• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

En jämförelsestudie av modellverktygen MITgcm och MIKE 3 FM:s praktiska användning inom Norrvattens verksamhet vid modellering av Mälaren

Gudmundsson, Simon, Gulz, Astor, Johansson, Amanda, Nedergård, Tim, Niskakari, Lovis, Sjöström, Anton January 2022 (has links)
Mälaren är en mycket viktig dricksvattentäkt för många människor. I den här studien utreds riskfaktorersom kan påverka råvattenkvaliteten i Mälaren och sedan relateras dessa till hydrodynamiskmodellering av Mälaren. Hydrodynamisk modellering är ett modernt verktyg som kan simulera vattnets rörelse och tar hänsyn till många hydrodynamiska och meteorologiska drivvariabler. Modellerkan användas för att till exempel förutse transport av punktutsläpp och beräkna när och vilken koncentration som kommer till ett vattenverks intag. Beställaren av detta projekt är Norrvatten, en dricksvattenproducent som är intresserad av utvecklingsmöjligheterna hos oceanografen Göran Broströms tillämpning av den hydrodynamiska modellen MITgcm. Norrvatten använder sig idag av en modell vid namn MIKE 3 FM skapad av DHI. De är intresserade av vilken utveckling av MITgcm som skulle behövas för att den ska uppnå liknande kvalitetskrav som deras nuvarande modell gör. I en litteraturstudie samlades information om Mälarens fysikaliska, biologiska, kemiska förutsättningar samt information om hydrodynamisk modellering, för att göra en analys kring Mälarens råvattenkvalitet såväl som modellering av Mälaren. Genom kvalitativa intervjuer med Göran Broström angående MITgcm samt Helene Ejhed, uppströmsansvarig på Norrvatten som ofta använder MIKE 3 FM var det möjligt att ingående analysera modellerna utifrån såväl drivdata som modellernas övergripande kapaciteter. Utöver analys från intervjuerna gjordes en körning av Göran Broströms tillämpning av MITgcm. Resultaten visade att de största riskerna gällande Mälarens råvattenkvalitet är oljeutsläpp från närliggande farleder och patogener som släpps ut från reningsverk. Jämförelsen mellan MIKE 3 FM och MITgcm etablerade många likheter mellan modellerna, även om vissa variabler skilde sig åt, såsom in- och utflöden, ytvågor och nederbörd. Förslag på en ordning som Göran Broströms modell kan byggas ut på presenteras i form av en prioriteringspyramid. Validering av modellen visade sigvara ett viktigt första steg i utvecklingen samt att förbättra interaktionsdesignen. Utveckling av modellen skulle resultera i vissa kostnader för Norrvatten. Vidare studier behöver bidra med en större förståelse över den tillämpning Broström gjort av MITgcm samt jämförelser med flera modeller.
2

Vilken effekt har framtida klimat på strömningsmönster i Ekoln - en modelleringsstudie baserad på MIKE 3 FM / The influence of future climate on circulation patterns in the Ekoln basin - a modelling study based on MIKE 3 FM

Lindqvist, Sandra January 2019 (has links)
For centuries in the future, the climate on Earth will be affected by the global warming.Effects as melting ices, increasing sea levels and extreme weather, are all consequencesof the high amount of carbon dioxide (CO2), that we humans have caused. In Sweden,can climate effects like higher temperatures, longer vegetation periods and greaterseasonal variations in water fluxes, be expected. Due to climate changes and anincreasing population, the drinking water production in Uppsala will be affected. Interms of securing the drinking water production in the future, Uppsala Vatten och Avfall AB are investigating the possibility to use the Ekoln basin in lake Mälaren, as acomplementary raw water catchment area. In order to keep a secure drinking water production, in regard to quantity and quality, itis of interest to investigate how fluxes and water quality will be affected in the future.The annual pattern of water mixing, with summer- and winter stratification, and overturnduring spring and autumn, is something that significantly affects the water quality in theSwedish lakes. With the aim to study how the annual pattern of water mixing in theEkoln basin, might change due to future climate changes, hydrodynamic modelling wasperformed on a model area consisting of the Ekoln basin with adjacently bays. A hydrodynamic (3D) transport model of type MIKE 3 Flow Model FM, created byTyréns AB for simulating transport of pollutions, was calibrated and adapted to simulatetemperature profiles in the model area. To be able to study the annual pattern of watermixing, the model was also adapted to simulate a period of a year. Three scenarios weresimulated, one reference year and two future scenarios, where the future scenarios werebased on the climate scenarios RCP4.5 and RCP8.5 in year 2050. The calibration of the model was successful, and the calculation time was reduced byadapting the mesh. Results from the three scenarios, showed that the period with summerstratification might become nine days longer by RCP4.5 in year 2050, compared to thereference scenario. Simulation of RCP8.5 during the same time period, did not showany changes. By RCP8.5 it is possible that water temperatures in the epilimnion, areincreasing and that there will be no winter stratification. The temperature in the surfacewater are affected by the air temperature, in future studies it is in interest to investigatehow stratification and cirkulation will be affected by changes in wind speed and winddirection, how different types of wind data effect the results, it is also in interest to studychanges during a time period longer than one year. / Den globala uppvärmningen kommer att påverka Jordens klimat i många sekel framöver.Effekter som smältande isar, stigande havsnivåer och extremare väder, är allakonsekvenser av de enorma utsläpp koldioxid (CO2), som vi människor orsakat. ISverige kan vi i framtiden vänta oss varmare temperaturer, längre vegetationsperioderoch flöden med stora säsongsvariationer. I Uppsala kommer de framtidaklimatförändringarna i samverkan med en växande befolkning att påverka stadensdricksvattenproduktion. Uppsala Vatten och avfall AB undersöker idag möjligheten tillatt använda Mälarbassängen Ekoln som kompletterande råvattentäkt. För att säkerställa en säker dricksvattenproduktion, både utifrån den kvantitet ochkvalitet som krävs, är det av intresse att veta hur flöden och vattenkvalitet i Ekoln kankomma att utvecklas i framtiden. Något som i stor grad påverkar vattenkvaliteten i våraSvenska sjöar, är den årstidsbundna cirkulationen, med vinter- och sommarstagnation,samt vår- och höstcirkulation. För att undersöka hur den årstidsbundna cirkulationen iEkoln kan komma att förändras med framtida klimat, utfördes hydrodynamiskmodellering för sjön med intilliggande vikar. En bestående tredimensionell spridningsmodell av typ MIKE 3 Flow Model FM, skapadför att simulera spridning av avloppsvatten i Ekoln, erhölls från Tyréns AB. Modellenkalibrerades och anpassades för att simulera temperaturprofiler i sjön. För att täcka inbeteendet för den årstidsbundna cirkulationen anpassades modellen till att simulera etthelt år. Modellen kördes för ett referensår, samt för de två strålningsdrivningsscenariernaRCP4.5 och RCP8.5 vid år 2050. Kalibrering av modellen var lyckad och beräkningstiden förkortades genom anpassningav beräkningsnätet. Resultat från simuleringar visade på att sommarstagnation kanförekomma nio dagar längre vid RCP4.5 för år 2050, än under referensåret. Ingenförändring förväntas vid RCP8.5 under samma tidsperiod. Vid RCP8.5 förväntas dockvattentemperaturer i epilimnion att stiga och vinterstagnation förekommer ej.Temperaturer i vattenmassans övre skikt påverkas i hög grad av lufttemperatur och vidfortsatta studier är det även av intresse att undersöka hur skiktning och cirkulationpåverkas av förändrade vindförhållanden, hur olika drivdata för vindförhållandenpåverkar resultatet samt att undersöka en tidsperiod som är längre än ett år.
3

Hydrodynamic Modelling of Water Temperature Distribution in Lake Erken, Sweden

Mazinga, Kondwani January 2024 (has links)
Understanding water temperature dynamics in lakes is essential for ecological and environmental management. This study focuses on Lake Erken, Sweden, aiming to develop and validate a three-dimensional (3D) hydrodynamic model using the MIKE 3 FM modelling system to simulate the lake's water temperature distribution. The model performance was evaluated by comparing simulated water temperature profiles with observed data at various depths, distinguishing between the upper layer and deeper layers. Results showed satisfactory performance, with the model capturing seasonal and spatial variations in the lake’s thermal structure. The root-mean-square error (RMSE) for water temperature simulation ranged between 0.7-1.8°C, and the Nash-Sutcliffe efficiency (NSE) was between 0.86-0.99 across different depths. However, the model has limitations in accurately capturing stratification in deeper layers, especially during the summer months. This research underscores the importance of accurate temperature modelling for understanding lake ecosystems and provides insights for future improvements in hydrodynamic simulations.
4

How design storms with normally distributed intensities customized from precipitation radar data in Sweden affect the modeled hydraulic response to extreme rainfalls

Elfström, Daniel, Stefansson, Max January 2021 (has links)
Intense but short-term cloudbursts may cause severe flooding in urban areas. Such short-term cloudbursts mostly are of convective character, where the rain intensity may vary considerably within relatively small areas. Using uniform design rains where maximum intensity is assumed over the whole catchment is common practice in Sweden, though. This risks overestimating the hydraulic responses, and hence lead to overdimensioning of stormwater systems. The objective of this study was to determine how the hydraulic response to cloudbursts is affected by the spatial variation of the rain in relation to the catchment size, aiming to enable improved cloudburst mapping in Sweden. Initially, the spatial variation of heavy rains in Sweden was investigated by studying radar data provided by SMHI. The distribution of rainfall accumulated over two hours from heavy raincells was investigated, based on the assumption that the intensity of convective raincells can be approximated as spatially Gaussian distributed. Based on the results, three Gaussian test rains, whose spatial variation was deemed a representative selection of the radar study, were created. In order to investigate how the hydraulic peak responses differed between the Gaussian test rains and uniform reference rains, both test and reference rains were modeled in MIKE21 Flow model. The modelling was performed on an idealised urban model fitted to Swedish urban conditions, consisting of four nested square catchments of different sizes. The investigated hydraulic peak responses were maximum outflow, proportion flooded area and average maximum water depth. In comparison with spatially varied Gaussian rains centered at the outlets, the uniform design rain with maximum rain volume overestimated the peak hydraulic response with 1-8%, independent of catchment size. Uniform design rains scaled with an area reduction factor (ARF), which is averaging the rainfall of the Gaussian rain over the catchment, instead underestimated the peak response, in comparison with the Gaussian rains. The underestimation of ARF-rains increased heavily with catchment size, from less than 5 % for a catchment area of 4 km2 to 13 - 69 % for a catchment area of 36 km2. The conclusion can be drawn that catchment size ceases to affect the hydraulic peak response when the time it takes for the whole catchment to contribute to the peak response exceeds the time it takes for the peak to be reached. How much the rain varies over the area which is able to contribute to the peak response during the rain event, can be assumed to decide how much a design rain without ARF overestimates the peak responses. If the catchment exceeds this size, an ARF-scaled rain will underestimate the peak responses. This underestimation is amplified with larger catchments. The strong pointiness of the CDS-hyetograph used in the study risks underestimating the differences in hydraulic peak responses between the test rains and a uniform rain without ARF, while the difference between test rains and uniform rains with ARF risks being overestimated. / Intensiva men kortvariga skyfall kan orsaka omfattande översvämningsproblematik i urbana områden. Trots att sådana kortvariga skyfall oftast är av konvektiv karaktär, där regnintensiteten kan variera avsevärt inom relativt små områden, används idag uniforma designregn där maxintensitet antas över hela avrinningsområdet. Detta riskerar att leda till en överskattning av hydrauliska responser, och följaktligen överdimensionering av dagvattensystem. Denna studie syftar till att utreda hur den hydrauliska responsen av skyfall påverkas av regnets spatiala variation, i relation till avrinningsområdets storlek. Ytterst handlar det om att möjliggöra förbättrad skyfallskartering i Sverige. Initialt undersöktes den spatiala variationen hos kraftiga regn i Sverige, genom en studie av radardata tillhandahållen av SMHI. Utbredningen av regnmängd ackumulerad över två timmar från kraftiga regnceller undersöktes utifrån antagandet att intensiteten hos konvektiva regnceller kan approximeras som spatialt gaussfördelad. Baserat på resultatet skapades tre gaussfördelade testregn vars spatiala variation ansågs utgöra ett representativt urval från radarstudien. För att undersöka hur de hydrauliska responserna skiljer sig åt mellan de gaussfördelade testregnen och uniforma referensregn, modellerades såväl test- som referensregn i MIKE 21 Flow model. Modelleringen utfördes på en idealiserad stadsmodell anpassad efter svenska urbana förhållanden, bestående av fyra nästlade kvadratiska avrinningsområden av olika storlekar. De hydrauliska responser som undersöktes var maximalt utflöde, maximal andel översvämmad yta samt medelvärdesbildat maximalvattendjup, alltså toppresponser. Jämfört med spatialt varierade gaussregn centrerade kring utloppen överskattade ett uniformt designregn med testregnens maximala volym de hydrauliska toppresponserna med 1-8 %, oberoende av avrinningsområdets storlek. Uniforma designregn skalade med area reduction factor (ARF), vilken medelvärdesbildar gaussregnets nederbörd över avrinningsområdet, underskattade istället toppresponsen jämfört med gaussregnen. ARF-regnets underskattning ökade kraftigt med avrinningsområdets storlek, från mindre än 5 % för ett avrinningsområde på 4 km2, till 13 - 69 % för ett avrinningsområde på 36 km2. Slutsatsen kan dras att avrinningsområdets storlek upphör att påverka den hydrauliska toppresponsen, då tiden det tar för hela avrinningsområdet att samverka till toppresponsen överstiger tiden till denna respons. Hur mycket regnet varierar över det område som under regnhändelsen hinner samverka till toppresponsen, kan antas avgöra hur mycket ett designregn utan ARF överskattar toppresponserna. Överstiger avrinningsområdet denna storlek kommer ett ARF-regn att underskatta toppresponserna, och underskattningen förstärks med ökande avrinningsområdesstorlek. Den kraftiga temporala toppigheten hos den CDS-hyetograf som användes i studien riskerar att underskatta skillnaderna i hydraulisk topprespons mellan testregnen och ett uniformt regn utan ARF, medan skillnaden mellan testregn och uniforma regn med ARF istället riskerar att överskattas.

Page generated in 0.1002 seconds