K79 par l’enzyme Dot1L. L’équipe suggère donc l’hypothèse que ces protéines ont pour rôle de protéger l’ADN nu se trouvant aux centromères après dégradation des histones pour empêcher les cellules de rentrer en apoptose. Ces résultats ont mené à démontrer l’implication de certaines des protéines de l’iCDR et notamment la coïline, dans une réponse apoptotique générale suite à un stress UV. Ces protéines pourraient donc faire partie d’un mécanisme de contrôle qui serait défini comme un checkpoint centromérique / Infection by Herpes Simplex Virus type 1, a major pathogenic virus in human, has been shown to cause centromere destabilization. The infected cell protein 0 (ICP0) induces centromere destabilization and lead to proteasomal-dependent degradation of the proteins of the centromeres, CENP-A, -B and CENP-C. Recent data, obtained in our laboratory, highlights the interphase Centromere Damage Response (iCDR) phenomena. This phenomena involves centromeric accumulation and redistribution of the Cajal body-associated coilin and fibrillarin as well as the Survival Motor Neuron (SMN) proteins by ICP0 or by other drugs or siRNA targeting several constitutive centromere proteins known to play a major role in centromeres stabilization. Our data shows that SMN reditribution in the destabilized centromere is dependent of : 1) centromeric presence and accumulation of the coilin, 2) its interaction, via the TUDOR domain, with the methylated (Lys K79) histone H3. This methylation occurs in the presence of the Dot-1L enzyme. We hypothesize that these proteins play a critical role in safeguarding centromeric DNA to prevent the cells from apoptosis after Histone degradation. These observations, demonstrate the implication of certain iCDR proteins, more specifically the coilin, in the apoptotic response following a UV stress. In conclusion, these proteins could be part of a safeguard mechanism considered as a centromeric checkpoint
|
18 |
Interações neuro-imunes envolvidas na gênese da hipersensibilidade nociceptiva herpética e pós-herpética / Neuro-immune interactions involved in the genesis of herpetic and postherpetic nociceptive hypersensitivitySilva, Jaqueline Raymondi 28 August 2014 (has links)
Herpes Zoster é uma doença causada pela reativação do vírus Varicela Zoster nos gânglios sensoriais, caracterizada pelo desenvolvimento de lesões na pele e dor. Não há modelos animais disponíveis para estudo da patofisiologia da doença. No entanto, um modelo murino que utiliza o HSV-1 tem sido usado para tal fim, visto que os animais desenvolvem lesões zosteriformes e desenvolvem hipersensibilidade na pata infectada. Não há dados na literatura acerca da resposta imune que se desenvolve nos gânglios da raiz dorsal destes animais. Logo, o objetivo deste trabalho foi o de avaliar células e mediadores inflamatórios presentes nos gânglios da raiz dorsal e sua relação com a hiperalgesia durante a infecção cutânea por HSV-1. Durante a fase aguda da infecção, os camundongos desenvolveram hiperalgesia nas patas ipsilaterais a partir do 3 dia pós-infecção, que perdurou até o 7 dia pós-infecção. A maior carga viral foi detectada nos gânglios L4, L5 e L6, os quais compõem o nervo ciático, que inerva a área infectada. O tratamento dos animais infectados com dexametasona ou fucoidina resultou na redução do comportamento de hiperalgesia, a partir do 5 dia pós-infecção, que corresponde ao período em que a migração de leucócitos passa a aumentar nos gânglios da raiz dorsal. Macrófagos, neutrófilos e linfócitos T CD4 foram detectados nos gânglios durante a infecção aguda. No entanto, linfócitos T CD8 estavam ausentes. A expressão do mRNA de TNF- e COX-2 estava aumentada nos gânglios, e o tratamento de animais infectados com drogas inibidoras de ambos resultou na redução da hiperalgesia. Os receptores do tipo Toll-like e da IL-1 não participam da geração da hipersensibilidade herpética. Após 50 dias da infecção, constatou-se que alguns animais apresentavam comportamento de hiperalgesia irreversível, semelhante à neuralgia pós-herpética humana (NPH). Não houve diferença significativa na incidência da NPH em animais de linhagens ou sexos diferentes. Ainda, o tratamento com drogas anticonvulsivantes e antidepressivas, mas não com morfina e anti-inflamatórios, resultou na redução transiente da hiperalgesia. Neste período, não há participação da inflamação na manutenção da hiperalgesia. A expressão de TNF- e COX-2 retorna aos níveis basais, e não são mais detectados neutrófilos e macrófagos. No entanto, a migração de linfócitos T CD4+ e CD8+ aos gânglios aumenta de maneira tempo-dependente. Durante a NPH, detectou-se uma intensa ativação das células satélites gliais, que contribuem para a manutenção da hiperalgesia pós-herpética. Nossos resultados demonstram que a manutenção hiperalgesia herpética é resultado da intensa resposta inflamatória que ocorre nos gânglios da raiz dorsal infectados, com aumento da produção de TNF- e COX-2, importantes mediadores para a hipersensibilidade. No entanto, durante a neuralgia pós-herpética, não há participação de células ou mediadores inflamatórios, mas de células da glia, as quais são importantes na manutenção da hiperalgesia. / Herpes Zoster is a disease caused by reactivation of varicella zoster virus in sensory ganglia, characterized by dermal rash and pain. There are no animal models available to study the pathophysiology of the disease. A murine model of HSV-1 infection on the hind paw skin has been used to study HZ, since mice develop HZ-like skin lesions and pain-related responses. There are no data available about the immune response in dorsal root ganglion (DRG) of these mice. Thus, the aim of this study was to evaluate cells and inflammatory mediators present in DRGs and its relationship with hiperalgesia during HSV-1 cutaneous infection. During the acute phase of infection, mice developed hyperalgesia in ipsilateral paws from 3 days post-infection, which persisted until 7 days post-infection. The highest viral load was detected in ganglia L4, L5 and L6. Treatment of infected mice with fucoidin or dexamethasone resulted in the reduction of hyperalgesic behavior, from the 5th post-infection day, which corresponds to the period in which leukocyte migration increase in the dorsal root ganglia. Macrophages, neutrophils and CD4 + T lymphocytes were detected in the ganglia during acute infection. However, CD8 + T lymphocytes were absent. The mRNA expression of TNF- and COX-2 was increased in dorsal root ganglia, and the treatment of infected mice with drugs that inhibits both mediators resulted in reduced hyperalgesia. The Toll-like receptors and IL-1 does not participate in the generation of herpetic hypersensitivity. After 50 days of infection, it was found that some animals presented irreversible hyperalgesic behavior, like human post-herpetic neuralgia (PHN). There was no significant difference in the incidence of PHN in animals of different genders or strains. Furthermore, treatment with anticonvulsant and antidepressant drugs, but not morphine and anti-inflammatory, resulted in transient reduction of hyperalgesia. In this period, there is no participation of inflammation in the hyperalgesia maintenance of. The expression of TNF- and COX-2 returns to baseline levels, and neutrophils and macrophages are no longer detected. However, the migration of CD4 + and CD8 + to ganglia increases in a time-dependent manner. During NPH, an intense activation of glial cells satellites was detected, that contributes to the maintenance of post-herpetic hyperalgesia. Our results demonstrate that herpetic hyperalgesia maintenance is a result of an intense inflammatory response that occurs in the infected dorsal root ganglia, with increased production of TNF- and COX-2. However, during post-herpetic neuralgia, there is involvement of glial cells, which are important in hyperalgesia maintenance.
|
19 |
Relation entre l’expression des LAT et du gène RL2 pendant la latence du virus HSV-1 / Relationship between the expression of LAT and RL2 gene during HSV-1 latencyHuot, Nicolas 17 December 2012 (has links)
Le virus de l’herpès simplex de type 1 (HSV1) établit une infection latente dans le système nerveux de l'homme, au cours de laquelle un type de transcrits, appelés LATs (pour latency associated transcripts), s'accumule dans les neurones infectés. Le rôle clef des LATs dans le contrôle de la latence virale est reconnu. Cependant, depuis leur découverte dans les années 80, leur mécanisme d'action reste non élucidé.Le gène des LATs est transcrit en un LAT primaire de 8,3kb, qui est épissé, conduisant à la formation de deux LATs stables : le LAT2kb et le LAT1.5kb. De façon remarquable, le LAT2kb et le LAT1.5kb sont des introns. Leur stabilité est la conséquence d'un branchement non canonique qui se traduit par le maintien de la structure en lariat. Par ailleurs, la région du génome codant les LATs contient également le gène RL2 qui code ICP0, la protéine la plus en amont dans la cascade de réactivation du virus. Des études précédentes ont montré qu’au moment de la latence, des transcrits RL2 non épissés, s'accumulent au site principal de la latence (le ganglion de Gasser).Nous avons caractérisé ces transcrits non épissés du gène RL2 dans les tissus infectés de façon latente. Ils contiennent de façon reproductible l’intron 1 et sont d’autant plus abondants dans les tissus infectés de façon latente que les LAT s’accumulent. On peut ainsi distinguer plusieurs types de tissus infectés de façon latente, dont les deux exemples les plus représentatifs sont d’une part le ganglion de Gasser (forte expression des LAT et accumulation de transcrits RL2 non-épissés) et d’autre part le ganglion cervical supérieur (pas d’accumulation de LAT par rapport aux quantités exprimées pendant la phase aiguë de l’infection, et très peu d’expression dans transcrits non-épissés). Dans tous les cas, la réalité du caractère latent de l’infection était confirmé par la présence de génome viral sans expression de transcrits matures de gène viral précoce (représenté par celui de la thymidine kinase) ni tardif (gène UL18). Ces résultats suggèrent une relation entre la présence des LAT et l’accumulation de transcrits RL2 non-épissés, ce qui pourrait être en relation avec le maintien de l’infection à l’état latent dans ces tissus. / The herpes simplex virus type 1 (HSV-1) establishes a latent infection in the nervous system of humans, in which latency associated transcripts (LATs) accumulate in infected neurons. The key role of LATs in the control of viral latency is well established. However, since their discovery in the 80s, their mechanism of action remains unclear.The LAT gene is transcribed into a 8.3 kb primary LAT that is rapidly spliced, leading to the formation of two stable LATs; LAT2kb and LAT1.5kb. Remarkably, the LAT2kb and LAT1.5kb are introns. Their stability is the result of a non-canonical sequence of the branching point, which results in maintaining the lariat structure.Moreover, the region of the genome encoding the LATs also contains the RL2 gene, encoding ICP0 that acts upstream in the cascade of viral reactivation. Previous studies have shown that RL2 unspliced transcripts may accumulate in the main site of HSV-1 latency (trigeminal ganglia). We have characterized these unspliced transcripts RL2 gene in latently infected tissues. They reproducibly contain intron 1 and are particularly abundant in latently infected tissues where LATs also accumulate. We distinguished several types of latently infected tissues, the two most representative examples being the trigeminal ganglion (strong expression of LATs and accumulation of non-spliced transcripts RL2) and, in the opposite, the superior cervical ganglion (no accumulation of LAT compared with the amounts expressed during the acute phase of infection, and little expression in non-spliced RL2 transcripts). In all cases, the reality of the latent nature of the infection was confirmed by the presence of viral genome with no expression of mature transcripts from early viral gene (represented by the thymidine kinase gene) or late (UL18 gene).These results suggest a relationship between the presence of LAT and the accumulation of non-spliced RL2 transcripts, which could be related to the maintenance of latent infection in these tissues.
|
20 |
Caractérisation d’une nouvelle fonction de la protéine Us11 dans l’échappement à l’autophagie par le virus Herpès Simplex de type 1 / Characterization of a novel function of Us11 protein in HSV-1 escape from autophagyLussignol, Marion 26 March 2013 (has links)
L’autophagie est un mécanisme vacuolaire de dégradation de matériel cytoplasmique permettant le maintien de l’homéostasie cellulaire, mais elle peut être également activée par de nombreux stress, comme l’infection virale. Le virus de l’Herpès Simplex de type 1 (HSV 1) est capable de contrecarrer ce mécanisme de défense antivirale. HSV-1 possède une protéine ICP34.5 capable d’inhiber l’autophagie en se liant à Beclin 1, une protéine de la machinerie autophagique. Nous avons mis en évidence une deuxième protéine d’HSV-1 capable d’inhiber l’autophagie, la protéine tardive Us11, qui pourrait avoir un rôle complémentaire à celui d’ICP34.5 dans le contrôle de l’autophagie par le virus.Nous montrons que l’expression ectopique d’Us11 permet de bloquer l’autophagie induite par différents stimuli, et ce de manière similaire à ICP34.5. De plus, dans un contexte viral, l’expression précoce d’Us11 dans des cellules infectées par un virusICP34.5 permet un contrôle de l’autophagie comparable à celui d’un virus sauvage. Nous avons ensuite recherché le mécanisme d’action d’Us11. La protéine Us11 a été décrite comme pouvant interagir avec la kinase dépendante de l’ARN double brin PKR, empêchant ainsi la phosphorylation de son substrat eIF2, un facteur d’initiation de la traduction. Nous avons observé qu’en l’absence de PKR, Us11 n’est plus capable d’inhiber l’autophagie. Nous avons pu confirmer qu’Us11 a besoin de se lier à PKR pour exercer son activité inhibitrice par la construction de formes tronquées d’Us11, permettant de montrer l’importance de son domaine d’interaction avec PKR dans l’inhibition de l’autophagie. L’étude des formes tronquées d’Us11 a soulevé le fait que le domaine N-terminal était également nécessaire. Aucune interaction de ce domaine avec une protéine cellulaire n’a été identifiée à ce jour, mais il pourrait permettre l’interaction d’Us11 avec une autre protéine de la machinerie autophagique. Cependant, nous avons montré qu’Us11 n’interagissait pas avec Beclin 1 et n’avait pas d’effet sur la kinase mTOR, une autre voie importante de l’autophagie. Enfin, nous avons étudié la modulation de la voie PKR/eIF2 lors de la stimulation de l’autophagie par la carence, et nos résultats suggèrent que cette voie joue un rôle sous-estimé dans la réponse à la carence.Le mécanisme d’action de la protéine Us11, qui consiste en un blocage de l’autophagie en inhibant PKR, n’avait jamais été décrit auparavant. Ce travail ouvre de nombreuses perspectives dans l’étude de la voie PKR/eIF2 vis à vis de la régulation de l’autophagie, ainsi que dans la compréhension de l’implication de l’autophagie dans la neurovirulence d’HSV-1. / Autophagy is an evolutionary conserved vacuolar mechanism allowing to degrade cytoplasmic components and to maintaining cellular homeostasis, but it can also be triggered by a variety of stress-related conditions, including viral infection. The herpes simplex virus 1 (HSV-1) is able to counteract this antiviral mechanism. Notably, HSV-1 encodes a protein, IPC34.5, which inhibits autophagy through its interaction with the autophagy machinery protein Beclin 1. In the present work, we uncovered a second anti-autophagic protein from HSV-1, the late protein Us11, which likely plays a complementary role to ICP34.5 regarding the inhibition of autophagy by the virus. We demonstrated that ectopic expression of Us11 inhibited autophagy triggered by different stimuli, as observed for ICP34.5. Moreover, during viral infection, early expression of Us11 was sufficient to block autophagy in cells infected with a ICP34.5 virus, similarly to the wild-type virus. We then explored the mechanism of action of Us11. Us11 has been described as capable of interacting with the dsRNA-dependent kinase PKR, therefore preventing it to phosphorylate its substrate eIF2, a translation initiation factor. We demonstrated that Us11 was no longer able to inhibit autophagy when expressed in PKR-deficient cells. We confirmed that Us11 binding to PKR was necessary for its function by constructing various truncated forms of Us11 that showed that the PKR-binding domain was crucial. We also unveiled the importance of a domain located within the N-terminal part of Us11. This domain has no cellular molecular partner known, but it can allow Us11 to interact with another protein of the autophagy machinery. However, we further showed that Us11 did not interact with Beclin 1 nor affected the kinase activity of mTOR, another important pathway regulating autophagy. In our work, we also gained insights into regulatory mechanisms of starvation-induced autophagy.The inhibition of autophagy through the specific blockade of PKR by Us11 had never been previously described. This work thus paves the way for studying the involvement of PKR/eIF2 pathway in the regulation of autophagy and for exploring the role of autophagy in HSV-1 neurovirulence.
|
Page generated in 0.0271 seconds