• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 400
  • 97
  • 69
  • 45
  • 38
  • 33
  • 20
  • 12
  • 11
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 842
  • 164
  • 97
  • 96
  • 88
  • 82
  • 72
  • 67
  • 63
  • 62
  • 58
  • 58
  • 57
  • 55
  • 55
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Desenvolvimento de tecnologia de biofabricação com laser infravermelho para recobrimento de próteses articulares com hidrogel / Development of biofabrication technology with Infrared laser to coating of articular prostheses with hydrogel

Passos, Marcele Fonseca, 1986- 19 August 2018 (has links)
Orientador: Passos, Marcele Fonseca / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Química / Made available in DSpace on 2018-08-19T02:23:46Z (GMT). No. of bitstreams: 1 Passos_MarceleFonseca_M.pdf: 15093576 bytes, checksum: fc209e9f43b60067bf5b99f169881ea4 (MD5) Previous issue date: 2011 / Resumo: Na área dos materiais, um campo em crescente expansão é o desenvolvimento de hidrogéis poliméricos para aplicações biomédicas. Entre a grande classe de hidrogéis poliméricos estudados, o poli 2-hidróxi etil metacrilato (pHEMA) recebe especial atenção, devido a sua biocompatibilidade, alta hidrofilicidade e fácil preparação. Para aplicação como substituinte da cartilagem articular natural em próteses articulares, as quais, normalmente apresentam como principal componente (substrato) o polietileno de ultra alto peso molecular (PEUAPM), a adesão do sistema (hidrogel - substrato) ainda é um parâmetro a ser avaliado. Modificações adequadas no material e considerações de projeto, no entanto, podem melhorar a aderência do conjunto, via embricamento mecânico. Dentro de um grupo multidisciplinar e em ascensão, Instituto Nacional de C&T em Biofabricação - BIOFABRIS, este projeto, teve como objetivo, desenvolver novos biomateriais, usando técnicas de engenharia para obtenção de dispositivos biomédicos (próteses e órteses ortopédicas). Foi desenvolvida uma tecnologia de biofabricação visando melhorar as propriedades mecânicas dos hidrogéis de pHEMA, bem como obter uma adesão adequada entre este polímero e a superfície articular artificial, a fim de minimizar o desgaste sofrido pelos componentes que constituem os dispositivos ortopédicos, um dos principais fatores que geram sua falência. Usando a técnica de biofabricação, foi possível obter hidrogéis de pHEMA desde a simulação do produto até a caracterização final, para aplicações específicas: cartilagem articular artificial, foco principal da dissertação; e, como cartilagem reconstrutiva, atuando como suporte ao crescimento de células (hidrogéis porosos). A avaliação do mecanismo de polimerização e reticulação do pHEMA, o calor específico e a condutividade térmica da solução do 2-hidróxi etil metacrilato (HEMA) foram obtidos via técnica de Calorimetria Exploratória Diferencial. Tais parâmetros serviram de subsídio para a simulação computacional, a qual permitiu estimar os parâmetros do processo de reticulação do pHEMA, como potência do laser a 30 W e tempo reacional de 120 segundos, na temperatura de 399 K. As propriedades térmicas, como temperatura de transição vítrea e degradação, apresentaram valores similares aos dados encontrados na literatura, na faixa de 109 e 118 ºC, e na faixa de 354 e 376 ºC, respectivamente. Os resultados obtidos do coeficiente de atrito do par tribológico PEUAPM-pHEMA apresentaram valores altos, contudo, a tecnologia de biofabricação desenvolvida neste projeto, mostrou-se uma importante ferramenta para a obtenção de biomateriais para aplicações diversificadas / Abstract: In the materials field, a rapidly expanding field is the development of polymeric hydrogels for biomedical applications. Among the large class of polymeric hydrogels studied, poly 2-hydroxy ethyl methacrylate (pHEMA) receives special attention. For application as replacements of natural articular cartilage in articular prostheses, which usually present as a main component (substrate) the polyethylene of ultra high molecular weight (UHMWPE), the adhesion of system (hydrogel - substrate) is still a parameter to be evaluated. Appropriate modifications in the material and design considerations, however, can improve the adhesion of the set by embrication mechanic. Within a multidisciplinary group and on the rise, National Institute of C & T in Biofabrication -BIOFABRIS, this project aims to develop new biomaterials using engineering techniques for obtaining biomedical devices (prostheses and orthoses, orthopedic). It was developed a technology aiming to both improve the mechanical properties of pHEMA hidrogel as well as to obtain proper adhesion between this polymer and the artificial articular surface in order to minimize the wear suffered by the components that constitute the orthopedic devices, one of the main factors that cause bankruptcy. Using the technique of biofabrication was possible to obtain hydrogels pHEMA from the simulation of the product until the final characterization, for specific applications: artificial articular cartilage, the main focus of the dissertation, and as a reconstructive cartilage, acting as a support cell growth (porous hydrogels). The evaluation of the mechanism of polymerization and crosslinking of pHEMA, the specific heat and thermal conductivity of the solution of 2-hydroxy ethyl methacrylate (HEMA) were obtained by the technique of Differential Scanning Calorimetry. These parameters served as input to the computer simulation, which allowed to estimate the process parameters of pHEMA crosslinking, such as laser power 30 W and the reaction time of 120 seconds at a temperature of 399 K. The thermal properties and glass transition temperature and degradation, showed values similar to those found in the literature, to know, in the range of 109 and 118 °C, and in the range of 354 and 376 °C, respectively. The obtained results of the friction coefficient for the tribological pair UHMWPE-pHEMA have demonstrated high values, however, the biofabrication technology developed in this project, was important a tool for obtaining biomaterials for different applications / Mestrado / Desenvolvimento de Processos Químicos / Mestre em Engenharia Química
22

Untersuchung Thiol-En vernetzter Gelatine Hydrogele und Vergleich mit Alginat-Gelatine in Bezug auf das in vitro Zellverhalten von Fibroblasten / Analysis of thiol-ene crosslinked gelatin hydrogels and comparison with alginate-gelatin regarding the in vitro cell behaviour of fibroblasts

Haschke, Sebastian January 2021 (has links) (PDF)
Hydrogele stehen als Material für den 3D-Biodruck zunehmend im Fokus aktueller Forschung, da sie aufgrund ihrer wasserhaltigen Struktur optimale Voraussetzungen für Anwendungen der Zellkultur aufweisen. Durch die Verarbeitung solcher Biotinten mittels additiver Fertigungstechniken der Biofabrikation erhofft man sich beschädigtes oder krankes Gewebe zu heilen oder zu ersetzen. Allerdings wird der Fortschritt in diesem Bereich durch einen Mangel an geeigneten Materialien gebremst, weshalb die Entwicklung neuer Biotinten von zentraler Bedeutung ist. Das Polymer GelAGE ist ein am Lehrstuhl für Funktionswerkstoffe der Medizin und Zahnheilkunde der Universität Würzburg synthetisiertes Hydrogelsystem. Zu diesem über eine Thiol-En Reaktion vernetzenden Material stehen systematische Untersuchungen der für die in vitro Zellkultur relevanten Eigenschaften noch aus. Das Ziel dieser Arbeit war daher die biologische Evaluation von GelAGE und der Vergleich mit der Biotinte Alginat-Gelatine. Zu diesem Zweck wurden L929-Zellen für 7 Tage in verschiedenen Hydrogelzusammensetzungen in vitro kultiviert. Um die zytokompatiblen Eigenschaften in den verschiedenen Versuchsgruppen zu untersuchen, wurden die Proben mittels der in vitro Testverfahren Live/Dead Färbung, DNA-Assay, CCK-8-Assay und Phalloidin-Färbung analysiert. Im Rahmen dieser Arbeit konnte ein Herstellungsprotokoll für das Material GelAGE etabliert werden, welches eine Grundlage für die Durchführung weiterer biologischer Experimente bietet. Das Resultat der biologischen Untersuchungen war, dass das Polymer GelAGE als zytokompatibel bewertet werden kann, es jedoch nicht die Qualität des Alginat-Gelatine Hydrogelsystems aufweist. Allerdings konnten die Eigenschaften der GelAGE Proben teilweise durch eine Modifikation mit Humanem Plättchenlysat verbessert werden. Des Weiteren konnten deutliche Unterschiede in der Zell-Material- Interaktion zwischen den verschiedenen GelAGE Varianten nachgewiesen werden. / Hydrogels are in the focus of current research as a material for 3D-bioprinting, as they provide optimal conditions for cell culture applications. By processing such bioinks through additive manufacturing techniques, researchers aim to heal or replace damaged or diseased tissue. However, progress in this field is hampered by a lack of suitable materials, which is why the development of new bioinks is crucial. The polymer GelAGE is a hydrogel system synthesised at the Department for Functional Materials in Medicine and Dentistry at the University of Würzburg, which cross-links via a thiol-ene reaction. Systematic investigations of the properties that are relevant for the in vitro cell culture of this material are still pending. Therefore, the aim of this thesis was the biological evaluation of GelAGE and the comparison with the bioink alginate-gelatine. For this purpose, L929 cells were cultured in vitro for 7 days in different hydrogel compositions. In order to investigate the cytocompatibility the samples were analysed using the in vitro assays Live/Dead staining, DNA-assay, CCK-8-assay and Phalloidin staining. Within the scope of this project, it was possible to establish a protocol for the material GelAGE, which provides a basis for conducting further biological experiments. The result of the biological investigations was that the polymer GelAGE can be evaluated as cytocompatible, although it does not have the quality of the alginate-gelatine hydrogel system. However, the properties of the GelAGE samples could be partially improved by modification with human platelet lysate. Furthermore, clear differences in the cell-material interaction between the different GelAGE variants could be demonstrated.
23

Functional Peptide-Based Structures for Corneal Repair

Guzmán Soto, Irene 12 November 2021 (has links)
Currently, around 28 million people globally suffer from the consequences of corneal blindness and most of them are part of a long waiting list; availability of donor tissue is highly limited. Furthermore, even those who are treated are in risk of developing post- surgery complications, mainly due to microbial infections. Hence, cell-free biomaterials with enhanced properties to prevent corneal associated infections would provide a safe alternative. We evaluated the efficacy of different peptides for the functionalization of collagen-based hydrogels through the in situ synthesis of silver nanoparticles (AgNPs). The produced biomaterials were characterized and evaluated in vitro for biocompatibility and potential antimicrobial activity. From the diverse strategies evaluated, the localized formation of AgNPs onto the periphery of cornea-shaped collagen hydrogels may represent a more promising option.
24

Nové biodegradovatelné hydrogely / New Biodegradable Hydrogels

Vetrík, Miroslav January 2015 (has links)
The key tool for tissue engineering is the scaffold that supports cells for new tissue growth. Materials used for creating scaffolds are based on polymeric materials, carbon nanofibers, ceramics, and metals and their alloys. In my thesis, I describe the synthesis and characterization of new biodegradable hydrogels containing biodegradable crosslinks and biodegradable nanofibrous materials intended for scaffolds for tissue engineering. I also describe the preparation of macroporous hydrogels intended for neural tissue healing. In the first portion of this thesis, I examine a hydrogel based on a pH- responsive crosslinker. This hydrogel is stable at basic and neutral pHs but is degradable at pH < 7.4. The degradation rate of this hydrogel can be tailored. This hydrogel can be utilized as an esophageal stent or as a targeted drug release system in the stomach. The second portion of this thesis focuses on a biodegradable hydrogel designed for neural tissue repair. This hydrogel is composed of copolymers of N-(2- hydroxypropyl)methacrylamide and a newly synthesized biodegradable crosslinker based on 6,6'-dithiodinicotinic acid. This hydrogel can be stored in a neutral environment without degradation. Its long-term storage capability is another great advantage for clinical applications. During storage,...
25

Development of Dynamic Self-Initiated Photografting and Photopolymerization / Entwicklung von dynamischem Self-initiated Photografting and Photopolymerization

Löblein, Jochen January 2021 (has links) (PDF)
After examining suitable parameters for a newly designed system, dynamic SIPGP could be developed. For the first time, SIPGP was performed while applying a constant flow of monomer solution through the reaction system. This added a new parameter: the flow rate (rfl). Accordingly, this parameter was examined, comparing dynamic to static SIPGP. It could be shown, that by applying higher rfl to the system, the contact angle increases, which indicates a slower coating. The flow patterns inside the reactor were then modelled and calculated. These calculations indicated, that, due to higher flow velocities, the contact angle on the coated samples would be lower on the sides of the sample and higher in the middle. This finding was verified by contact angle measurements. The influence of dynamic SIPGP on the temperature inside the reaction chamber during the reaction was examined by temperature sensors inside the reactor. This showed, that the constant flow of monomer solution can be utilized to decrease the warming of the reaction solution during the reaction. Finally it was shown, that dynamic SIPGP can decrease the formation of bulk polymer on the sample, which is forming during the reaction. This enables SIPGP to fabricate more homogeneous coatings by applying a constant monomer flow. / Nachdem für ein neu entworfenes System geeignete Parameter untersucht wurden, konnte das dynamische SIPGP entwickelt werden. Zum ersten Mal wurde SIPGP durchgeführt, während ein konstanter Fluss von Monomerlösung durch das System geleitet wurde. Das fügte einen neuen Parameter hinzu: die Flussrate (rfl). Diese wurde untersucht, indem dynamisches und statisches SIPGP verglichen wurden. Es konnte gezeigt werden, dass mit höheren rfl der Kontaktwinkel anstieg, was auf eine langsamere Beschichtung hindeutet. Daraufhin wurden die Flussmuster innerhalb des Reaktors modelliert und berechnet. Diese Berechnungen deuteten darauf hin, dass der Kontaktwinkel an den Seiten der beschichteten Probe, durch erhöhte Fließgeschwindigkeiten, höher sind als in der Mitte. Dies wurde dann auch durch Kontaktwinkel-Messungen bestätigt. Der Einfluss von dynamischem SIPGP auf die Temperatur innerhalb der Reaktionskammer während der Reaktion wurde mit Temperatursensoren innerhalb des Reaktors untersucht. Dies zeigte, dass der konstante Fluss von Monomerlösung dazu genutzt werden kann, die Erwärmung der Reaktionslösung während der Reaktion zu verringern. Abschließend wurde gezeigt, dass dynamisches SIPGP die Entstehung von bulk-Polymer auf der Probe, welches während der Reaktion entsteht, reduzieren kann. Dadurch ist es möglich durch SIPGP gleichmäßigere Beschichtungen zu erzeugen, indem ein konstanter Monomerfluss hinzugefügt wird.
26

Tailoring Hyaluronic Acid and Gelatin for Bioprinting / Modifikation von Hyaluronsäure und Gelatine für die Anwendung im Biodruck

Shan, Junwen January 2022 (has links) (PDF)
In the field of biofabrication, biopolymer-based hydrogels are often used as bulk materials with defined structures or as bioinks. Despite their excellent biocompatibility, biopolymers need chemical modification to fulfill mechanical stability. In this thesis, the primary alcohol of hyaluronic acid was oxidized using TEMPO/TCC oxidation to generate aldehyde groups without ring-opening mechanism of glycol cleavage using sodium periodate. For crosslinking reaction of the aldehyde groups, adipic acid dihydrazide was used as bivalent crosslinker for Schiff Base chemistry. This hydrogel system with fast and reversible crosslinking mechanism was used successfully as bulk hydrogel for chondrogenic differentiation with human mesenchymal stem cells (hMSC). Gelatin was modified with pentenoic acid for crosslinking reaction via light controllable thiol-ene reaction, using thiolated 4-arm sPEG as multivalent crosslinker. Due to preservation of the thermo responsive property of gelatin by avoiding chain degradation during modification reaction, this gelatin-based hydrogel system was successfully processed via 3D printing with low polymer concentration. Good cell viability was achieved using hMSC in various concentrations after 3D bioprinting and chondrogenic differentiation showed promising results. / Im Bereich der Biofabrikation werden Hydrogele auf Biopolymerbasis häufig als Bulkmaterial mit definierten Strukturen oder als Biotinten verwendet. Obwohl Biopolymere eine hervorragende Biokompatibilität aufweisen, müssen sie jedoch chemisch modifiziert werden, um gewisse mechanische Stabilität für den Einsatz in der Biofabrikation zu erreichen. In dieser Arbeit wurde der primäre Alkohol der Hyaluronsäure mit Hilfe der TEMPO/TCC-Oxidation oxidiert, um Aldehydgruppen zu generieren. Dabei findet kein Ringöffnungsmechanismus statt, wie er bei der Glykolspaltung mit Natriumperiodat vorkommt. Für die Vernetzungsreaktion der Aldehydgruppen wurde Adipinsäuredihydrazid als bivalenter Vernetzer für die Bildung der Schiffschen Base verwendet. Dieses Hydrogelsystem mit schnellem und reversiblem Vernetzungsmechanismus wurde erfolgreich als Bulkhydrogel für die chondrogene Differenzierung mit humanen mesenchymalen Stammzellen (hMSC) erfolgreich eingesetzt. Als Mikrogele könnte das System in künftigen Forschungsarbeiten auf seine Verdruckbarkeit getestet werden. Gelatine wurde mit Pentensäure modifiziert, um die Vernetzungsreaktion über eine lichtkontrollierbare Thiol-En-Reaktion durchzuführen, bei der thioliertes 4-armiges sPEG als multivalenter Vernetzer verwendet wurde. Da die thermoresponsive Eigenschaft der Gelatine erhalten blieb, indem der Kettenabbau während der Modifizierungsreaktion vermieden wurde, konnte dieses Hydrogelsystem auf Gelatinebasis erfolgreich im 3D-Druck mit niedriger Polymerkonzentration verarbeitet werden. Mit hMSC in verschiedenen Konzentrationen wurde nach dem 3D-Biodruck eine gute Zellviabilität erreicht und die chondrogene Differenzierung zeigte vielversprechende Ergebnisse.
27

Synthesis of Anticoagulant Glycopolymers and Lactose-Containing Hydrogels

Huang, Yongshun 09 September 2016 (has links)
No description available.
28

Poly(ethylene glycol) Hydrogels Crosslinked via the Strain-Promoted Alkyne-Azide Cycloaddition

Hodgson, Sabrina M. 11 1900 (has links)
Hydrogels are promising materials for a number of biomedical applications, including tissue engineering, controlled drug delivery, and wound healing. Due to the semi-permeable nature of the water-swollen crosslinked polymer network, hydrogels have the unique ability to encapsulate materials, while allowing passage of any necessary resources, such as the import of oxygen or nutrients and the export of waste or therapeutic agents. Hydrogel properties vary greatly depending on the polymer material and crosslinking chemistry chosen, all of which can be tuned for a particular application. Current hydrogel systems typically involve either natural or synthetic polymers. Synthetic polymers afford more structural control to the resulting hydrogel, however the employed crosslinking chemistry is often non-ideal, due to the high temperatures required or the presence of cytotoxic catalysts. Click chemistry, particularly the strain-promoted alkyne-azide cycloaddition (SPAAC), is ideal for hydrogel crosslinking as it is fast at physiological temperatures, bio-orthogonal, doesn’t produce any byproducts, and doesn’t require a catalyst or external stimuli. For the hydrogel material, synthetic poly(ethylene glycol) (PEG) is most appealing since it is non-toxic, easy to functionalize, and physiologically stable. At the time of this thesis, there were few examples of PEG hydrogels prepared via SPAAC, with limited characterization of the physical properties of these gels and the parameters that dictate their gelation behavior. The work presented in this thesis involved the optimized synthesis of a cyclooctyne derivative, aza-dibenzocyclooctyne (DIBAC), which was subsequently used for the preparation and characterization of a series of PEG hydrogels crosslinked via SPAAC. We showed that the PEG chain length and number of crosslinking groups had a significant effect on the swelling, degradation time and stiffness of the resulting hydrogels. Additionally, there was very little protein adsorption on the surface of the hydrogels, and the polymer components proved non-cytotoxic. A second objective of this work was to investigate reproducible hydrogels. We created novel, SPAAC crosslinked PEG hydrogels that contained well-defined dendritic crosslinking groups, making them more reproducible than the previous linear analogs. These hydrogels have short gelation times at low polymer concentration, minimal swelling at physiological temperatures, and kept human mesenchymal stem cells (hMSCs) viable for over 15 days. / Thesis / Doctor of Philosophy (PhD)
29

Hydrogels as Biofunctional Coatings and Thiol-Ene Clickable Bioinks for Biofabrication / Hydrogele als biofunktionale Beschichtungen und Thiol-Ene-clickbare Biotinten für die Biofabrikation

Bertlein, Sarah January 2019 (has links) (PDF)
Ziel dieser Arbeit war die Entwicklung von funktionalisierbaren Hydrogel Beschichtungen für Schmelz-elektrogeschriebene PCL Gerüste und von Bio-druckbaren Hydrogelen für die Biofabrikation. Hydrogel Beschichtungen von Schmelz-elektrogeschriebenen Konstrukten ermöglichten die Kontrolle der Oberflächen-Hydrophilie und damit Zell-Material Interaktionsstudien in minimal Protein-adhäsiven Umgebungen. Zu diesem Zweck wurde ein hydrophiles sternförmiges vernetzbares Polymer verwendet und eine Optimierung der Beschichtungsbedingungen durchgeführt. Außerdem boten neu entwickelte photosensitive Konstrukte eine Zeit- und pH-unabhängige Biofunktionalisierung. Bio-druckbare Hydrogele für die Biofabrikation basierten auf der Allyl-Funktionalisierung von Gelatine (GelAGE) und modifizierten Hyaluronsäure-Produkten, die das Hydrogel-Vernetzen mittels Thiol-En Click Chemie ermöglichen. Die Optimierung der GelAGE Hydrogel-Eigenschaften wurde durch eine detaillierte Analyse der Syntheseparameter, variierender En:SH Verhältnisse, unterschiedlicher Vernetzungsmoleküle und Photoinitiatoren erreicht. Die Homogenität der Thiol-En Netzwerke wurde mit denen der freien radikalischen Polymerisation verglichen und die Verwendbarkeit von GelAGE als Bio-Tinte für den Extrusions-basierten Bio-Druck wurde untersucht. Es wurde angenommen, dass reine Hyaluronsäure-basierte Bio-Tinten eine Beibehaltung der mechanischen und rheologischen Eigenschaften, der Zellviabilität und der Prozessierbarkeit ermöglichen trotz geringerem Polymer- und Thiol-Anteil der Hydrogele. Hydrogel-Beschichtungen: Hoch definierte PCL Gerüste wurden mittels MEW hergestellt und anschließend mit sechs armigen sternförmigen vernetzbaren Polymeren (sP(EO-stat-PO)) beschichtet. Die Vernetzung wird durch die wässrig-induzierte Hydrolyse reaktiver Isocyanatgruppen (NCO) von sP(EO-stat-PO) bedingt. Diese Beschichtung erhöhte die Oberflächen-Hydrophilie und stellte eine Plattform für weitere Biofunktionalisierungen, in minimal Protein-adhäsiven Umgebungen, dar. Nicht nur das Beschichtungsprotokoll wurde hinsichtlich der sP(EO-stat-PO) Konzentrationen und der Beschichtungsdauern optimiert, sondern auch Vorbehandlungen der Gerüste wurden entwickelt. Diese waren essentiell um die finale Hydrophilie von sP(EO-stat-PO) beschichteten Gerüste so zu erhöhen, dass unspezifische Protein-Adhäsionen vollständig unterbunden wurden. Die sP(EO-stat-PO) Schichtdicke, von ungefähr 100 nm, ermöglicht generell in vitro Studien nicht nur in Abhängigkeit der Gerüst-Biofunktionalisierung, sondern auch in Abhängigkeit der Gerüst-Architektur durchzuführen. Das Ausmaß der Hydrogel-Beschichtung wurde mittels einer indirekten Quantifizierung der NCO-Hydrolyse-Produkte ermittelt. Kenntnis über die NCO-Hydrolyse-Kinetik ermöglichte ein Gleichgewicht zwischen ausreichend beschichteten Gerüsten und der Präsenz der NCO-Gruppen herzustellen, welche für die anschließenden Biofunktionalisierungen genutzt wurden. Diese Zeit- und pH-abhängige Biofunktionalisierung war jedoch nur für kleine Biomoleküle möglich. Um diese Beschränkung zu umgehen und auch hochmolekulare Biomoleküle kovalent anzubinden, wurde ein anderer Reaktionsweg entwickelt. Dieser basierte auf der Photolyse von Diazirin-Gruppen und ermöglichte eine Zeit- und pH-unabhängige Biofunktionalisierung der Gerüste mit Streptavidin und Kollagen Typ I. Die Fibrillen bildende Eigenschaft von Kollagen wurde genutzt um auf den Gerüsten verschiedene Kollagen-Konformationen zu erhalten und eine erste in vitro Studie bestätigte die Anwendbarkeit für Zell-Material Interaktionsstudien. Die hier entwickelten Gerüste könnten verwendet werden um tiefere Einblicke in die Grundlagen der zellulären Wahrnehmung zu erhalten. Insbesondere die Komplexität mit der Zellen z.B. Kollagen wahrnehmen bleibt weiterhin klärungsbedürftig. Hierfür könnten diverse Hierarchien von Kollagen-ähnlichen Konformationen an die Gerüste gebunden werden, z.B. Gelatine oder Kollagen-abgeleitete Peptidsequenzen. Dann könnte die Aktivierung der DDR-Rezeptoren in Abhängigkeit der Komplexität der angebundenen Substanzen bestimmt werden. Aufgrund der starken Streptavidin-Biotin Bindung könnten Streptavidin funktionalisierte Gerüste eine vielseitige Plattform für die Immobilisierung von jeglichen biotinylierten Molekülen darstellen. Gelatine-basierte Bio-Tinten: Zuerst wurden die GelAGE-Produkte hinsichtlich der Molekulargewichts-Verteilung und der Integrität der Aminosäuren-Zusammensetzung synthetisiert. Eine detailliert Studie, mit variierenden molaren Edukt-Verhältnissen und Synthese-Zeitspannen, wurde durchgeführt und implizierte, dass der Gelatine Abbau am deutlichsten für stark alkalische Synthesebedingungen mit langen Reaktionszeiten war. Gelatine beinhaltet mehrere funktionalisierbare Gruppen und anhand diverser Model-Substanzen und Analysen wurde die vorrangige Amingruppen-Funktionalisierung ermittelt. Die Homogenität des GelAGE-Polymernetzwerkes, im Vergleich zu frei radikalisch polymerisierten GelMA-Hydrogelen, wurde bestätigt. Eine ausführliche Analyse der Hydrogel-Zusammensetzungen mit variierenden funktionellen Gruppen Verhältnissen und UV- oder Vis-Licht induzierbaren Photoinitiatoren wurde durchgeführt. Die UV-Initiator Konzentration ist aufgrund der Zell-Toxizität und der potenziellen zellulären DNA-Beschädigung durch UV-Bestrahlung eingeschränkt. Das Zell-kompatiblere Vis-Initiator System hingegen ermöglichte, durch die kontrollierte Photoinitiator-Konzentration bei konstanten En:SH Verhältnissen und Polymeranteilen, die Einstellung der mechanischen Eigenschaften über eine große Spanne hinweg. Die Flexibilität der GelAGE Bio-Tinte für unterschiedliche additive Fertigungstechniken konnte, durch Ausnutzung des temperaturabhängigen Gelierungsverhaltens unterschiedlich stark degradierter GelAGE Produkte, für Stereolithographie und Extrusions-basiertem Druck bewiesen werden. Außerdem wurde die Viabilität zellbeladener GelAGE Konstrukte bewiesen, die mittels Extrusions-basiertem Bio-Druck erhalten wurden. Die Verwendung diverser multifunktioneller und makromolekularer Thiol-Vernetzungsmoleküle ermöglichte eine Verbesserung der mechanischen und rheologischen Eigenschaften und ebenso der Prozessierbarkeit. Verglichen mit dem kleinen bis-Thiol-funktionellen Vernetzungsmolekül waren geringere Thiol-Vernetzer-Konzentrationen notwendig um bessere mechanische Festigkeiten und physikochemische Eigenschaften der Hydrogele zu erhalten. Der Extrusions-basierte Bio-Druck unterschiedlicher eingekapselter Zellen verdeutlichte die Notwendigkeit der individuellen Optimierung von Zell-beladenen Hydrogel-Formulierungen. Nicht nur die Zellviabilität von eingekapselten Zellen in Extrusions-basierten biogedruckten Konstrukten sollte bewertet werden, sondern auch andere Parameter wie die Zellmorphologie oder die Kollagen- oder Glykosaminoglykan-Produktion, da diese einige der essentiellen Voraussetzungen für die Verwendung in Knorpel Tissue Engineering Konzepten darstellen. Außerdem sollten diese Studien auf die stereolithographischen Ansätze erweitert werden und letztlich wäre die Flexibilität und Zellkompatibilität der Formulierungen mit makromolekularen Vernetzern von Interesse. Makromolekulare Vernetzer ermöglichten die Reduktion des Polymeranteils und des Thiol-Gehalts und können, insbesondere in Kombination mit dem Zell-kompatibleren Vis-Initiator-System, voraussichtlich zu einer gesteigerten Zellkompatibilität beitragen, was zu klären bleibt. Hyaluronsäure-basierte Bio-Tinten: Unterschiedliche Hyaluronsäure-Produkte (HA) wurden synthetisiert, sodass diese En- (HAPA) oder Thiol-Funktionalitäten (LHASH) beinhalteten, um reine HA Thiol-En vernetzte Hydrogele zu erhalten. In Abhängigkeit des Molekulargewichts der HA-Produkte, der Polymeranteile und des En:SH Verhältnisses, konnte eine große Spanne an mechanischen Festigkeiten abgedeckt werden. Aufgrund der hohen Viskosität war allerdings im Falle von hochmolekularen HA (HHAPA) Produkt-Lösungen (HHAPA + LHASH) die Handhabbarkeit auf 5.0 wt.-% beschränkt. Die Verwendung der gleichen HA Thiol-Komponenten (LHASH) ermöglichte Hybrid-Hydrogele, mit HA und GelAGE, mit reinen HA-Hydrogelen zu vergleichen. Obwohl der Polymeranteil von HHAPA + LHASH Hydrogelen signifikant geringer war, als im Vergleich zu Hybrid-Hydrogelen (GelAGE + LHASH), wurden für gleiche En:SH Verhältnisse ähnliche mechanische und physikochemische Eigenschaften reiner HA-Hydrogele bestimmt. Aufgrund der geringen Viskosität niedermolekularer HA Lösungen (LHAPA + LHASH) konnten diese nicht für den Extrusions-basierten Druck verwendet werden. Das nicht temperaturabhängige HHAPA + LHASH System hingegen konnte mit nur einem Viertel des Polymeranteils der Hybrid Formulierungen gedruckt werden. Im Vergleich zu der Hybrid Bio-Tinte wurde angenommen, dass das hoch viskose Verhalten von HHAPA + LHASH Lösungen, der geringere Polymeranteil, der geringere Druck für das Drucken und eine demzufolge geringere Scherspannung, maßgeblich zu der hohen Zellviabilität in Extrusions-basiert-biogedruckten Konstrukten beisteuerten. Die niedrigmolekulare HA Formulierung (LHAPA + LHASH) konnte zwar nicht für den Extrusions-basierten Druck verwendet werden, allerdings besitzt dieses System Potential für andere additive Fertigungstechniken wie z.B. der Stereolithographie. Um dieses System weiterzuentwickeln wäre, analog zu dem GelAGE System, eine detailliertere Studie zu den Funktionen eingekapselter Zellen hilfreich. Außerdem sollte die Initiierung dieses Systems mit dem Vis-Initiator untersucht werden. / Aim of this thesis was the development of functionalizable hydrogel coatings for melt electrowritten PCL scaffolds and of bioprintable hydrogels for biofabrication. Hydrogel coatings of melt electrowritten scaffolds enabled to control the surface hydrophilicity, thereby allowing cell-material interaction studies of biofunctionalized scaffolds in minimal protein adhesive environments. For this purpose, a hydrophilic star- shaped crosslinkable polymer was used and the coating conditions were optimized. Moreover, newly developed photosensitive scaffolds facilitated a time and pH independent biofunctionalization. Bioprintable hydrogels for biofabrication were based on the allyl-functionalization of gelatin (GelAGE) and modified hyaluronic acid-products, to enable hydrogel crosslinking by means of the thiol-ene click chemistry. Optimization of GelAGE hydrogel properties was achieved through an in-depth analysis of the synthesis parameters, varying Ene:SH ratios, different crosslinking molecules and photoinitiators. Homogeneity of thiol-ene crosslinked networks was compared to free radical polymerized hydrogels and the applicability of GelAGE as bioink for extrusion-based bioprinting was investigated. Purely hyaluronic acid-based bioinks were hypothesized to maintain mechanical- and rheological properties, cell viabilities and the processability, upon further decreasing the overall hydrogel polymer and thiol content. Hydrogel coatings: Highly structured PCL scaffolds were fabricated with MEW and subjected to coatings with six-armed star-shaped crosslinkable polymers (sP(EO-stat-PO)). Crosslinking results from the aqueous induced hydrolysis of reactive isocyanate groups (NCO) of sP(EO-stat-PO) and increased the surface hydrophilicity and provided a platform for biofunctionalizations in minimal protein adhesive environments. Not only the coating procedure was optimized with respect to sP(EO-stat-PO) concentrations and coating durations, instead scaffold pre-treatments were developed, which were fundamental to enhance the final hydrophilicity to completely avoid unspecific protein adsorption on sP(EO-stat-PO) coated scaffolds. The sP(EO-stat-PO) layer thickness of around 100 nm generally allows in vitro studies not only in dependence on the scaffold biofunctionalization but also on the scaffold architecture. The hydrogel coating extent was assessed via an indirect quantification of the NCO-hydrolysis products. Knowledge of NCO-hydrolysis kinetics enabled to achieve a balance of sufficiently coated scaffolds while maintaining the presence of NCO-groups that were exploited for subsequent biofunctionalizations. However, this time and pH dependent biofunctionalization was restricted to small biomolecules. In order to overcome this limitation and to couple high molecular weight biomolecules another reaction route was developed. This route was based on the photolysis of diazirine moieties and enabled a time and pH independent scaffold biofunctionalization with streptavidin and collagen type I. The fibril formation ability of collagen was used to obtain different collagen conformations on the scaffolds and a preliminary in vitro study demonstrated the applicability to investigate cell-material interactions. The herein developed scaffolds could be applied to gain deeper insights into the fundamentals of cellular sensing. Especially the complexity by which cells sense e.g. collagen remain to be further elucidated. Therefore, different hierarchies of collagen-like conformations could be coupled to the scaffolds, e.g. gelatin or collagen-derived peptide sequences, and the activation of DDR receptors in dependence on the complexity of the coupled substances could be determined. Due to the strong streptavidin-biotin bond, streptavidin functionalized scaffolds could be applied as a versatile platform to allow immobilization of any biotinylated molecules. Gelatin-based bioinks: First the GelAGE products were synthesized with respect to molecular weight distributions and amino acid composition integrity. A detailed study was conducted with varying molar ratios of reactants and synthesis durations and implied that gelatin degradation was most dominant for high alkaline synthesis conditions with long reaction times. Gelatin possesses multiple functionalizable groups and the predominant functionalization of amine groups was confirmed via different model substances and analyses. Polymer network homogeneity was proven for the GelAGE system compared to free radical polymerized hydrogels with GelMA. A detailed analysis of hydrogel compositions with varying functional group ratios and UV- or Vis-light photoinitiators was executed. The UV-initiator concentration is restricted due to cytotoxicity and potential cellular DNA damages upon UV-irradiation, whereas the more cytocompatible Vis- initiator system enabled mechanical stiffness tuning over a wide range by controlling the photoinitiator concentration at constant Ene:SH ratios and polymer weight percentages. Versatility of the GelAGE bioink for different AM techniques was proved by exploiting the thermo-gelling behavior of differently degraded GelAGE products for stereolithography and extrusion-based printing. Moreover, the viability of cell-laden GelAGE constructs was demonstrated for extrusion-based bioprinting. By applying different multifunctional thiol-macromolecular crosslinkers the mechanical and rheological properties improved concurrently to the processability. Importantly, lower thiol-crosslinker concentrations were required to yield superior mechanical strengths and physico-chemical properties of the hydrogels as compared to the small bis-thiol-crosslinker. Extrusion-based bioprinting with distinct encapsulated cells underlined the need for individual optimization of cell-laden hydrogel formulations. Not only the viability of encapsulated cells in extrusion-based bioprinted constructs should be assessed, instead other parameters such as cell morphology or production of collagen or glycosaminoglycans should be considered as these represent some of the crucial prerequisites for cartilage Tissue Engineering applications. Moreover, these studies should be expanded to the stereolithographic approach and ultimately the versatility and cytocompatibility of formulations with macromolecular crosslinkers would be of interest. Macromolecular crosslinkers allowed reducing polymer weight percentages and amounts of thiol groups and are thus expected to contribute to increased cytocompatibility, especially in combination with the more cytocompatible Vis-initiator system, which remains to be elucidated. Hyaluronic acid-based bioinks: Different molecular weight hyaluronic acid (HA) products were synthesized to bear ene- (HAPA) or thiol-functionalities (LHASH) to enable pure HA thiol-ene crosslinked hydrogels. Depending on the molecular weight of modified HA products, polymer weight percentages and Ene:SH ratios, a wide range of mechanical stiffness was covered. However, the manageability of high molecular weight HA (HHAPA) product solutions (HHAPA + LHASH) was restricted to 5.0 wt.-% as a consequence of the high viscosity. Based on the same HA thiol component (LHASH), hybrid hydrogels of HA with GelAGE were compared to pure HA hydrogels. Although the overall polymer weight percentage of HHAPA + LHASH hydrogels was significantly lowered compared to hybrid hydrogels (GelAGE + LHASH), similar mechanical and physico-chemical properties of pure HA hydrogels were determined with maintained Ene:SH ratios. Low viscous low molecular weight HA precursor solutions (LHAPA + LHASH) prevented the applicability for extrusion-based bioprinting, whereas the non-thermoresponsive HHAPA + LHASH system could be bioprinted with only one-fourth of the polymer content of hybrid formulations. The high viscous behavior of HHAPA + LHASH solutions, lower polymer weight percentages, decreased printing pressures and consequently declined shear stress during printing, were hypothesized to contribute to high cell viabilities in extrusion-based bioprinted constructs compared to the hybrid bioink. The low molecular weight HA precursor formulation (LHAPA + LHASH) was not applicable for extrusion-based printing, but this system has potential for other AM techniques such as stereolithography. Similar to the GelAGE system a more detailed study on the functions of encapsulated cells would be useful to further develop this system. Moreover, the initiation with the Vis-initiator should be conducted.
30

Poly(vinyl alcohol) hydrogel as a biocompatible viscoelastic mimetic for articular cartilage.

Britland, Stephen T., Eagland, D., Smith, Annie G., Twigg, Peter C., Grant, Colin A., Egan, A., Moody, A., Crowther, N.J. January 2006 (has links)
No / The prevalence of suboptimal outcome for surgical interventions in the treatment of full-thickness articular cartilage damage suggests that there is scope for a materials-based strategy to deliver a more durable repair. Given that the superficial layer of articular cartilage creates and sustains the tribological function of synovial joints, it is logical that candidate materials should have surface viscoelastic properties that mimic native articular cartilage. The present paper describes force spectroscopy analysis by nano-indentation to measure the elastic modulus of the surface of a novel poly(vinyl alcohol) hydrogel with therapeutic potential as a joint implant. More than 1 order of magnitude decrease in the elastic modulus was detected after adsorption of a hyaluronic acid layer onto the hydrogel, bringing it very close to previously reported values for articular cartilage. Covalent derivatization of the hydrogel surface with fibronectin facilitated the adhesion and growth of cultured rat tibial condyle chondrocytes as evidenced morphologically and by the observance of metachromatic staining with toluidine blue dye. The present results indicate that hydrogel materials with potential therapeutic benefit for injured and diseased joints can be engineered with surfaces with biomechanical properties similar to those of native tissue and are accepted as such by their constituent cell type.

Page generated in 0.4298 seconds