• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 91
  • 60
  • 8
  • 7
  • 4
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 193
  • 27
  • 25
  • 22
  • 22
  • 21
  • 21
  • 18
  • 17
  • 17
  • 16
  • 16
  • 14
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Interleukin-1 Beta Mediated Regulation of Hyaluronan and Hyaluronan Synthase 2

Ducale, Ashley Elizabeth 01 January 2005 (has links)
Elevated levels of hyaluronan are associated with numerous inflammatory diseases including ulcerative colitis, Crohn's disease and wound healing. Various proinflammatory cytokines have shown to influence hyaluronan expression in cells originating from connective tissue. The overall purposes of this study included: 1. To determine the effects of IL-1β stimulation on HA and HAS2 steady state transcript levels and the signaling pathways involved in its effects. The signaling pathways utilized by proinflammatory mediators to modulate hyaluronan expression have only begun to be elucidated. In this aim, the effects of IL-1β on hyaluronan and HAS expressions in jejunum-derived mesenchymal cells were determined. Inhibition studies were utilized to determine the signaling pathways involved. The overall hypothesis of this aim was that stimulation of jejunum-derived mesenchymal cells with IL-1β activates the mitogen activated protein kinase pathways resulting in increased HAS2 steady state transcript and hyaluronan levels.Results: The results suggest that IL-1β induction of HAS2 expression involves, in part, the mitogen activated protein kinase signaling pathways that act in concert thus leading to an increase in expression of hyaluronan by jejunum-derived mesenchymal cells.2. To determine the effects of dexamethasone on IL-1β mediated increase in hyaluronan and HAS2 expressions and the mechanisms utilized by this glucocorticoid. Glucocorticoids are a mainstay treatment for the inflammatory component of inflammatory bowel disease. Given the recent evidence demonstrating increased hyaluronan in inflamed tissue from patients affected with inflammatory bowel disease, the objective of this aim was to determine the effect of dexamethasone on IL-1β-mediated induction of hyaluronan. The hypothesis of this aim was that pre-treatment with dexamethasone suppressed the ability of IL-1β to increase HAS2 transcript and hyaluronan levels via inhibition of the p38 MAP kinase pathway. Results: Pre-treatment with dexamethasone inhibited IL-1β-mediated hyaluronan and HAS2 induction by blocking the activation of the p38 MAP kinase pathways. 3. To identify the transcriptional and post-transcriptional mechanisms utilized by IL-1β to upregulate HAS2 steady state transcript levels. Very little is known about transcriptional and post-transcriptional regulation of the hyaluronan synthase 2 gene. In this aim, 5' and 3' mapping, luciferase analyses and actinomycin D studies were used to determine the transcriptional and post-transcriptional mechanisms utilized by IL-1β to regulate HAS2 steady state transcript levels. The hypothesis of this aim was that IL-1β used post-transcriptional mechanisms to regulate the HAS2 gene.Results: Dermal fibroblasts were used to find the 5'- and 3'-termini of the HAS2 message. Promoter constructs extending approximately 1 kb upstream from the transcription start site demonstrated no IL-1β response. Blocking protein synthesis prior to the addition of IL-1β dramatically increased HAS2 steady state transcript levels, while inhibition of transcription suppressed the effect of IL-1β on HAS2. Northern blot analysis revealed that cycloheximide and IL-1β exerted differential effects on the two HAS2 transcripts.
122

Hyaluronan and Renal Fluid Handling : Studies during Normal and Pathological Conditions of Renal Function

Göransson, Viktoria January 2001 (has links)
<p>The kidney is the major organ responsible for the regulation of the composition and volume of the body fluids, which is essential for homeostasis. The glycosaminoglycan hyaluronan (HA), with extreme water-binding capacity, is present in the interstitium of the kidney with a heterogenous distribution. The importance of HA in renal water-handling is unknown and was the focus of the present investigation.</p><p>Acute water-loading in rats caused the amount of papillary HA to increase and during water deprivation, the amount was reduced. Gerbils, with extreme urine concentrating capacity, have less HA in the renal papilla in normal conditions and responded diametrically different to water-loading (reduction in HA). Renomedullary interstitial cells (RMICs), which are probably the main producers of HA in the renal medulla, were cultured at different media osmolalities to mimic the milieu of the medulla during variations in the water balance. The amount of HA found in the media was decreased at high osmolalities and increased at low osmolalities, thereby strengthening the <i>in vivo</i> results. CD44, an HA-receptor involved in the uptake and degradation of HA, was expressed on RMICs in an osmolality dependent manner. During high media osmolality, the CD44 expression increased and at lower osmolalities, the opposite occurred, probably due to the need for uptake and degradation of HA.</p><p>Renal ischemia-reperfusion injury causes a cortical accumulation of HA, up-regulation of CD44, and a depression of functional parameters. The time periods of ischemia correlated with the accumulation of HA which, in turn, was inversely correlated to GFR. Hyaluronidase injections in this setting failed to reduce HA levels and significantly improve renal function.</p><p>In conclusion, the results from the present study suggest an important role for HA and RMICs in renal water-handling and that the intrarenal distribution of HA is altered after ischemia-reperfusion injury, which correlates with renal dysfunction.</p>
123

Tumor Stroma in Anaplastic Thyroid Carcinoma : Interstitial Collagen and Tumor Interstitial Fluid Pressure

Lammerts, Ellen January 2001 (has links)
<p>Anaplastic thyroid carcinoma (ATC) is an aggressive malignancy in man with stromal fibrosis as one of the main features. Carcinoma cells synthesized no or little collagen I protein. Pro-α1(I) collagen mRNA was expressed by stromal cells throughout the tumor, but expression of procollagen type I protein was restricted to stromal cells situated close to nests of carcinoma cells. These data suggest that the carcinoma cells stimulated collagen type I deposition by increasing pro-α1(1) collagen mRNA translation. </p><p>Cocultures, of the human ATC cell line KAT-4, with fibroblasts under conditions that allow the study of stimulatory factors on collagen mRNA translation, showed that the KAT-4 cells stimulated collagen type I protein synthesis in fibroblasts. Specific inhibitors of PDGF and TGF-β1 and -β3 were able to inhibit this carcinoma cell-induced stimulation of collagen type I synthesis. These findings suggest that tumor cells were able to stimulate collagen mRNA translation in stromal fibroblasts by, at least in part, transferring PDGF and/or TGF-β1 and -β3.</p><p>Xenograft transplantation of different ATC cell lines into athymic mice demonstrated that the low collagen producing carcinoma cell lines were less tumorigenic compared to non-collagen producing carcinoma cell lines. The morphology of tumors derived from non-collagen producing ATC cell lines showed a well demarked stroma surrounding carcinoma cell nests. </p><p>TGF-β1 and -β3 were found to play a role in generating a high tumor interstitial fluid pressure (TIPF) in experimental KAT-4 tumors. A specific inhibitor of TGF-β1 and -β3 was able to lower TIPF and reduce tumor growth after a prolonged period of treatment, suggesting that TGF-β1 and -β3 have a role in maintaining a stroma that support tumor growth.</p>
124

Renal Ischemia/Reperfusion Injury in Diabetes : Experimental Studies in the Rat

Melin, Jan January 2002 (has links)
<p>Diabetes mellitus (DM) is one of the leading causes of end stage renal failure. An increased susceptibility to renal ischemia/reperfusion (I/R)-injury was found in DM rats. Unilateral renal ischemia for as short as 20 minutes led to an irreversible progressive injury in DM kidneys, whereas the injury in non-DM kidneys was almost reversible. The renal I/R injury was characterized by anuria, infiltration of inflammatory cells, tubular atrophy, dilation of the remaining tubuli and tubulointerstitial fibrosis. Necrotic areas were found in the inner parts of the outer medulla and in the papilla. The renal medulla was the most vulnerable part of the kidney. This was seen both by the extent of fibrosis four and eight weeks after I/R and by the presence of TUNEL-positive (apoptotic) cells 6h after ischemia. Increased accumulation of HA and enhanced CD44 expression was seen after I/R in DM kidneys.</p><p>Treatment with long acting insulin 7-14 days before I/R, decreased the number of apoptotic cells in the renal medulla and protected renal function and morphology after the insult, while insulin treatment after the injury did not have any protective effect. Short acting insulin given 2-6 hours before I/R partially protected renal function but did not improve the morphological picture.</p><p>Treatment with the angiotensin II receptor type 1 blocker candesartan, the PAF-antagonist UR-12670, the immunosuppressive agents tacrolimus and cyclosporin A, or prednisolone did not improve the outcome of the renal I/R injury in DM. Injection of cobalt protoporphyrin (CoPP) intraperitoneally in order to induce an over-expression of heme oxygenase-1 (HO-1) resulted in a trend towards a better function in DM kidneys after I/R. However, the induction of HO-1 by intraperitoneal CoPP injection was not achieved in all rats, when examined by western blot.</p><p>In conclusion, unilateral renal I/R leads to a severe progressive injury in DM kidneys. Insulin treatment before ischemia, but not after, reduces the renal injury in DM rats. Studies using a more reliable administration of CoPP are required to decide if induction of HO-1 protects against renal I/R injury in DM.</p>
125

Hyaluronan and Renal Fluid Handling : Studies during Normal and Pathological Conditions of Renal Function

Göransson, Viktoria January 2001 (has links)
The kidney is the major organ responsible for the regulation of the composition and volume of the body fluids, which is essential for homeostasis. The glycosaminoglycan hyaluronan (HA), with extreme water-binding capacity, is present in the interstitium of the kidney with a heterogenous distribution. The importance of HA in renal water-handling is unknown and was the focus of the present investigation. Acute water-loading in rats caused the amount of papillary HA to increase and during water deprivation, the amount was reduced. Gerbils, with extreme urine concentrating capacity, have less HA in the renal papilla in normal conditions and responded diametrically different to water-loading (reduction in HA). Renomedullary interstitial cells (RMICs), which are probably the main producers of HA in the renal medulla, were cultured at different media osmolalities to mimic the milieu of the medulla during variations in the water balance. The amount of HA found in the media was decreased at high osmolalities and increased at low osmolalities, thereby strengthening the in vivo results. CD44, an HA-receptor involved in the uptake and degradation of HA, was expressed on RMICs in an osmolality dependent manner. During high media osmolality, the CD44 expression increased and at lower osmolalities, the opposite occurred, probably due to the need for uptake and degradation of HA. Renal ischemia-reperfusion injury causes a cortical accumulation of HA, up-regulation of CD44, and a depression of functional parameters. The time periods of ischemia correlated with the accumulation of HA which, in turn, was inversely correlated to GFR. Hyaluronidase injections in this setting failed to reduce HA levels and significantly improve renal function. In conclusion, the results from the present study suggest an important role for HA and RMICs in renal water-handling and that the intrarenal distribution of HA is altered after ischemia-reperfusion injury, which correlates with renal dysfunction.
126

Tumor Stroma in Anaplastic Thyroid Carcinoma : Interstitial Collagen and Tumor Interstitial Fluid Pressure

Lammerts, Ellen January 2001 (has links)
Anaplastic thyroid carcinoma (ATC) is an aggressive malignancy in man with stromal fibrosis as one of the main features. Carcinoma cells synthesized no or little collagen I protein. Pro-α1(I) collagen mRNA was expressed by stromal cells throughout the tumor, but expression of procollagen type I protein was restricted to stromal cells situated close to nests of carcinoma cells. These data suggest that the carcinoma cells stimulated collagen type I deposition by increasing pro-α1(1) collagen mRNA translation. Cocultures, of the human ATC cell line KAT-4, with fibroblasts under conditions that allow the study of stimulatory factors on collagen mRNA translation, showed that the KAT-4 cells stimulated collagen type I protein synthesis in fibroblasts. Specific inhibitors of PDGF and TGF-β1 and -β3 were able to inhibit this carcinoma cell-induced stimulation of collagen type I synthesis. These findings suggest that tumor cells were able to stimulate collagen mRNA translation in stromal fibroblasts by, at least in part, transferring PDGF and/or TGF-β1 and -β3. Xenograft transplantation of different ATC cell lines into athymic mice demonstrated that the low collagen producing carcinoma cell lines were less tumorigenic compared to non-collagen producing carcinoma cell lines. The morphology of tumors derived from non-collagen producing ATC cell lines showed a well demarked stroma surrounding carcinoma cell nests. TGF-β1 and -β3 were found to play a role in generating a high tumor interstitial fluid pressure (TIPF) in experimental KAT-4 tumors. A specific inhibitor of TGF-β1 and -β3 was able to lower TIPF and reduce tumor growth after a prolonged period of treatment, suggesting that TGF-β1 and -β3 have a role in maintaining a stroma that support tumor growth.
127

Renal Ischemia/Reperfusion Injury in Diabetes : Experimental Studies in the Rat

Melin, Jan January 2002 (has links)
Diabetes mellitus (DM) is one of the leading causes of end stage renal failure. An increased susceptibility to renal ischemia/reperfusion (I/R)-injury was found in DM rats. Unilateral renal ischemia for as short as 20 minutes led to an irreversible progressive injury in DM kidneys, whereas the injury in non-DM kidneys was almost reversible. The renal I/R injury was characterized by anuria, infiltration of inflammatory cells, tubular atrophy, dilation of the remaining tubuli and tubulointerstitial fibrosis. Necrotic areas were found in the inner parts of the outer medulla and in the papilla. The renal medulla was the most vulnerable part of the kidney. This was seen both by the extent of fibrosis four and eight weeks after I/R and by the presence of TUNEL-positive (apoptotic) cells 6h after ischemia. Increased accumulation of HA and enhanced CD44 expression was seen after I/R in DM kidneys. Treatment with long acting insulin 7-14 days before I/R, decreased the number of apoptotic cells in the renal medulla and protected renal function and morphology after the insult, while insulin treatment after the injury did not have any protective effect. Short acting insulin given 2-6 hours before I/R partially protected renal function but did not improve the morphological picture. Treatment with the angiotensin II receptor type 1 blocker candesartan, the PAF-antagonist UR-12670, the immunosuppressive agents tacrolimus and cyclosporin A, or prednisolone did not improve the outcome of the renal I/R injury in DM. Injection of cobalt protoporphyrin (CoPP) intraperitoneally in order to induce an over-expression of heme oxygenase-1 (HO-1) resulted in a trend towards a better function in DM kidneys after I/R. However, the induction of HO-1 by intraperitoneal CoPP injection was not achieved in all rats, when examined by western blot. In conclusion, unilateral renal I/R leads to a severe progressive injury in DM kidneys. Insulin treatment before ischemia, but not after, reduces the renal injury in DM rats. Studies using a more reliable administration of CoPP are required to decide if induction of HO-1 protects against renal I/R injury in DM.
128

Lung hyaluronan and lung water in the perinatal period

Johnsson, Hans January 2001 (has links)
Hyaluronan is an important component of the lung extracellular matrix, with a high capacity for water immobilization, but information on perinatal changes in the lung hyaluronan concentration and their association with changes in the lung water content is limited. In this study, conducted both in rabbit pups and in human infants, we investigated changes in the hyaluronan concentration and distribution in the lung and in the lung water content after preterm or term birth, and changes produced by common antenatal and postnatal pathological conditions and treatments. In rabbit pups, we found a gradual decrease in lung hyaluronan concentration and in the intensity of alveolar hyaluronan staining with advancing gestational age at birth in late gestation, but no further changes during the first 7-9 days of life. The lung water content was uniformly high before birth, but decreased significantly after preterm delivery or at birth at term. Postnatal exposure of newborn preterm or term rabbit pups to hyperoxia for 4-9 days resulted in an increase in both lung hyaluronan concentration and lung water content. This was accompanied by more intense hyaluronan staining, mainly in the alveolar walls. Antenatal exposure of rabbit pups to betamethasone or terbutaline resulted in a lower lung hyaluronan concentration at preterm birth, associated with less intense hyaluronan staining in alveolar walls, without altering the lung water content. Betamethasone exposure had a maximal effect at 25 days of gestation (term = 31 days), decreasing thereafter with advancing gestation, while terbutaline exposure resulted in a gradually increasing effect during late gestation, with a maximum at 29 days. In deceased infants born at a gestational age of &lt; 32 weeks, the lung hyaluronan concentration at death was most strongly associated with the gestational age at birth. It also covaried with sex, antenatal steroid administration, intrauterine bleeding, mode of delivery, birth weight, IRDS, and surfactant treatment. In infants born at a gestational age of &gt; 33 weeks there was a weaker association between lung hyaluronan concentration and gestational age. In this group, the lung hyaluronan concentration was associated with administration of a high concentration of oxygen, and covaried with maximal ventilatory pressure, and lung water content.
129

Hyaluronan Derivatives and Injectable Gels for Tissue Engineering

Bergman, Kristoffer January 2008 (has links)
The present work describes the preparation of hyaluronan derivatives and hydrogels with potential use in tissue engineering applications. A potentially injectable hydrogel consisting of hyaluronan and collagen was successfully used to grow neurons in vitro by encapsulation of neural stem and progenitor cells. Attempts were further made to establish a suitable modification strategy which could be used for the preparation of in vivo cross-linkable hyaluronan derivatives. The synthesis of a model substance consisting of a D-glucuronate derivative which could simplify the development of such a modification technique is described, although a new method to prepare hyaluronan derivatives was found without its use. The modification strategy involves the use of a triazine-reagent which enables the covalent attachment of hydrophilic and hydrophobic amines to hyaluronan carboxyl groups in a controlled fashion under mild conditions. Using triazine-activated amidation we synthesized an aldehyde-derivative of hyaluronan which was used to prepare gels by cross-linking with hydrazide-modified polyvinyl-alcohol. Gels were formed in less than 1 minute by mixing equal volumes of the polymer derivatives and they were subsequently used as a carrier for bone morphogenetic protein-2. An in vitro release study showed that approximately 88% of the growth factor is retained in the gel over a 4 week period. The ability to form new bone in vivo was further evaluated in an ectopic rat model by the injection of gels containing 30 µg BMP-2. Radiographic and histological examination 4 and 10 weeks after injection showed the formation of new bone without any signs of inflammation or foreign body response. Hydroxyapatite particles were further added to improve the mechanical properties of the gel, and a comparative study was conducted. This time the induced tissue consisted not only of bone, but also of interconnected cartilage and tendon, as confirmed by histology and immunohistochemistry.
130

Biomaterials for Promoting Self-Healing of Bone Tissue

Piskounova, Sonya January 2011 (has links)
The present work addresses poor bone/implant integration and severe bone defects. In both conditions external stimuli is required for new bone to form. A multilayered functional implant coating, comprised of an inner layer of crystalline titanium dioxide (TiO2) and an outer layer of hydroxyapatite (HAP), loaded with bone morphogenetic protein-2 (BMP-2), was proposed as a tool for providing both improved initial bone formation and long-term osseointegration. The in vitro characterization of the implant coatings showed that TiO2 and HAP were more favorable for cell viability, cell morphology and initial cell differentiation, compared to native titanium oxide. Furthermore, significantly higher cell differentiation was observed on surfaces with BMP-2, indicating that a simple soaking process can be used for incorporating bioactive molecules. Moreover, the results suggest that there could be a direct interaction between BMP-2 and HAP, which prolongs the retention of the growth factor, improving its therapeutic effect. For treating severe bone defects a strategy involving BMP-2 delivery from hyaluronan hydrogels was explored. The hydrogels were prepared from two reactive polymers – an aldehyde-modified hyaluronan and a hydrazide-modified poly(vinyl alcohol). Upon mixing, the two components formed a chemically crosslinked hydrogel. In this work the mixing of the hydrogel components was optimized by rheological measurements. Furthermore, an appropriate buffer was selected for in vitro experiments by studying the swelling of hydrogels in PBS and in cell culture medium. A detection method, based on radioactive labeling of BMP-2 with 125I was used to monitor growth factor release both in vitro and in vivo. The results showed a biphasic release profile of BMP-2, where approximately 16 %  and 3 % of the growth factor remained inside the hydrogel after 4 weeks in vitro and in vivo, respectively. The initial fast release phase corresponded to the early ectopic bone formation observed 8 d after injection of the hydrogel formulation in the thigh muscle of rats. The hydrogel formulation could be improved by incorporation of HAP powder into the hydrogel formulation. Furthermore, bone formation could be increased by pre-incubation of the premixed hydrogel components inside the syringe prior to injection. Crushed hydrogels were also observed to induce more bone formation compared to solid hydrogels, when implanted subcutaneously in rats. This was thought to be due to increased surface area of the hydrogel, which allowed for improved cell infiltration.

Page generated in 0.2652 seconds